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Course outline

Sunday

L1 Introduction to FEM

Monday

L2 Fundamentals of continuum mechanics (I)

L3 Fundamentals of continuum mechanics (II)

L4 Introduction to FEniCS

Tuesday

L5 Solid mechanics

L6 Static hyperelasticity in FEniCS

L7 Dynamic hyperelasticity in FEniCS

Wednesday

L8 Fluid mechanics

L9 Navier–Stokes in FEniCS
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What is FEM?

The finite element method is a framework and a recipe for
discretization of differential equations

• Ordinary differential equations

• Partial differential equations

• Integral equations

• A recipe for discretization of PDE

• PDE → Ax = b

• Different bases, stabilization, error control, adaptivity
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The FEM cookbook

Au = f

a(u, v) = L(v)

a(uh, v) = L(v)

AU = b

Partial differential equation

Continuous variational problem

Discrete variational problem

System of discrete equations

Multip
ly

by v

Take V
h
⊂ V

Let u
h

=
∑

j
Ujφ

j

(i)

(ii)

(iii)

(iv)
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The PDE (i)

Consider Poisson’s equation, the Hello World of partial
differential equations:

−∆u = f in Ω

u = u0 on ∂Ω

Poisson’s equation arises in numerous applications:

• heat conduction, electrostatics, diffusion of substances,

twisting of elastic rods, inviscid fluid flow, water waves,

magnetostatics, . . .

• as part of numerical splitting strategies for more

complicated systems of PDEs, in particular the

Navier–Stokes equations
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From PDE (i) to variational problem (ii)

The simple recipe is: multiply the PDE by a test function v and
integrate over Ω:

−
∫

Ω
(∆u)v dx =

∫
Ω
fv dx

Then integrate by parts and set v = 0 on the Dirichlet
boundary:

−
∫

Ω
(∆u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds︸ ︷︷ ︸

=0

We find that: ∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx
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The variational problem (ii)

Find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂

The trial space V and the test space V̂ are (here) given by

V = {v ∈ H1(Ω) : v = u0 on ∂Ω}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}
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From continuous (ii) to discrete (iii) variational

problem

We approximate the continuous variational problem with a
discrete variational problem posed on finite dimensional
subspaces of V and V̂ :

Vh ⊂ V
V̂h ⊂ V̂

Find uh ∈ Vh ⊂ V such that∫
Ω
∇uh · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂h ⊂ V̂
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From discrete variational problem (iii) to

discrete system of equations (iv)

Choose a basis for the discrete function space:

Vh = span {φj}Nj=1

Make an ansatz for the discrete solution:

uh =

N∑
j=1

Ujφj

Test against the basis functions:∫
Ω
∇(

N∑
j=1

Ujφj︸ ︷︷ ︸
uh

) · ∇φi dx =

∫
Ω
fφi dx
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From discrete variational problem (iii) to

discrete system of equations (iv), contd.

Rearrange to get:

N∑
j=1

Uj

∫
Ω
∇φj · ∇φi dx︸ ︷︷ ︸

Aij

=

∫
Ω
fφi dx︸ ︷︷ ︸
bi

A linear system of equations:

AU = b

where

Aij =

∫
Ω
∇φj · ∇φi dx (1)

bi =

∫
Ω
fφi dx (2)
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The canonical abstract problem

(i) Partial differential equation:

Au = f in Ω

(ii) Continuous variational problem: find u ∈ V such that

a(u, v) = L(v) for all v ∈ V̂

(iii) Discrete variational problem: find uh ∈ Vh ⊂ V such that

a(uh, v) = L(v) for all v ∈ V̂h

(iv) Discrete system of equations for uh =
∑N

j=1 Ujφj :

AU = b

Aij = a(φj , φi)

bi = L(φi)
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Important topics

• How to choose Vh?

• How to compute A and b

• How to solve AU = b?

• How large is the error e = u− uh?

• Extensions to nonlinear problems
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How to choose Vh
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Finite element function spaces

u

uh

t
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The finite element definition (Ciarlet 1975)

A finite element is a triple (T,V,L), where

• the domain T is a bounded, closed subset of Rd (for

d = 1, 2, 3, . . . ) with nonempty interior and piecewise

smooth boundary

• the space V = V(T ) is a finite dimensional function space

on T of dimension n

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is

a basis for the dual space V ′; that is, the space of bounded

linear functionals on V
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The finite element definition (Ciarlet 1975)

T V L

v(x̄)

∫
T v(x)w(x) dx

v(x̄) · n
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The linear Lagrange element: (T,V ,L)

• T is a line, triangle or tetrahedron

• V is the first-degree polynomials on T

• L is point evaluation at the vertices
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The linear Lagrange element: L
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The linear Lagrange element: Vh

T = {T}

T

uh(x, y)
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The quadratic Lagrange element: (T,V ,L)

• T is a line, triangle or tetrahedron

• V is the second-degree polynomials on T

• L is point evaluation at the vertices and edge midpoints
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The quadratic Lagrange element: L
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The quadratic Lagrange element: Vh
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Families of elements
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Families of elements
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Computing the sparse matrix A
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Naive assembly algorithm

A = 0

for i = 1, . . . , N

for j = 1, . . . , N

Aij = a(φj , φi)

end for

end for
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The element matrix

The global matrix A is defined by

Aij = a(φj , φi)

The element matrix AT is defined by

AT,ij = aT (φTj , φ
T
i )
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The assembly algorithm

A = 0

for T ∈ T

Compute the element matrix AT

Compute the local-to-global mapping ιT

Add AT to A according to ιT

end for
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Adding the element matrix AT

ι2T (1)

1

2

3

1 2 3

AT,32

ι2T (2) ι2T (3)

ι1T (1)

ι1T (2)

ι1T (3)
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Solving AU = b
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Direct methods

• Gaussian elimination

• Requires ∼ 2
3N

3 operations

• LU factorization: A = LU

• Solve requires ∼ 2
3N

3 operations

• Reuse L and U for repeated solves

• Cholesky factorization: A = LL>

• Works if A is symmetric and positive definite

• Solve requires ∼ 1
3N

3 operations

• Reuse L for repeated solves
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Iterative methods

Krylov subspace methods

• GMRES (Generalized Minimal RESidual method)

• CG (Conjugate Gradient method)

• Works if A is symmetric and positive definite

• BiCGSTAB, MINRES, TFQMR, . . .

Multigrid methods

• GMG (Geometric MultiGrid)

• AMG (Algebraic MultiGrid)

Preconditioners

• ILU, ICC, SOR, AMG, Jacobi, block-Jacobi, additive

Schwarz, . . .
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Which method should I use?

Rules of thumb

• Direct methods for small systems

• Iterative methods for large systems

• Break-even at ca 100–1000 degrees of freedom

• Use a symmetric method for a symmetric system

• Cholesky factorization (direct)

• CG (iterative)

• Use a multigrid preconditioner for Poisson-like systems

• GMRES with ILU preconditioning is a good default choice
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Current timings (2012–01–20)

102 103 104 105 106

N

10-3

10-2

10-1

100

101

102

CP
U 

tim
e

Solving Poisson's equation with DOLFIN 1.0.0

uBLAS lu
uBLAS cholesky
uBLAS gmres, ilu
PETSc lu
PETSc gmres, none
PETSc gmres, ilu
PETSc cg, none
PETSc cg, ilu
PETSc gmres, amg
PETSc cg, amg
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Homework!

• Install FEniCS 1.0.0!

• Download the FEniCS book!

• Visit the course web page!

http://fenicsproject.org/

http://home.simula.no/~logg/teaching/geilo2012/

PS: Be alert and ready for the FEniCS challenge(s). . .
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