FEniCS Course

Lecture 4: Time-dependent PDEs

Contributors
Hans Petter Langtangen
Anders Logg

Marie E. Roenes
1/12

The heat equation

We will solve the simplest extension of the Poisson problem into
the time domain, the heat equation:
ou
— —Au=f inQfort>0
ot /
u=g¢g ondf)fort>0

u=u"inQatt=0
The solution v = u(z,t), the right-hand side f = f(z,t) and the

boundary value g = g(z,t) may vary in space (z = (x¢, 21, ...))
and time (¢). The initial value u° is a function of space only.

2/12

Time-discretization of the heat equation

We discretize in time using the implicit Euler (dG(0)) method:

ou u —ynt

T e =)

Semi-discretization of the heat equation:
u™ — unfl

— Ay = "

At =

Algorithm

® Start with u° and choose a timestep At > 0.

® Forn=1,2,..., solve for u™:

u — AtAU" = uV + AL

3/12

Variational problem for the heat equation

Find 4™ € V"™ such that
a(u",v) = L"(v)

for all v € V where

a(u,v) = / uv + AtVu - Vo dz
Q

L"(v) = / u" o+ At f o dz
Q

Note that the bilinear form a(u,v) is constant while the linear
form L™ depends on n

4/12

Detailed time-stepping algorithm for the heat
equation

Define the boundary condition
Compute u® as the projection of the given initial value
Define the forms a and L
Assemble the matrix A from the bilinear form a
t+ At
while ¢t < T do
Assemble the vector b from the linear form L
Apply the boundary condition
Solve the linear system AU = b for U and store in u
t—t+ At
u® < u! (get ready for next step)
end while

1

5/12

Test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

w=1+z>+ay® + Bt

We insert this into the heat equation:
f=t—Au=08-2-2«
The initial condition is

u’ =1+ 2% + ay?

This technique is called the method of manufactured solutions

6/12

Handling time-dependent expressions

We need to define a time-dependent expression for the

boundary value:
Python code

alpha = 3
beta = 1.2

g = Expression("1 + x[0]*x[0] + \
alpha*x[1]*x[1] + betaxt",
alpha=alpha, beta=beta, t=0,
degree=2)

Updating parameter values:
Python code

ig.t =t
L

7/12

Projection and interpolation

We need to project the initial value into Vj,:
Python code

[
‘uO = project(g, V)
L

We can also interpolate the initial value into Vj:
Python code

[
‘uO = interpolate(g, V)
L

8/12

A closer look at solve

For linear problems, this code
Python code
‘solve(a == L, u, bcs)

is equivalent to this
Python code

Assembling a bilinear form yields a matrix
A = assemble(a)

Assembling a linear form yields a vector

b = assemble(L)

Applying boundary condition info to system
for bc in bcs:
bc.apply (4, b)

Solve Ax = b
solve (A, u.vector (), b)

9/12

Implementing the variational problem

Python code

dt = 0.3

u0 = project(g, V)

ul = Function (V)
u = TrialFunction (V)
v = TestFunction (V)

f = Constant(beta - 2 - 2*alpha)

a = uxv*dx + dt*inner (grad(u), grad(v))x*dx
L = uO*xv*dx + dt*xf*v*dx

bc = DirichletBC(V, g, "on_boundary")

assemble only once, before time-stepping
A = assemble(a)

10 /12

Implementing the time-stepping loop

Python code

T = 2
t = dt

while t <= T:
b = assemble (L)
g.t =t
bc.apply (A, b)
solve(A, ul.vector (), b)

t += dt
u0.assign(ul)

11 /12

FEniCS programming exercise: heat equation
Consider the heat equation problem:

ou

E_Au:f in Q=1[0,1)* for t > 0

u(z,t) = g(x,t) for x € 9N for t >0
u(z,0) = g(z,0) for x €
with
f
g(x,t)

8—2— 2«
1423 +az?+ 6t (= (20, 71))

Ex. 1 Compute an approximate solution at 7' = 1.8

Ex. 2 Compare the approximate solution to the exact solution at
T = 1.8. How large is the error (in the eyenorm and in the
L?(2) norm)?

Ex. 3 Compute an approximate solution with the same set-up
but on = [0,1]3 C R3.

12 /12

