FEniCS Course
Lecture 2: Static linear PDEs

Contributors
Hans Petter Langtangen, Anders Logg
Marie E. Rognes, André Massing

%

FENICS
NMOJECT

1/1



Hello World!

We will solve Poisson’s equation, the Hello World of scientific
computing:
—Au=f inQ

u=ug on Jf2

Poisson’s equation arises in numerous contexts:

e heat conduction, electrostatics, diffusion of substances,
twisting of elastic rods, inviscid fluid flow, water waves,
magnetostatics

e as part of numerical splitting strategies of more
complicated systems of PDEs, in particular the
Navier—Stokes equations

2/1



The FEM cookbook

(i)
Partial differential equation

(i)

{Q\q}‘“\) a(u,v) = L(v) | Continuous variational problem
\%
W L} (iii)

N C\I Discrete variational problem

™
ok . (iv)
$P5 AU =10 System of discrete equations
=z
O

3/1



Solving PDEs in FEniCS

Solving a physical problem with FEniCS consists of the
following steps:

@ Identify the PDE and its boundary conditions
® Reformulate the PDE problem as a variational problem

® Make a Python program where the formulas in the
variational problem are coded, along with definitions of
input data such as f, ug, and a mesh for 2

@ Add statements in the program for solving the variational
problem, computing derived quantities such as Vu, and
visualizing the results

4/1



Deriving a variational problem for Poisson’s
equation

The simple recipe is: multiply the PDE by a test function v and

/Q(Au)vdx:/gfvdx

Then integrate by parts and set v = 0 on the Dirichlet

boundary:
/(Au vdx—/Vu Vvda:/ —vds
Q 8Q
_,_/

=0
/Vu-Vvd$:/fvdx
Q Q

integrate over €Q:

We find that:



Variational problem for Poisson’s equation

Find v € V such that

/Vu-Vvda::/fde
Q Q

forallveV

The trial space V and the test space V are (here) given by

V ={ve H(Q):v=u on 9N}
V={ve H(Q):v="0o0ndQ}

6/1



Discrete variational problem for Poisson’s
equation
We approximate the continuous variational problem with a

discrete variational problem posed on finite dimensional
subspaces of V' and V:

ViwCcV
VhCV

Find up € V C V such that

/Vuh-Vvd:L‘:/fvdx
Q Q
forallvGVhCV

7/1



Canonical variational problem

The following canonical notation is used in FEniCS: find u € V
such that
a(u,v) = L(v)

forallv eV

For Poisson’s equation, we have
a(u,v) = / Vu-Vodz
Q

L(v) = / fvdx
Q
a(u,v) is a bilinear form and L(v) is a linear form

8/1



A test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u(z,y) =1+ 2° + 2y

We insert this into Poisson’s equation:

f=-Au=-A(1+2+2*) =—-(2+4)=-6

This technique is called the method of manufactured solutions

9/1



Implementation in FEniCS

from fenics import x*

mesh = UnitSquareMesh(8, 8)
V = FunctionSpace (mesh, "Lagrange", 1)

u0 = Expression("1 + x[0]1*x[0] + 2xx[1]1*xx[1]",
degree=2)
bc = DirichletBC(V, u0, "on_boundary")

f = Constant(-6.0)

u = TrialFunction (V)

v = TestFunction (V)

a = inner (grad(u), grad(v))=*dx
L = fxvxdx

u = Function (V)

solve(a == L, u, bc)

plot (u)

interactive () # If using VTK plotting 10/1



Step by step: the first line

The first line of a FEniCS program usually begins with

[
‘from fenics import *
L

This imports key classes like UnitSquareMesh, FunctionSpace,
Function and so forth, from the FEniCS user interface
(DOLFIN)

11/1



Step by step: creating a mesh

Next, we create a mesh of our domain €2:

mesh = UnitSquareMesh (8, 8)

This defines a mesh of 8 x 8 x 2 = 128 triangles of the unit
square.

Other useful classes for creating built-in meshes include
UnitIntervalMesh, UnitCubeMesh, UnitCircleMesh,
UnitSphereMesh, RectangleMesh and BoxMesh

More complex geometries can be built using Constructive Solid
Geometry (CSG) through the FEniCS component mshr:

from mshr import *

r = Rectangle(Point (0.5, 0.5), Point(1.5, 1.5))
¢ = Circle(Point (1.0, 1.0), 0.2)

g =1r - ¢

mesh = generate_mesh(g, 10)

12/1



Step by step: creating a function space

The following line creates a finite element function space
relative to this mesh:

V = FunctionSpace(mesh, "Lagrange", 1)

The second argument specifies the type of element, while the
third argument is the degree of the basis functions on the
element

Other types of elements include "Discontinuous Lagrange"
"Brezzi-Douglas-Marini", "Raviart-Thomas",
"Crouzeix-Raviart", "Nedelec 1st kind H(curl)" and
"Nedelec 2nd kind H(curl)"

13/1



Step by step: defining expressions

Next, we define an expression for the boundary value:

u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]",
degree=2)

The formula must be written in C++ syntax, and the
polynomial degree must be specified.

The Expression class is very flexible and can be used to create
complex user-defined expressions. For more information, try

from fenics import *
help (Expression)

in Python or, in the shell:

[
‘$ pydoc fenics.Expression
L

14/1



Step by step: defining a boundary condition

The following code defines a Dirichlet boundary condition:

[
‘bc = DirichletBC(V, u0, "on_boundary") ‘
L

This boundary condition states that a function in the function
space defined by V should be equal to u0 on the domain defined
by "on_boundary"

Note that the above line does not yet apply the boundary
condition to all functions in the function space



Step by step: more about defining domains

For a Dirichlet boundary condition, a simple domain can be defined
by a string

‘"on_boundary" # The entire boundary
L 1

Alternatively, domains can be defined by subclassing SubDomain

class Boundary (SubDomain) :
def inside(self, x, on_boundary):
return on_boundary

You may want to experiment with the definition of the boundary:

"near (x[0], 0.0)" # x_0 = 0
"near (x[0], 0.0) || near(x[1], 1.0)"

There are many more possibilities, see

help (SubDomain)
help(DirichletBC)

16/1



Step by step: defining the right-hand side

The right-hand side f = —6 may be defined as follows:

[
‘f = Expression("-6.0", degree=0)
L

or (more efficiently) as

[
‘f = Constant (-6.0)
L

17/1



Step by step: defining variational problems

Variational problems are defined in terms of trial and test
functions:

TrialFunction (V)
TestFunction (V)

< e
non

We now have all the objects we need in order to specify the
bilinear form a(u,v) and the linear form L(v):

a = inner(grad(u), grad(v))=*dx
frv*xdx

-
]

18/1



Step by step: solving variational problems

Once a variational problem has been defined, it may be solved
by calling the solve function:

u = Function (V)
solve(a == L, u, bc)

Note the reuse of the variable name u as both a TrialFunction
in the variational problem and a Function to store the solution.

19/1



Step by step: post-processing using Notebooks

Add these incantations on top (after importing dolfin/fenics)

import pylab
%matplotlib inline
parameters["plotting_backend"] = "matplotlib"

The solution and the mesh may be plotted by simply calling:

plot (u)
pylab.show ()
plot (mesh)
pylab.show ()

For postprocessing in ParaView or MayaVi, store the solution
in VTK format:

file = File("poisson.pvd")
file << u

20/1



The FEniCS challenge!

Solve the partial differential equation
—Au=f

with homogeneous Dirichlet boundary conditions on the unit
square for f(z,y) = 2n%sin(rz) sin(7y). Plot the error in the L?
norm as function of the mesh size h for a sequence of refined
meshes. Try to determine the convergence rate.

e Who can obtain the smallest error?

o Who can compute a solution with an error smaller than
€ = 1075 in the fastest time?

The best students(s) will be rewarded with a FEniCS surprise!

Hints: help(errornorm), help(assemble)

21/1



