FEniCS Course

Lecture 20: Tools for visualization programming

Contributors Carl Lundholm, Magne Nordaas

Visualisation in FEniCS

Three main options for visualisation

- Built-in VTK plotting
- matplotlib
- ParaView

Built-in VTK plotting

Built-in plotting functionality for FEniCS

- Plot meshes, functions, mesh functions
- Not available on all FEniCS installations
- Limited 3D capabilities

```
from fenics import *
parameters["plotting_backend"] = "vtk"
mesh = UnitCubeMesh(16, 16, 16)
plot(mesh)
interactive()
```


matplotlib

Plotting libarary for Python and Numpy

- Part of a standard Python installation
- Has a MATLAB-like interface
- Produces high-quality 1D and 2D plots

Related projects

- Pandas
- Seaborn

matplotlib example

```
from dolfin import *
from matplotlib import pyplot
parameters["plotting_backend"] = "matplotlib"
mesh2D = UnitSquareMesh(16,16)
mesh3D = UnitCubeMesh(16, 16, 16)
plot(mesh2D)
plot(mesh3D)
pyplot.show()
```


matplotlib example II

```
# appended to Cahn-Hilliard demo
parameters["plotting_backend"] = "matplotlib"
from matplotlib import pyplot
# call the plot command from dolfin
p = plot(u[0])
# set colormap
p.set_cmap("viridis")
p.set_clim(0.0, 1.0)
# add a title to the plot
pyplot.title("Cahn-Hilliard solution")
# add a colorbar
pyplot.colorbar(p);
# save image to disk
pyplot.savefig("demo_cahn-hilliard.png")
```

matplotlib example II

matplotlib with FEniCS on mac and Windows

Displaying figures are more difficult when using a Docker installation of FEniCS The options are:

- Saving figures to file and open them on the host system (inconvenient)
- **2** Use Jupyter Notebook:

Create and start a Docker container with the commands

Bash code

```
fenicsproject notebook fenics-nb stable fenicsproject start fenics-nb
```

Direct your web browser to address and port number printed to the screen

Jupyter Notebook

Jupyter Notebook is part of the Project Jupyter (www.jupyter.org), which evolved from IPython.

- Web application
- Provides interactive environment for Python code (and other languages!)
- Combine code, equations and visualisation in one interactive document

To display figures inside the notebook, add this line to the notebook:

%matplotlib inline

ParaView

ParaView is a freely available, open source, multi-platform data visualisation application.

- Publication-quality figures
- Provides sophisticated data analysis functions
 - Stream lines
 - Time averages
 - Isosurfaces
 - ... and much more
- Can handle very large (and parallelized) data sets
- Support data file formats used by FEniCS:
 - ParaView files (.pvd)
 - VTK files (.vtu)
 - XDMF files (.xdmf)

ParaView resources

Official site: www.paraview.org

- Binaries for mac, ubuntu, windows
- ParaView tutorials
- The ParaView Guide

ParaView File Edit View Sources	Filters Tools Ca	italyst Macros	Help	
• • •			Search	/iew 5.2.0 64-b
		•	Getting Started with ParaView	21 Z1
	۵ 🖌 🧟	۰ 📭	ParaView Guide #? Reader, Filter, and Writer Reference	
O Pipeline Browser builtin:		# % 3D 🕅 [ParaView Tutorial Sandia National Labs Tutorials Example Visualizations	
			ParaView Web Site ParaView Wiki ParaView Mailing Lists Release Notes	
			Professional Support Professional Training Online Tutorials Online Blogs	

Consider following example solving a Poisson problem:

```
from dolfin import *
mesh = UnitCubeMesh(16, 16, 16)
V = FunctionSpace(mesh, "P", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(1.0)
a = inner(grad(u), grad(v)) * dx
L = f * v * dx
bc = DirichletBC(V, 0.0, "on_boundary")
uh = Function(V)
solve(a == L, uh, bc)
```

How can we visualise the solution?

First step is to store the solution to disk

```
# save solution in XDMF format
file = XDMFFile("output.xdmf")
file.write(uh, 0)
```

Alternatively save as .pvd format

```
# save solution in ParaView format
file = File("output.pvd")
file << uh</pre>
```

Start ParaView and open the file (Button in top left corner)

D 🖉 🛱 🛱 🗖 🔍 🕈 🗗 🗮 🛒 🕻	KI ≪I ▶ IÞ ÞI \$3 Time:0 0 0
	●
I 💊 🕫 🕸 🕸 🖗 🖻 🖉 🛞	۵ 📭 🐏 🖉 🕸
O Pipeline Browser	
g builtin:	※ 10 题 及及 医 风 没 筆 能 略 年 人 人 ? 含
	Open File: (open multiple files with <ctrl> key.)</ctrl>
	Look in: Alsers/magneldocker-share/
O O Information	Examples Filename A Type Size Date Modified
Statistics	Home Output.ns no File 54RB 25/04/17 22:35 Desitop Output.pvd pvd File 168tes 25/04/17 22:35
Type: NA	Documents output.xdmf xdmlie 672tes 25/04/17 22:35
Number of Cells: NA	Downloads output000000.vtu vtu File 90KB 25/04/17/22/35 Macintosh HD solution.h5 h5 File 54KB 25/04/17/22/27
Number of Points: NA	
Memory: NA	
Data Arrays	docker-share
Name Data Type Data Ranges	🖿 tma632
Rounds Protection	
	File name:
P Apply O Reset X Delete ?	Files of type: Supported Files (*.inp *.cosmo *.cml *.cml *.cm *.t 😋 Cancel
Search (use Esc to clear text)	
- Properties	

After opening the file click the Apply button

Your screen should look similar to this:

After opening the file click the Apply button

ParaView has a nice GUI so you can easily play around with the many functions and settings available.

The functions for slicing, and contours and streamlines are particularly useful for 3D data:

Save results using File->SaveScreenshot or File->ExportScene from the menu.

Good practices for visualisation of data

 $Automate\ visualisation\ (and\ other\ post-processing)\ with\ Python\ scripting.$

- Ensures consistent results
- Saves time
- With ParaView: Manually make your figures *once* using the GUI. You can save the state (File->SaveState) and reuse it your python scripts.

Separate post-processing from solver code.

Saving data to files

Save data for plotting in XDMF or paraview formats:

```
uh = Function(V)
# saving uh to XDMF file
xdmf_file = XDMFFile("output.xdmf")
xdmf_file.write(uh, 0)
# saving uh to ParaView file
pvd_file = File("output.pvd")
pvd_file << uh</pre>
```

Saving data to files

Different formats have to be used for *reading* from file:

We can read from these files at later time:

Writing/reading meshes and meshfunctions

A FEniCS Mesh or MeshFunction are handled similarly:

Reading saved mesh data:

Exercises

- Modify the nonlinear Poisson solver to solve a problem on a UnitCubeMesh
- 2 Try to make some nice figures of the 3D data usng ParaView. Experiment with slices and contours, and try changing the colormap.
- **3** Visualise the output of the hyperelasticity solver. Experiment with (glyphs arrows to represent vectors) and the warp-by-vector function.