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The Stokes equations

—Au+Vp=f in Q Momentum equation
V-u=0 in Q Continuity equation
w=g¢gp on Jdp
ou
— —pn=gny on IOy
on

u is the fluid velocity and p is the pressure
e f is a given body force per unit volume
® g, is a given boundary flow

® g, is a given function for the natural boundary condition
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Variational problem

Multiply the momentum equation by a test function v and
integrate by parts:

/Vu:Vvdx—/pV-vdx:/f~vdx+/ gn - vds
Q Q Q N

Short-hand notation:

<vu7 VU> _<p7v : U) = <f,1}> + <gN,U>OQN
——

a(u,v) b(v,p) L(v)

Multiply the continuity equation by a test function g:
+(V-u,q) =0
—_——
b(u,q)

Definition of a(-,-) and b(-,-) is meaningful if v € H'(2) and
p € L*Q)
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Saddle point formulation for the Stokes problem

Stokes problem is an example for a saddle point problem: Find
(u,p) € V x @ such that for all (v,q) €V x Q

a(u,v) + b(v,p) = L(v)
b(u, q) =0

Sum up:  A(u, p;v,q) := a(u,v) + b(v,p) + b(u, ¢) = L(v)
Mixed spaces:

V =[Hg, r, (@) V= [Hjr, (@)
Q=L*Q) Q= L)
The inf-sup condition
inf sup _bv.g) >C

€0 et lvllviiglle =

is crucial to show unique solvability of the saddle point problem.
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Discrete variational problem

Find (up,pr) € Vi, x Qp, such that for all (vp, qp) € ‘//; X @;

Ap(Un, Pri Vs an) = ap(Un, va) + ba(Vh, pR) + bn(un, an) = Lp(vp)

A stable mixed element Vj, x Qp, C V x @ should satisfy a
uniform inf-sup condition

b
inf sup @) o

=
GhE€QR vy eV}, ||Uh||V||‘Jh||Q

with ¢, independent of the mesh 7p,!
= The right “mixture” of elements is critical for stability and
convergence.
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Spurious pressure modes

What can go wrong?
Spurious pressure modes occur if ker B,T 7 kerB'.

Degeneration of the inf-sup constant: ¢, = ¢p(h) and
cy(h) — 0,h — 0.

Exercise: Couette flow
Compute the finite element approximation for Couette flow on
the unit square. Use the boundary data

u=1lony=1, u=0ony=0, gv=0onx=0o0rx=1
Use P1/ Py and Py /Py elements. The exact solution is given by
U= (ya 0)7 b= 0

What do you observe? Why?
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Unstable and stable Stokes elements

Unstable elements

JAVAVAVZ

Pl/Pl ]Pl/]P() PI/PI

Stable elements

JAVAN

Py/ P, P’/ P, Q2/ Q1

Taylor-Hood elements: Py1/ P, Qpi1/ Qg for k> 1
Mini-element: P} /Py
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Useful FEniCS tools (I)

Mixed elements:

V = VectorFunctionSpace (mesh,"CG",2)
Q FunctionSpace (mesh,"CG",1)
) V*Q

Defining functions, test and trial functions:

up = Function (W)
(u,p) = split(up)

Shortcut:

(u, p) = Functions (W)

# similar for test and trial functions
(u, p) = TrialFunctions (W)

(v, q) = TestFunctions (W)
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Useful FEniCS tools (II)

Access subspaces:

W.sub(0) #corresponds to V
W.sub(1l) #corresponds to @

Splitting solution into components:

w = Function (W)
solve(a == L, w, bcs)
(u, p) = w.split ()

Rectangle mesh:

‘mesh = Rectangle(0.0,0.0,5.0,1.0,50,10)

[
'h = CellSize(mesh)
L
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Demo: Couette flow
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Demo: Taylor-Hood elements
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A stabilized P;/P; method
Define the bilinear forms
ap(un,vp) = (Vup, Vo)

b (v, qn) = —(V - v, qn)

cn(Phsan) = Y 1r(Von, Van)
T€eTh

and solve: find (up,pp) € Vi, X Qp such that ¥V (vp, qp) € Vi, x @h

A(up, pr; vn, qn) = a(up, vp) + b(vn, pr) + b(un, qn) — c(ph, qn)
f’vh Z:UJT f?th)

TET,

Exercise: Implement this scheme for the Couette flow example
using pur = Bh%, 8 =0.2.
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Demo: Stabilized elements
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