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Mesh adaptation can yield more accurate results

with less computational resources

3/24



Mesh adaptation can yield more accurate results

with less computational resources

4/24



Mesh adaptation can yield more accurate results

with less computational resources

4/24



Mesh adaptation can yield more accurate results

with less computational resources

4/24



Adaptive error control

—Au=f in{
u=g ondfd
Refine Estimate
error
E(un, f) < TOL
{nr}ren, Indicate
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Desired properties of error estimators

An error estimator £ ~ ||u — uy]| has to be

computable & = E(up, f)
and should be

reliable |||u — up||

efficient & (up, f)
local S(Uh,f)2 = Z ,OT(Uh,f)2

T€ETh

Cg(uha f)

<
< [[lu =

The quality of E(up, f) is measured by the efficiency index 7

_ Nl = uall

If n(E(un, f)) — 1 as h — 0, the error estimator is

asymptotically exact.
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Types of error estimators

Explicit residual-based error estimators

Implicit error estimator based on local problems

Gradient recovery estimators

Hierarchic error estimators

Goal-oriented error estimators
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Explicit residual based error estimators
Model problem
—Au=f inQ
u=0 on 0N
Residual equation
R(up, f;v) = (V(u—up), Vo) = (f, Vo) — (Vup, Vv) Vv e H) ()
Recall Galerkin orthogonality
R(up, f;v0) =0 Vo, €V

Interpolation operator 7, : V. — Vj,

R(v) = (f,v — mpv) — (Vup, V(v — mhv))

=Y (f+ Aupv—mv)r — Y (Vuy - np, v —mh)ar

T€Th TET;,
= Z(f+Auh,U_7ThU)T— Z ([Vup - nyl,v — )
TeTn FeaFi
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Explicit residual based error estimators

Starting from

R(U)Z Z(f—i—Auh,v—whv)T— Z ([Vuh-nT],v—ﬂh)F

TeTh FedF:
and using the quasi-interpolant by Clement, which satisfies
v = mnllor < Crhr||vlwer)
lo = mallo,r < Cah|[0ll(ry,
one obtains
1/2

IR@)| < Clloll § Y BEIF + Aunl® + D hgll[Vug] - nlF
T€Th FeFi
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Explicit, residual based error estimators
Define
Element residual rp:= f 4+ Alp
Facet residual rp = [Vup - nl|lr

1
Error indicators  p2 := h&|rr||% + 3 E hrlrelF
FeoT

Poincaré inequality gives ||[v||1 ~ ||[Vv| an thus

V(u— \Y R
||’LL N uh”l < sup ( (u uh)a U) — su | (U)‘
veV [[vfl vev [[ollx

<o( > i)'

TeT,

proving the reliability of the error estimator defined by {pr}r.
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Goal-oriented error control
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What is goal-oriented error control?

The scientist’s viewpoint

Shear stress at vessel wall?

[Valen-Sendstad ’08]
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What is goal-oriented error control?

The mathematician’s viewpoint

Input

e PDE: find w € V such that a(u,v) = L(v) Vv eV
e Quantity of interest/Goal: M :V — R

e Tolerance: ¢ > 0

Challenge

Find V}, C V such that |[M(u) — M(up)| < € where uy, € V4, is
determined by
a(up,v) = L(v) YveV,

13 /24



The error measured in the goal is the residual of
the dual solution

O Recall residual R(v) := L(v) — a(up,v)
® Introduce dual problem
Find z € V: a*(z,v) = M) YveV
® Dual solution + residual — error
M(u) — M(up) = M(u —up) = a*(z,u — up) = alu — up, 2)
= L(z) —a(up,2) = R(z) = R(z — zp)
@ A good dual approximation Zj; gives computable error
estimate nn = 1(Zn)

® Error indicators ... 7
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The dual-weighted residual method for the

Poisson problem
Start with representation
(M(u) = M(un)| = [R(u — up, z — zn)].

Integrate by parts as for the classical energy-norm estimate
gives

M)~ M) < 3 pror,

TeT,
where pr is resembles the standard element residual

1/2
pr = |rellr + b2 rellor

and wyp is a weight

1/2
wr = ||z = znllr + il 2|z = zallor

derived from the dual solution z.
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What is automated goal-oriented error control?

s M(up) ~ M(u) £e
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What is automated goal-oriented error control?

— M(up) = M(u) te

/

FEniCS/DOLFIN

[ |
‘pde = VariationalProblem(a, L, bc) ‘
|

‘pde.solve(u, tol, M)
L




Automated goal-oriented adaptivity — A

complete example

from dolfin import =x*

# Create mesh and define function space
mesh = UnitSquareMesh(8, 8)

V = FunctionSpace (mesh, "Lagrange", 1)

# Define boundary condition

u0 = Function (V)

bc = DirichletBC(V, u0, "x[0] < DOLFIN_EPS ||
x[0] > 1.0 - DOLFIN_EPS")
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Automated goal-oriented adaptivity — A
complete example

Define variational problem:

u = TrialFunction (V)
v = TestFunction (V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) +

pow(x[1] - 0.5, 2)) / 0.02)",
degree=1)
g = Expression("sin(5*x[0])", degree=1)

a = inner(grad(u), grad(v))=*dx

=
1]

fxv+dx + g*v*ds
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Automated goal-oriented adaptivity — A

complete example

Define function for the solution:

u = Function (V)

Define goal functional (quantity of interest) and tolerance:

M = u*xdx

tol = 1.e-5
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Automated goal-oriented adaptivity — A

complete example

Solve equation a = L with respect to u and the given boundary
conditions, such that the estimated error (measured in M) is
less than tol

solver_parameters = {"error_control":
{"dual_variational_solver":
{"linear_solver": "cg"}}}
solve(a == L, u, bc, tol=tol, M=M,

solver_parameters=solver_parameters)
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Automated goal-oriented adaptivity — A

complete example

Alternative, more verbose version (+ illustrating how to set

parameters)
problem = LinearVariationalProblem(a, L, u, bc)
solver = AdaptiveLinearVariationalSolver (problem)

solver.parameters["error_control"] ["dual_variational_soplver"]["linear_sol

cg

solver.solve(tol, M)

Extract solutions on coarsest and finest mesh:

plot(u.root_node(), title="Solution on initial mesh")
plot(u.leaf_node(), title="Solution on final mesh")

interactive ()
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Useful FEniCS tools

Uniform mesh refinement:

mesh = refine (mesh)

Adaptive mesh refinement:

cell_markers = CellFunction("bool",

cell_markers.set_all(False)

for ¢ in cells(mesh):
if <something>:

cell_markers[c] = True

mesh)
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The FEniCS challenge!

Compute the solution of the Poisson problem on the unit square with
right-hand side f = e~ 100" +v%) 4nq homogeneous Dirichlet boundary
conditions.

Try to compute the solution as accurately as possible, using adaptive
mesh refinement. Use any one of the techniques described in the
lecture notes, or invent your own refinement strategy.

To check your answer, plot the L? norm as function of the refinement
level. You should get an answer that approaches 8.888e-05.

Hint: Refine in the lower left corner.

The student who computes the most accurate solution will be rewarded

with an exclusive FEniCS surprise!
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