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Course outline

Sunday

L1 Introduction to FEM

Monday

L2 Fundamentals of continuum mechanics (I)

L3 Fundamentals of continuum mechanics (II)

L4 Introduction to FEniCS

Tuesday

L5 Solid mechanics

L6 Static hyperelasticity in FEniCS

L7 Dynamic hyperelasticity in FEniCS

Wednesday

L8 Fluid mechanics

L9 Navier–Stokes in FEniCS
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Dynamic hyperelasticity

ρü− divP = B in Ω× (0, T ]

u = g on ΓD × (0, T ]

P · n = T on ΓN × (0, T ]

u(·, 0) = u0 in Ω

u̇(·, 0) = u1 in Ω

• u is the displacement

• ρ is the (reference) density

• P = P (u) is the first Piola–Kirchoff stress tensor

• B is a given body force per unit volume

• g is a given boundary displacement

• T is a given boundary traction

• u0 and u1 are given initial displacement and velocity
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Variational problem

Rewrite as a first-order system by introducing p = u̇:

ρṗ− divP = B

u̇− p = 0

Multiply by test functions v and q and sum up:∫ tn

tn−1

∫
Ω

(ρṗ−divP )·v dx dt+

∫ tn

tn−1

∫
Ω

(u̇−p)·q dx dt =

∫ tn

tn−1

∫
Ω
B·v dx

Integrate by parts and use v = 0 on ΓD and P · n = T on ΓN:∫ tn

tn−1

∫
Ω
ρṗ · v dx dt+

∫ tn

tn−1

∫
Ω
P : grad v dx dt

+

∫ tn

tn−1

∫
Ω
u̇ · q dx dt−

∫ tn

tn−1

∫
Ω
p · q dx dt

=

∫ tn

tn−1

∫
Ω
B · v dx dt+

∫ tn

tn−1

∫
ΓN

T · v ds dt
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Time discretization

Let the trial functions u, p be continuous and piecewise linear
in time, and let the test functions v, q be piecewise constant:∫ tn

tn−1

∫
Ω
ρṗ · v dx dt =

∫
Ω
ρ(p(·, tn)− p(·, tn−1)) · v dx∫ tn

tn−1

∫
Ω
u̇ · q dx dt =

∫
Ω

(u(·, tn)− u(·, tn−1)) · q dx∫ tn

tn−1

∫
Ω
p · q dx dt = kn

∫
Ω
p(·, tn−1/2) · q dx

where kn = tn − tn−1 and p(·, tn−1/2) = p(·, tn − kn/2)
Approximate other integrals by midpoint quadrature:∫ tn

tn−1

∫
Ω
P : grad v dx dt ≈ kn

∫
Ω
P (u(·, tn−1/2) : grad v dx

This is cG(1) or Crank–Nicolson method
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Discrete problem

Find (un, pn) ∈ Vh such that∫
Ω
ρ(pn − pn−1) · v dx+ kn

∫
Ω
P (un−1/2) : grad v dx

+

∫
Ω

(un − un−1) · q dx− kn
∫

Ω
pn−1/2 · q dx

= kn

∫
Ω
Bn−1/2 · v dx+ kn

∫
ΓN

Tn−1/2 · v ds

for all (v, q) ∈ V̂h
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Stress–strain relations

• F = I + gradu is the deformation gradient

• C = F>F is the right Cauchy–Green tensor

• E = 1
2(C − I) is the Green–Lagrange strain tensor

• W = W (E) is the strain energy density

• Sij = ∂W
∂Eij

is the second Piola–Kirchoff stress tensor

• P = FS is the first Piola–Kirchoff stress tensor

St. Venant–Kirchoff strain energy function:

W (E) =
λ

2
(tr(E))2 + µ tr(E2)
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Useful FEniCS tools (I)

Defining mixed function spaces:

V = VectorFunctionSpace(mesh , "CG", 1)

VV = V*V

Defining subfunctions:

up = Function(VV)

u, p = split(up)

Shortcut:

u, p = Functions(VV)
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Useful FEniCS tools (II)

Time-stepping

t = dt

while t < T + DOLFIN_EPS:

# Solve variational problem

solve (...)

# Move to next interval

t += dt

u0.assign(u1)

# use up0.assign(up1) for a mixed system
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The FEniCS challenge!
Compute the deflection of a regular 10× 2 LEGO brick as
function of time. Use the St. Venant–Kirchhoff model and
assume that the LEGO brick is made of PVC plastic. The
LEGO brick is subject to gravity of size g = −9.81 m/s2 and a
downward traction of size 5000 N/m2 at its end point. At time
t = 0, the brick is at rest in its undeformed state.

g = −9.81m/s2

T = 5000 N/m2

To check your solution, compute the average value of the
displacement in the z-direction at time T = 0.05. Use a time
step of size k = 0.002.
The student(s) who first produce the right anwswer will be
rewarded with an exclusive FEniCS coffee mug!
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