
FEniCS Course
Lecture 2: Static linear PDEs

Contributors
Hans Petter Langtangen, Anders Logg
Marie E. Rognes, André Massing

1 / 1

Hello World!

We will solve Poisson’s equation, the Hello World of scientific
computing:

−∆u = f in Ω

u = u0 on ∂Ω

Poisson’s equation arises in numerous contexts:

• heat conduction, electrostatics, diffusion of substances,
twisting of elastic rods, inviscid fluid flow, water waves,
magnetostatics

• as part of numerical splitting strategies of more
complicated systems of PDEs, in particular the
Navier–Stokes equations

2 / 1

The FEM cookbook

Au = f

a(u, v) = L(v)

a(uh, v) = L(v)

AU = b

Partial differential equation

Continuous variational problem

Discrete variational problem

System of discrete equations

Multip
ly

by v

Take V
h
⊂ V

Let u
h

=
∑

j
Ujφ

j

(i)

(ii)

(iii)

(iv)

3 / 1

Solving PDEs in FEniCS

Solving a physical problem with FEniCS consists of the
following steps:

1 Identify the PDE and its boundary conditions

2 Reformulate the PDE problem as a variational problem

3 Make a Python program where the formulas in the
variational problem are coded, along with definitions of
input data such as f , u0, and a mesh for Ω

4 Add statements in the program for solving the variational
problem, computing derived quantities such as ∇u, and
visualizing the results

4 / 1

Deriving a variational problem for Poisson’s
equation

The simple recipe is: multiply the PDE by a test function v and
integrate over Ω:

−
∫

Ω
(∆u)v dx =

∫
Ω
fv dx

Then integrate by parts and set v = 0 on the Dirichlet
boundary:

−
∫

Ω
(∆u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds︸ ︷︷ ︸

=0

We find that: ∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

5 / 1

Variational problem for Poisson’s equation

Find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂

The trial space V and the test space V̂ are (here) given by

V = {v ∈ H1(Ω) : v = u0 on ∂Ω}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}

6 / 1

Discrete variational problem for Poisson’s
equation

We approximate the continuous variational problem with a
discrete variational problem posed on finite dimensional
subspaces of V and V̂ :

Vh ⊂ V
V̂h ⊂ V̂

Find uh ∈ Vh ⊂ V such that∫
Ω
∇uh · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂h ⊂ V̂

7 / 1

Canonical variational problem

The following canonical notation is used in FEniCS: find u ∈ V
such that

a(u, v) = L(v)

for all v ∈ V̂

For Poisson’s equation, we have

a(u, v) =

∫
Ω
∇u · ∇v dx

L(v) =

∫
Ω
fv dx

a(u, v) is a bilinear form and L(v) is a linear form

8 / 1

A test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u(x, y) = 1 + x2 + 2y2

We insert this into Poisson’s equation:

f = −∆u = −∆(1 + x2 + 2y2) = −(2 + 4) = −6

This technique is called the method of manufactured solutions

9 / 1

Implementation in FEniCS

from fenics import *

mesh = UnitSquareMesh(8, 8)

V = FunctionSpace(mesh , "Lagrange", 1)

u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]",

degree=2)

bc = DirichletBC(V, u0, "on_boundary")

f = Constant(-6.0)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(grad(u), grad(v))*dx

L = f*v*dx

u = Function(V)

solve(a == L, u, bc)

plot(u)

interactive () # If using VTK plotting
10 / 1

Step by step: the first line

The first line of a FEniCS program usually begins with

from fenics import *

This imports key classes like UnitSquareMesh, FunctionSpace,
Function and so forth, from the FEniCS user interface
(DOLFIN)

11 / 1

Step by step: creating a mesh
Next, we create a mesh of our domain Ω:

mesh = UnitSquareMesh(8, 8)

This defines a mesh of 8× 8× 2 = 128 triangles of the unit
square.

Other useful classes for creating built-in meshes include
UnitIntervalMesh, UnitCubeMesh, UnitCircleMesh,
UnitSphereMesh, RectangleMesh and BoxMesh

More complex geometries can be built using Constructive Solid
Geometry (CSG) through the FEniCS component mshr:

from mshr import *

r = Rectangle(Point(0.5, 0.5), Point(1.5, 1.5))

c = Circle(Point(1.0, 1.0), 0.2)

g = r - c

mesh = generate_mesh(g, 10)

12 / 1

Step by step: creating a function space

The following line creates a finite element function space
relative to this mesh:

V = FunctionSpace(mesh , "Lagrange", 1)

The second argument specifies the type of element, while the
third argument is the degree of the basis functions on the
element

Other types of elements include "Discontinuous Lagrange",
"Brezzi-Douglas-Marini", "Raviart-Thomas",
"Crouzeix-Raviart", "Nedelec 1st kind H(curl)" and
"Nedelec 2nd kind H(curl)"

13 / 1

Step by step: defining expressions

Next, we define an expression for the boundary value:

u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]",

degree=2)

The formula must be written in C++ syntax, and the
polynomial degree must be specified.

The Expression class is very flexible and can be used to create
complex user-defined expressions. For more information, try

from fenics import *

help(Expression)

in Python or, in the shell:

$ pydoc fenics.Expression

14 / 1

Step by step: defining a boundary condition

The following code defines a Dirichlet boundary condition:

bc = DirichletBC(V, u0, "on_boundary")

This boundary condition states that a function in the function
space defined by V should be equal to u0 on the domain defined
by "on boundary"

Note that the above line does not yet apply the boundary
condition to all functions in the function space

15 / 1

Step by step: more about defining domains
For a Dirichlet boundary condition, a simple domain can be defined
by a string

"on_boundary" # The entire boundary

Alternatively, domains can be defined by subclassing SubDomain

class Boundary(SubDomain):

def inside(self , x, on_boundary):

return on_boundary

You may want to experiment with the definition of the boundary:

"near(x[0], 0.0)" # x_0 = 0

"near(x[0], 0.0) || near(x[1], 1.0)"

There are many more possibilities, see

help(SubDomain)

help(DirichletBC)

16 / 1

Step by step: defining the right-hand side

The right-hand side f = −6 may be defined as follows:

f = Expression("-6.0", degree=0)

or (more efficiently) as

f = Constant(-6.0)

17 / 1

Step by step: defining variational problems

Variational problems are defined in terms of trial and test
functions:

u = TrialFunction(V)

v = TestFunction(V)

We now have all the objects we need in order to specify the
bilinear form a(u, v) and the linear form L(v):

a = inner(grad(u), grad(v))*dx

L = f*v*dx

18 / 1

Step by step: solving variational problems

Once a variational problem has been defined, it may be solved
by calling the solve function:

u = Function(V)

solve(a == L, u, bc)

Note the reuse of the variable name u as both a TrialFunction

in the variational problem and a Function to store the solution.

19 / 1

Step by step: post-processing using Notebooks

Add these incantations on top (after importing dolfin/fenics)

import pylab

%matplotlib inline

parameters["plotting_backend"] = "matplotlib"

The solution and the mesh may be plotted by simply calling:

plot(u)

pylab.show()

plot(mesh)

pylab.show()

For postprocessing in ParaView or MayaVi, store the solution
in VTK format:

file = File("poisson.pvd")

file << u

20 / 1

The FEniCS challenge!

Solve the partial differential equation

−∆u = f

with homogeneous Dirichlet boundary conditions on the unit
square for f(x, y) = 2π2 sin(πx) sin(πy). Plot the error in the L2

norm as function of the mesh size h for a sequence of refined
meshes. Try to determine the convergence rate.

• Who can obtain the smallest error?

• Who can compute a solution with an error smaller than
ε = 10−6 in the fastest time?

The best students(s) will be rewarded with a FEniCS surprise!

Hints: help(errornorm), help(assemble)

21 / 1

