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The heat equation

We will solve the simplest extension of the Poisson problem into
the time domain, the heat equation:

%—Au:f in Q fort>0

u=g¢g ondf)fort>0

u=u'inQatt=0

The solution v = u(z,y,t), the right-hand side f = f(x,y,t)
and the boundary value g = g(z,y,t) may vary in space and
time. The initial value u° is a function of space only.
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Semi-discretization in space

Consider t as a parameter and formulate a

Variational problem in space
Find for each t € (0,7] a u(-,t) € V such that

/Otuvda:—i-/ Vu-Vvda::/ fvdx VYwoe Vv
Q Q Q
Short-hand notation

(Opu,v) + a(u,v) = L(v)

Discrete variational problem in space
Find for each t a uy(-,t) € V}, such that

(Byun, vp) + alup,vp) = L(vy) Yo, € Vi,
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Semi-discrete system in space

Ansatz

N
un(t) =Y Uj(t)e;

Find [U(¢),. .., Un(8)]T

N
> Ui, vn) +ZUa (5, vn) = L(va)
j=1 Jj=1

or equivalently

N N
> U (65,00 + > Ujalgj,¢i) = L(di) Yji=1,...
J=1 M, j=1 Ay by

or equivalently .
MU (t) + AU(t) = b(t)
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Semi-discrete system in space — part II

Find [U(t),...,Un(t)]" such that
MU(t) + AU (t) = b(t)

where
= ([ ®j(x)pi(x))i; is the mass matrix
fQ Vo;(x V(bz(:v))’j is the stiffness matrix
= (Jq f(t,z)¢i(x) dx)); is the load vector

= System of ordinary differential equations

Note: A and M are time-independent!



A full discretization scheme: The 6-method

For 0 < 6 < 1 and U* known from the previous time-step, compute
U*+! by solving

Uk+1 _ Uk

M

A A[OURY + (1 — )UF] = 06+ + (1 — o))"
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A full discretization scheme: The 6-method

For 0 < 6 < 1 and U* known from the previous time-step, compute
U*+! by solving

Uk+1 — Uk k+1 k k+1 k

MT—I-A[@U +(1=-0)U"|=6b"" +(1—-0)

e First-order explicit/forward Euler for § = 0:

MUk-H _ Uk

AUF =
x AU

o First-order implicit/backward Euler for 6 = 1:

M Uk+1 _ Uk

AUk+1 _ bk+1
A

o Second-order Crank-Nicolson for 6 = 1/2:

MUk+1 _ Uk

1 1
2 A(UR ky — Z(pktl k
At +2 (U +U") 2(b +b%)
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Implementation of the implicit Euler method

Recast as a discrete variational problem
First-order implicit/backward Euler for 0 = 1:

(% +A)Uk+1 — %Uk +bk’+l

can be reformulated as: Find ui“ €V}, sucht that

(u',ii“,vh) + Ata(uﬁ“,vh) = (ulfl,vh) + At(fk'“, vp) Yoy € Vh

Exercise: Find the corresponding variational problems for the
explicit Euler and Crank-Nicolson schemes

Initial condition
u) ~u
Choose L?-projection II,u’ on Vj, or interpolation Iy, (u°)
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Detailed time-stepping algorithm for the heat
equation

Define the boundary condition
Compute u® as the projection of the given initial value
Define the forms a and L
Assemble the matrix A from the bilinear form a
t+ At
while ¢t < T do
Assemble the vector b from the linear form L
Apply the boundary condition
Solve the linear system AU = b for U and store in u
t—t+ At
u® < u! (get ready for next step)
end while

1
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Method of manufactured solutions

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u(z,y,t) = et cos(2mx) cos(2my)
We compute
Owu(z,y,t) = —An2eim cos(2mz) cos(2my)
—Au(z,y,t) = +872e 4t cos(2mz) cos(2my)
So we have to find u such that
(0 — A)u(z, y, t) = +4r2e ™ cos(2mz) cos(2my)  in Q x (0, T]
u(z,y,t) = e imt cos(2mz) cos(2my) on OS2 x (0,7
u(z,y,0) = cos(2mzx) cos(2my) on Q x {0}

Our mission: Solve this problem choosing T' = 0.1, a fixed
time-step At = 0.001 and using the implicit Euler method.

Visualise u, up and u — up.
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Handling time-dependent expressions

We need to define a time-dependent expression for the
boundary value:

# Start time
t0 = 0
g = Expression("exp(-4*DOLFIN_PI*DOLFIN_PIx*t) \
*cos (2*DOLFIN_PI*x[0]) \
*cos (2*xDOLFIN_PIx*x[1]1)", t=t0,
degree=3)

f = Expression("4*DOLFIN_PI*DOLFIN_PI \
*exp (-4*DOLFIN_PI*DOLFIN_PI*t)\
*cos (2*DOLFIN_PI*x[0]) \
*cos (2*DOLFIN_PI*x[1])",t=t0, degree=3)

Updating parameter values:

g.t =t
f.t
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Projection and interpolation

We need to project the initial value into Vj,:

[
‘uO = project(g, V)
L

We can also interpolate the initial value into Vj:

[
‘uO = interpolate(g, V)
L
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Implementing the variational problem

u0 = interpolate(g,V)

u = TrialFunction (V)
TestFunction (V)

<
]

# time step

dt = 0.001

# Define variational forms

a = uxv*dx + dt*inner (grad(u),grad(v))*dx
L = uO*xv*xdx + dtxfxv*dx

# assemble only once, before time-stepping
= assemble(a)

=
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Implementing the time-stepping loop

T =20.1

t = dt

while t
g.t
f.t
b =

ul = Function (V)

= T:
t
it

A

assemble (L)

bc.apply (A, b)
solve (A, ul.vector (),

t += dt
u0.assign(ul)

b)
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Let’s start!
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The FEniCS homework!

e Implement the explicit/forward Euler scheme and the
Crank-Nicolsen scheme. Compute the numerical solutions
and repeat the post-processing steps.

e What do you observe when you use the explicit/forward
Euler scheme? Why?

e Repeat the computation for a N = 10 and At = 0.0001 for
the explicit Euler method. What happens if you now
increase N again?



