FEniCS Course

Lecture 5: Happy hacking
Tools, tips and coding practices

Contributors %

André Massing

FENICS
NMOJECT

1/9

Post-processing

2/9

Function evaluation

Expression and Function objects £ can be evalutated at arbitrary

points:

1D

x = 0.5

f(x)

2D

x = (0.5,0.3) # tuple

x = [0.5,0.3] is also valid
f(x)

3D

x = (0.5,0.2,1.0) # tuple

x = [0.5,0.2,1.0] is also valid
f(x)

print f£(x)

Short-hand

£(0.5,0.5)

Exercise: Try it out! Use one of your existing codes and
evaluate the solution at some point.

3/9

Function evalution vs. Function representation
Question: What about plotting sin(up)? And Vuy, and [Vupy|?
Experiment: Try it out! Use

sqrt (inner (grad (u) ,grad(u)))

for |[Vu|. What happens if you plot these function? Have a
closer look at the terminal output. Anything suspicious?

Question: What happened now? Why is there a

> Object cannot be plotted directly, projecting to
piecewise linears.

Answer:

e sin(up(x)) is the evaluation of the built-in function sin at a
given value up(x), which in turn results from a FEM
function evalution.

® sinowuy is a composition of the built-in function sin and a
FEM function uy,. The composition is a UFL (Unified Form
Language) expression.

4/9

Building FE representations via L? projection

Define f = sinouj, and choose a FEM function space
Vi, € L*(Q) which is “suitable” for your post-process.

Find wy, € Vj, € L2(Q) such that for all vy, € Vj,

/whvdx:/fvdzv
N U

a(u,v) L(v)

Exercise: Compute |V(u)| for the solution from one of your
existing solvers. Start with adding

abs_grad_V = FunctionSpace (mesh,"DG",0)
f = sqrt(inner (grad(u),grad(u)))

to your original Python script.

5/9

A hack to plot V(u) only on 02

V_ag = FunctionSpace(mesh,"CG",1)
#V_ag = FunctionSpace (mesh,"DG",O0)
f = sqrt(inner (grad(u),grad(u)))

Do the Projection only on the boundary
u_ag = TrialFunction(V_ag)
v = TestFunction(V_ag)
a = u_ag*v*ds
L = fxvx*ds

A = assemble(a)
b = assemble(L)

Set dofs not located on the boundary to
zero by adding ones in the diagonal of A
.ident_zeros ()

_ag = Function(V_ag)

solve (A, u_ag.vector (), b)

e = # W

plot(u_ag, title="|grad(u)| on boundary")
interactive ()

6/9

Simple code validation

7/9

Theory can help you to validate your
implementation!

A priori estimates for the Poisson problem
If

o uc HY} Q) NHY(Q)

o Vi ={v, € C(Q) : vy GPk(T)VTGT}

then
Ei(h) = |lu = upll1,0 < Ch*|luflgr10
Eo(h) := |lu = upllo.o < Ch*Yullks10
where || - |10 = - HHl(Q) forl =0,1,k+ 1.

8/9

Theory can help you to validate your
implementation!

A priori estimates for the Poisson problem
If

o uc HY} Q) NHY(Q)

o Vi ={v, € C(Q) : vy GPk(T)\V’TGT}

then
Ey(h) = [lu—unllie < CR*ullks10
Eo(h) := llu—upllog < CH*ullksr0
where || - |10 = - HHl(Q) for 1 =0,1,k+ 1.

Taking log on each side

log(E1(h)) < log(Ch*|[ullk41,0) = klog(h) +1og(Cllullk+1.0)

8/9

Theory can help you to validate your
implementation!

A priori estimates for the Poisson problem
If

o u € HHQ)NHMYQ)

o Vi ={v, € C(Q) : vy GPk(T)\V’TGT}

then
E1(h) := |lu — upll1,0 < Ch"||ullks1,0
Eo(h) := |lu — upllo.o < CR* Hullesr,0
where || - .o = - [l for 1 =0,1,k+1.

Take the log of each side:

log(E1(h)) < 1og(Ch*|[ullk41,0) = klog(h) + log(Cllullk+10)
— _ YV——

Yy z c

8/9

Method of manufactured solutions
Recipe

@ Take a suitable function u

® Compute —Awu to obtain f

® Compute boundary values (trivial if only Dirichlet boundary
conditions are used)

@ Solve the corresponding variational problem

a(up,v) = L(v)

for a sequence of meshes 7, and compute the error
Ei(h) = |Ju — upl;q, for i =0,1
@ Plot log(E;(h)) against log(h) and determine k

Homework

Try this by taking u = sin(27z) sin(27y) on the unit square. Solve the
problem for N = 2,4,8,16, 64,128 and compute both the L? and H'
errors for P1, P2 and P3 elements as a function of h. Can you
determine the convergence rate?

9/9

