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Adjoints are key ingredients for sensitivity
analysis, PDE-constrained optimization, ...

So far we have focused on solving forward PDEs.
But we want to do (and can do) more than that!

Maybe we are interested in ...

e the sensitivity with respect to certain parameters
e initial conditions,
e forcing terms,
e unknown coefficients.

e PDE-constrained optimization
e data assimilation
e optimal control

e goal-oriented error control

For this we want to compute functional derivatives and adjoints
provide an efficient way of doing so.
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What is the sensitivity of the abnormal wave

propagation to the local tissue conductivities?
The wave propagation abnormality at a given time T":

(0, 5,1) = [o(T) — v, -2 =2
9Gelis

v_d = Function(V, "healthy_obs_200.xml.gz")
J = Functional (inner (v - v_d, v - v_d)*dx*dt[T])
dJdg_s = compute_gradient (J, gs)
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The Hello World of functional derivatives

Consider the Poisson’s equation

—vAu=m in Q,
u=0 on 0f),

together with the objective functional

1
I =5 [ = ualP de,

where ug4 is a known function.

Goal

Compute the sensitivity of J with respect to the parameter m:
dJ/dm.
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Computing functional derivatives (Part 1/3)

Given

e Parameter m,
e PDE F(u,m) = 0 with solution u.
e Objective functional J(u,m) — R,
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Computing functional derivatives (Part 1/3)

Given

e Parameter m,
e PDE F(u,m) = 0 with solution u.
e Objective functional J(u,m) — R,

Goal
Compute d.J/dm.
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Computing functional derivatives (Part 1/3)

Given
e Parameter m,
e PDE F(u,m) = 0 with solution u.
e Objective functional J(u,m) — R,

Goal
Compute d.J/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional R:



Computing functional derivatives (Part 2/3)

Reduced functional:

R(m) = J(u(m), m).

6/8



Computing functional derivatives (Part 2/3)

Reduced functional:

Taking the derivative of with respect to m yields:

AR _as_osdu o7
dm dm  dudm  Om’
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Computing functional derivatives (Part 2/3)

Reduced functional:
R(m) = J(u(m), m).
Taking the derivative of with respect to m yields:

AR _as _osau o
dm dm  dudm  Om’

Computing 3 97 and 8‘] is straight-forward, but how handle d“ !
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Computing functional derivatives (Part 3/3)
Taking the derivative of F'(u,m) = 0 with respect to m yields:

dF _OF du  9F _

am = dudm Tam "
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Computing functional derivatives (Part 3/3)
Taking the derivative of F'(u,m) = 0 with respect to m yields:

dF _OF du  9F _

am = dudm Tam "

Hence:

dm ) om

du <6F>_1 oOF
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Computing functional derivatives (Part 3/3)
Taking the derivative of F'(u,m) = 0 with respect to m yields:

dF _OF du  9F _

am = dudm Tam "

Hence:

du <6F>_1 oF

dm ~ \ou) om

Final formula for functional derivative

adjoint PDE

—_—
47 _ 97 (OF\T'OF 0]
dm  Ou \ Ou om  Om’

—_——
tangent linear PDE
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Dimensions of a finite dimensional example

discretised adjoint PDE

oJ

dm

discretised tangent linear PDE

The tangent linear solution is a matrix of dimension |u| x |m)|
and requires the solution of m linear systems.

The adjoint solution is a vector of dimension |u| and requires
the solution of one linear system.
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Adjoint approach

@ Solve the adjoint equation for A

[ *
0 3 _8J

ou " Ou

® Compute

W 0F o)
dm 7 om  Om’

The computational expensive part is (1). It requires solving the
(linear) adjoint PDE, and its cost is independent of the choice
of parameter m.
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