FEniCS Course

Lecture4: Time-dependent PDESs

FENICS
NNPOJECT

1/13

Contributors
Hans Petter Langtangen

Anders Logg

Course outline

L1 Introduction

L2 Static linear PDEs

L3 Static nonlinear PDEs
L4 Time-dependent PDEs
L5 Advanced topics

2/13

The heat equation

We will solve the simplest extension of the Poisson problem into
the time domain, the heat equation:

%—Au:f in Q fort>0

u=g¢g ondf)fort>0

u=u'inQatt=0

The solution v = u(z,y,t), the right-hand side f = f(x,y,t)
and the boundary value g = g(z,y,t) may vary in space and
time. The initial value u° is a function of space only.

3/13

Time-discretization of the heat equation

We discretize in time using the implicit Euler (dG(0)) method:

Ju _u"— un—!
ot~ At
Semi-discretization of the heat equation:

u — unfl

A Awd

u" — AtAU" = w4 AL

Solve for u!, u?, ...

4/13

Variational problem for the heat equation

Find 4™ € V"™ such that
a(u",v) = L"(v)

for all v € V where

a(u,v) = / uv + AtVu - Vo dz
Q

L"(v) = / u" o+ At f o dz
Q

Note that the bilinear form a(u,v) is constant while the linear
form L™ depends on n

5/13

Time-stepping algorithm

Define the boundary condition
Compute u® as the projection of the given initial value
Define the forms a and L
Assemble the matrix A from the bilinear form a
t+ At
while t < T do
Assemble the vector b from the linear form L
Apply the boundary condition
Solve the linear system AU = b for U and store in u
t+—t+ At
ul — ul (get ready for next step)
end while

1

6/13

Test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

w=1+z>+ay® + Bt

We insert this into the heat equation:
f=t—Au=08-2-2«
The initial condition is

u’ =1+ 2% + ay?

This technique is called the method of manufactured solutions

7/13

Handling time-dependent expressions

We need to define a time-dependent expression for the
boundary value:

alpha = 3
beta = 1.2

g = Expression("1 + x[0]*x[0] + \
alpha*x[1]*x[1] + betax*xt",
alpha=alpha, beta=beta, t=0)

Updating parameter values:

ig.t =t
L

8/13

Projection and interpolation

We need to project the initial value into Vj,:

[
‘uO = project(g, V)
L

We can also interpolate the initial value into Vj:

[
'u0 = interpolate(g, V)
L

9/13

Implementing the variational problem

dt = 0.3

u0 = project(g, V)
ul = Function (V)

u = TrialFunction (V)
TestFunction (V)
f = Constant(beta - 2 - 2*alpha)

<
]

a = u*v#dx + dt*inner (grad(u), grad(v))*dx
L = uO*vxdx + dt*xf*dx

assemble only once, before time-stepping
A = assemble(a)

10/13

Implementing the time-stepping loop

T = 2
t = dt

while t <= T:
b = assemble (L)
g.t =t
bc.apply (A, b)
solve(A, ul.vector (), b)

t += dt
u0.assign(ul)

11/13

Programming exercise

Write a program to solve the heat equation

Write your program in a file named heat.py

e Run your program using

python heat.py

The complete program is available! as

transient/diffusion/d1.d2D.py

"http://fenicsproject.org/pub/book/tutorial/
12/13

http://fenicsproject.org/pub/book/tutorial/

Course outline

L1 Introduction

L2 Static linear PDEs

L3 Static nonlinear PDEs
L4 Time-dependent PDEs
L5 Advanced topics

13 /13

