
FEniCS Course
Lecture 4: Time-dependent PDEs

Contributors
Hans Petter Langtangen
Anders Logg
André Massing

1 / 15

The heat equation

We will solve the simplest extension of the Poisson problem into
the time domain, the heat equation:

∂u

∂t
−∆u = f in Ω for t > 0

u = g on ∂Ω for t > 0

u = u0 in Ω at t = 0

The solution u = u(x, y, t), the right-hand side f = f(x, y, t)
and the boundary value g = g(x, y, t) may vary in space and
time. The initial value u0 is a function of space only.

2 / 15

Semi-discretization in space

Consider t as a parameter and formulate a

Variational problem in space

Find for each t ∈ (0, T] a u(·, t) ∈ V such that∫
Ω
∂tuv dx+

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀ v ∈ V̂

Short-hand notation

(∂tu, v) + a(u, v) = L(v)

Discrete variational problem in space

Find for each t a uh(·, t) ∈ Vh such that

(∂tuh, vh) + a(uh, vh) = L(vh) ∀ vh ∈ V̂h

3 / 15

Semi-discrete system in space
Ansatz

uh(t) =

N∑
j=0

Uj(t)φj

Find [U1(t), . . . , UN (t)]>

N∑
j=1

U̇j(φj , vh) +

N∑
j=1

Uja(φj , vh) = L(vh)

or equivalently

N∑
j=1

U̇j (φj , φi)︸ ︷︷ ︸
Mij

+

N∑
j=1

Uj a(φj , φi)︸ ︷︷ ︸
Aij

= L(φi)︸ ︷︷ ︸
bi

∀ j = 1, . . . , N

or equivalently
MU̇(t) +AU(t) = b(t)

4 / 15

Semi-discrete system in space – part II

Find [U1(t), . . . , UN (t)]> such that

MU̇(t) +AU(t) = b(t)

where

• M = (
∫

Ω φj(x)φi(x))ij is the mass matrix

• A = (
∫

Ω∇φj(x)∇φi(x))ij is the stiffness matrix

• b(t) = (
∫

Ω f(t, x)φi(x) dx))i is the load vector

⇒ System of ordinary differential equations

Note: A and M are time-independent!

5 / 15

A full discretization scheme: The θ-method

For 0 6 θ 6 1 and Uk known from the previous time-step, compute
Uk+1 by solving

M
Uk+1 − Uk

∆t
+A[θUk+1 + (1− θ)Uk] = θbk+1 + (1− θ)bk

• First-order explicit/forward Euler for θ = 0:

M
Uk+1 − Uk

∆t
+AUk = bk

• First-order implicit/backward Euler for θ = 1:

M
Uk+1 − Uk

∆t
+AUk+1 = bk+1

• Second-order Crank-Nicolson for θ = 1/2:

M
Uk+1 − Uk

∆t
+

1

2
A(Uk+1 + Uk) =

1

2
(bk+1 + bk)

Quarteroni, Numerical Models for Differential Problems (2009) 6 / 15

A full discretization scheme: The θ-method

For 0 6 θ 6 1 and Uk known from the previous time-step, compute
Uk+1 by solving

M
Uk+1 − Uk

∆t
+A[θUk+1 + (1− θ)Uk] = θbk+1 + (1− θ)bk

• First-order explicit/forward Euler for θ = 0:

M
Uk+1 − Uk

∆t
+AUk = bk

• First-order implicit/backward Euler for θ = 1:

M
Uk+1 − Uk

∆t
+AUk+1 = bk+1

• Second-order Crank-Nicolson for θ = 1/2:

M
Uk+1 − Uk

∆t
+

1

2
A(Uk+1 + Uk) =

1

2
(bk+1 + bk)

Quarteroni, Numerical Models for Differential Problems (2009) 6 / 15

A full discretization scheme: The θ-method

For 0 6 θ 6 1 and Uk known from the previous time-step, compute
Uk+1 by solving

M
Uk+1 − Uk

∆t
+A[θUk+1 + (1− θ)Uk] = θbk+1 + (1− θ)bk

• First-order explicit/forward Euler for θ = 0:

M
Uk+1 − Uk

∆t
+AUk = bk

• First-order implicit/backward Euler for θ = 1:

M
Uk+1 − Uk

∆t
+AUk+1 = bk+1

• Second-order Crank-Nicolson for θ = 1/2:

M
Uk+1 − Uk

∆t
+

1

2
A(Uk+1 + Uk) =

1

2
(bk+1 + bk)

Quarteroni, Numerical Models for Differential Problems (2009) 6 / 15

A full discretization scheme: The θ-method

For 0 6 θ 6 1 and Uk known from the previous time-step, compute
Uk+1 by solving

M
Uk+1 − Uk

∆t
+A[θUk+1 + (1− θ)Uk] = θbk+1 + (1− θ)bk

• First-order explicit/forward Euler for θ = 0:

M
Uk+1 − Uk

∆t
+AUk = bk

• First-order implicit/backward Euler for θ = 1:

M
Uk+1 − Uk

∆t
+AUk+1 = bk+1

• Second-order Crank-Nicolson for θ = 1/2:

M
Uk+1 − Uk

∆t
+

1

2
A(Uk+1 + Uk) =

1

2
(bk+1 + bk)

Quarteroni, Numerical Models for Differential Problems (2009) 6 / 15

Implementation of the implicit Euler method

Recast as a discrete variational problem

First-order implicit/backward Euler for θ = 1:

(
M

∆t
+A)Uk+1 =

M

∆t
Uk + bk+1

can be reformulated as: Find uk+1
h ∈ Vh sucht that

(uk+1
h , vh) + ∆ta(uk+1

h , vh) = (ukh, vh) + ∆t(fk+1, vh) ∀ vh ∈ V̂h

Exercise: Find the corresponding variational problems for the
explicit Euler and Crank-Nicolson schemes

Initial condition

u0
h ≈ u0

Choose L2-projection Πhu
0 on Vh or interpolation Ih(u0)

7 / 15

Detailed time-stepping algorithm for the heat
equation

Define the boundary condition
Compute u0 as the projection of the given initial value
Define the forms a and L
Assemble the matrix A from the bilinear form a
t← ∆t
while t 6 T do

Assemble the vector b from the linear form L
Apply the boundary condition
Solve the linear system AU = b for U and store in u1

t← t+ ∆t
u0 ← u1 (get ready for next step)

end while

8 / 15

Method of manufactured solutions
We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u(x, y, t) = e−4π2t cos(2πx) cos(2πy)

We compute

∂tu(x, y, t) = −4π2e−4π2t cos(2πx) cos(2πy)

−∆u(x, y, t) = +8π2e−4π2t cos(2πx) cos(2πy)

So we have to find u such that

(∂t −∆)u(x, y, t) = +4π2e−4π2t cos(2πx) cos(2πy) in Ω× (0, T]

u(x, y, t) = e−4π2t cos(2πx) cos(2πy) on ∂Ω× (0, T]

u(x, y, 0) = cos(2πx) cos(2πy) on Ω× {0}

Our mission: Solve this problem choosing T = 0.1, a fixed
time-step ∆t = 0.001 and using the implicit Euler method.
Visualise u, uh and u− uh.

9 / 15

Handling time-dependent expressions

We need to define a time-dependent expression for the
boundary value:

Start time

t0 = 0

g = Expression("exp(-4*DOLFIN_PI*DOLFIN_PI*t) \

*cos(2*DOLFIN_PI*x[0]) \

*cos(2*DOLFIN_PI*x[1])", t=t0 ,

degree=3)

f = Expression("4*DOLFIN_PI*DOLFIN_PI \

*exp(-4*DOLFIN_PI*DOLFIN_PI*t)\

*cos(2*DOLFIN_PI*x[0]) \

*cos(2*DOLFIN_PI*x[1])",t=t0 , degree=3)

Updating parameter values:

g.t = t

f.t = t

10 / 15

Projection and interpolation

We need to project the initial value into Vh:

u0 = project(g, V)

We can also interpolate the initial value into Vh:

u0 = interpolate(g, V)

11 / 15

Implementing the variational problem

u0 = interpolate(g,V)

u = TrialFunction(V)

v = TestFunction(V)

time step

dt = 0.001

Define variational forms

a = u*v*dx + dt*inner(grad(u),grad(v))*dx

L = u0*v*dx + dt*f*v*dx

assemble only once , before time -stepping

A = assemble(a)

12 / 15

Implementing the time-stepping loop

u1 = Function(V)

T = 0.1

t = dt

while t <= T:

g.t = t

f.t = t

b = assemble(L)

bc.apply(A, b)

solve(A, u1.vector (), b)

t += dt

u0.assign(u1)

13 / 15

Let’s start!

14 / 15

The FEniCS homework!

• Implement the explicit/forward Euler scheme and the
Crank-Nicolsen scheme. Compute the numerical solutions
and repeat the post-processing steps.

• What do you observe when you use the explicit/forward
Euler scheme? Why?

• Repeat the computation for a N = 10 and ∆t = 0.0001 for
the explicit Euler method. What happens if you now
increase N again?

15 / 15

