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The incompressible Navier—Stokes equations

pli+u-Vu) =V -o(u,p) = f

V-u=0

u =g,
o-n =gy
u(+,0) = ug

in Q x (0, 7]
in © x (0,7
onI', x (0,7
onI'y x (0,7
in Q

u is the fluid velocity and p is the pressure

p is the fluid density

o(u,p) = 2ue(u) — pl is the Cauchy stress tensor
e(u) = 3(Vu+ (Vu)") is the symmetric gradient
f is a given body force per unit volume

gy, is a given boundary displacement

gy is a given boundary traction
ug is a given initial velocity
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Variational problem

Multiply the momentum equation by a test function v and
integrate by parts:

/Qﬂ(ihLu-Vu)-v dﬂc—l—/Q o(u,p) : e(v)dz :/

Q

fv da:+/ gyvds

1—‘N
Short-hand notation:
(pit,v) + (pu - Vu,v) + (o(u, p), €(v)) = (f,v) + (95> V)1

Multiply the continuity equation by a test function ¢ and sum
up: find (u,p) € V such that

{pi, v) + (pu - Vu,v) + (o (u,p), €(v)) + (V- u,q) = (f,v) + {9y, V)1

for all (v,q) € V
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Discrete variational problem

Time-discretization leads to a saddle-point problem on each
time step:

M + AtA + AtN(U) AtB Ul [b
AtBT 0 Pl |0

e Efficient solution of the saddle-point problem relies on the
efficiency of special-purpose preconditioners (Uzawa

iteration, Schur complement preconditioners, ... )

e We will use another approach (simpler and often more

efficient)
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A splitting method
c¢G(1) / Crank-Nicolson approximation with explicit convection:
thun + punfl B V2Tt S v A O_(unfl/27pn71/2) — fn71/2
Compute the tentative velocity u* using the approximation
th’U,* + pun—l Vv O'(Un_l/2,p”_3/2) — fn—1/2
Subtract:
p(Dtu" _ Dtu*) N v U(O,pn_1/2 _pn—3/2) -0
Expand and rearrange:

p(u” —u*) + ke, V(p" 12 = pn 32 = 0

Dyu = (u" —u" 1) /k, and k,, = t,, —t,_1
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A splitting method (contd.)
We have found that:

p(un _ u*) + knv(pn—l/Q _ pn—3/2) -0
It follows that

pu" = pu* — k, V(p 2 — pn /2 (1)
Take the divergence and set V - u™ = 0:
— kp Ap" V2 = ke, AP — VX (2)
e Compute p"~'/2 by solving the Poisson problem (2)

e Compute u™ by solving the projection problem (1)
e To consider: What about the boundary conditions for the

Poisson problem (2)?
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Boundary conditions

e For outflow boundary conditions, corresponding to
so-called “do-nothing” boundary conditions for the

Laplacian formulation, we take d,u = 0:
o(u,p) -n = 2ue(u) —pI)-n=pVu-n+ u(Vu)' -n—pn
= u(Vu) " -n—pn~ p(Va Y2 T o — pn=3/2y
e Boundary conditions for the pressure Poisson problem:
Onp=20

on the pressure Neumann boundary
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Incremental pressure correction scheme (IPCS)

©® Compute the tentative velocity u* by

(pDu*, v) + (pu" - Vu L v) + (o (u 2, p ) e(v))

— {un - (Vur=2) T ) o+ (0" 0, v)on = (1712 0)
® Compute the corrected pressure p—1/2 by
kn(Vp" V2,V q) = k (VD" P2, Vg) — (pV - u*, q)
® Compute the corrected velocity u™ by

(pu,v) = (pu*,v) — ki (V(p" 2 = p"73/%), )
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Useful FEniCS tools (I)
Note V vs. V:

dot (grad(u), u)

dot (u, nabla_grad(u))

Defining operators:

def sigma(u, p):

return 2.0*mu*sym(grad(u)) - p*Identity(2)

The facet normal n:

n = FacetNormal (mesh)

9/12



Useful FEniCS tools (II)

Assembling matrices and vectors:

=
]

assemble (a)

o’
]

assemble (L)

Solving linear systems:

solve(A, x, b)
solve(A, x, b, "gmres", "ilu")

solve(A, x, b, "cg", "amg")
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The FEniCS challenge!

Solve the incompressible Navier—Stokes equations for the flow of
water around a dolphin. The water is initially at rest and the
flow is driven by a pressure gradient.
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The FEni:CS challenge!

Compute the solution on the time interval [0,0.1] with time

steps of size k = 0.0005

Set p = 1 kPa at the inflow and p = 0 at the outflow

The density of water is p = 1000 kg/m? and the viscosity is

1 = 0.001002 kg/(m - s)

To check your answer, compute the average velocity in the

x-direction.

The student(s) who first produce the right anwswer will be
rewarded with an exclusive FEniCS coffee mug!
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