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And now that we may give final praise to the machine we may say that

it will be desirable to all who are engaged in computations which, it

is well known, are the managers of financial affairs, the administra-

tors of others’ estates, merchants, surveyors, geographers, navigators,

astronomers. . . For it is unworthy of excellent men to lose hours like

slaves in the labor of calculations which could safely be relegated to

anyone else if the machine were used.

Gottfried Wilhelm Leibniz (1646–1716)
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4.9 The Nédélec Element . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9.2 Historical notes . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 The PEERS Element . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10.2 Historical notes . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 The Raviart–Thomas Element . . . . . . . . . . . . . . . . . . . . . . 63
4.11.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.11.2 Historical notes . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Constructing General Reference Finite Elements
By Robert C. Kirby and Kent-Andre Mardal 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8



5.3 Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Change of basis . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Polynomial spaces . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Examples of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Bases for other polynomial spaces . . . . . . . . . . . . . . . 78

5.5 Operations on the Polynomial spaces . . . . . . . . . . . . . . . . . . 80

5.5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.4 Linear functionals . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Finite Element Variational Forms
By Robert C. Kirby and Anders Logg 83

7 Finite Element Assembly
By Anders Logg 85

8 Quadrature Representation of Finite Element Variational Forms
By Kristian B. Ølgaard and Garth N. Wells 87

9 Tensor Representation of Finite Element Variational Forms
By Anders Logg and possibly others 89

10 Discrete Optimization of Finite Element Matrix Evaluation
By Robert C. Kirby, Matthew G. Knepley, Anders Logg, L. Ridgway Scott and
Andy R. Terrel 91

11 Parallel Adaptive Mesh Refinement
By Johan Hoffman, Johan Jansson and Niclas Jansson 93

11.1 A brief overview of parallel computing . . . . . . . . . . . . . . . . . 93

11.2 Local mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11.2.1 The challenge of parallel mesh refinement . . . . . . . . . . 94

11.2.2 A modified longest edge bisection algorithm . . . . . . . . . . 95

11.3 The need of dynamic load balancing . . . . . . . . . . . . . . . . . . 97

11.3.1 Workload modelling . . . . . . . . . . . . . . . . . . . . . . . . 98

11.3.2 Remapping strategies . . . . . . . . . . . . . . . . . . . . . . . 99

11.4 The implementation on a massively parallel system . . . . . . . . . 99

11.4.1 The refinement method . . . . . . . . . . . . . . . . . . . . . . 100

11.4.2 The remapping scheme . . . . . . . . . . . . . . . . . . . . . . 101

11.4.3 Theoretical and experimental analysis . . . . . . . . . . . . . 102

11.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9



II Implementation 107

12 DOLFIN: A C++/Python Finite Element Library
By Anders Logg and Garth N. Wells 109

13 FFC: A Finite Element Form Compiler
By Anders Logg and possibly others 111

14 FErari: An Optimizing Compiler for Variational Forms
By Robert C. Kirby and Anders Logg 113

15 FIAT: Numerical Construction of Finite Element Basis Functions
By Robert C. Kirby 115

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
15.2 Prime basis: Collapsed-coordinate polynomials . . . . . . . . . . . . 116
15.3 Representing polynomials and functionals . . . . . . . . . . . . . . . 117
15.4 Other polynomial spaces . . . . . . . . . . . . . . . . . . . . . . . . . 120

15.4.1 Supplemented polynomial spaces . . . . . . . . . . . . . . . . 121
15.4.2 Constrained polynomial spaces . . . . . . . . . . . . . . . . . 121

15.5 Conveying topological information to clients . . . . . . . . . . . . . . 122
15.6 Functional evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
15.7 Overview of fundamental class structure . . . . . . . . . . . . . . . 124

16 Instant: Just-in-Time Compilation of C/C++ Code in Python
By Ilmar M. Wilbers, Kent-Andre Mardal and Martin S. Alnæs 127

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

16.2.1 Installing Instant . . . . . . . . . . . . . . . . . . . . . . . . . 128
16.2.2 Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.2.3 NumPy Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
16.2.4 Ordinary Differential Equations . . . . . . . . . . . . . . . . 130
16.2.5 Numpy Arrays and OpenMP . . . . . . . . . . . . . . . . . . 132

16.3 Instant Explained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
16.3.1 Arrays and Typemaps . . . . . . . . . . . . . . . . . . . . . . 136
16.3.2 Module name, signature, and cache . . . . . . . . . . . . . . 140
16.3.3 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

16.4 Instant API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
16.4.1 build module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
16.4.2 inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.4.3 inline module . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.4.4 inline with numpy . . . . . . . . . . . . . . . . . . . . . . . . 146
16.4.5 inline module with numpy . . . . . . . . . . . . . . . . . . . 146
16.4.6 import module . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.4.7 header and libs from pkgconfig . . . . . . . . . . . . . . . . . 147

10



16.4.8 get status output . . . . . . . . . . . . . . . . . . . . . . . . . 147
16.4.9 get swig version . . . . . . . . . . . . . . . . . . . . . . . . . . 148
16.4.10check swig version . . . . . . . . . . . . . . . . . . . . . . . . 148

17 SyFi: Symbolic Construction of Finite Element Basis Functions
By Martin S. Alnæs and Kent-Andre Mardal 149

18 UFC: A Finite Element Code Generation Interface
By Martin S. Alnæs, Anders Logg and Kent-Andre Mardal 151

19 UFL: A Finite Element Form Language
By Martin Sandve Alnæs 153

19.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
19.1.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
19.1.2 Motivational example . . . . . . . . . . . . . . . . . . . . . . . 155

19.2 Defining finite element spaces . . . . . . . . . . . . . . . . . . . . . . 156
19.3 Defining forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
19.4 Defining expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

19.4.1 Form arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 161
19.4.2 Index notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
19.4.3 Algebraic operators and functions . . . . . . . . . . . . . . . 164
19.4.4 Differential operators . . . . . . . . . . . . . . . . . . . . . . . 165
19.4.5 Other operators . . . . . . . . . . . . . . . . . . . . . . . . . . 167

19.5 Form operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
19.5.1 Differentiating forms . . . . . . . . . . . . . . . . . . . . . . . 168
19.5.2 Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
19.5.3 Replacing functions . . . . . . . . . . . . . . . . . . . . . . . . 170
19.5.4 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
19.5.5 Splitting a system . . . . . . . . . . . . . . . . . . . . . . . . . 171
19.5.6 Computing the sensitivity of a function . . . . . . . . . . . . 171

19.6 Expression representation . . . . . . . . . . . . . . . . . . . . . . . . 172
19.6.1 The structure of an expression . . . . . . . . . . . . . . . . . 172
19.6.2 Tree representation . . . . . . . . . . . . . . . . . . . . . . . . 173
19.6.3 Expression node properties . . . . . . . . . . . . . . . . . . . 174
19.6.4 Linearized graph representation . . . . . . . . . . . . . . . . 175
19.6.5 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

19.7 Computing derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 176
19.7.1 Relations to form compiler approaches . . . . . . . . . . . . . 177
19.7.2 Approaches to computing derivatives . . . . . . . . . . . . . . 178
19.7.3 Forward mode Automatic Differentiation . . . . . . . . . . . 178
19.7.4 Extensions to tensors and indexed expressions . . . . . . . . 179
19.7.5 Higher order derivatives . . . . . . . . . . . . . . . . . . . . . 180
19.7.6 Basic differentiation rules . . . . . . . . . . . . . . . . . . . . 181

19.8 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11



19.8.1 Effective tree traversal in Python . . . . . . . . . . . . . . . . 183
19.8.2 Type based function dispatch in Python . . . . . . . . . . . . 183
19.8.3 Implementing expression transformations . . . . . . . . . . 185

19.8.4 Important transformations . . . . . . . . . . . . . . . . . . . 186
19.8.5 Evaluating expressions . . . . . . . . . . . . . . . . . . . . . . 187
19.8.6 Viewing expressions . . . . . . . . . . . . . . . . . . . . . . . 188

19.9 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . 188
19.9.1 Python as a basis for a domain specific language . . . . . . . 188
19.9.2 Ensuring unique form signatures . . . . . . . . . . . . . . . . 189
19.9.3 Efficiency considerations . . . . . . . . . . . . . . . . . . . . . 190

19.10Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
19.11Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

20 Unicorn: A Unified Continuum Mechanics Solver
By Johan Hoffman, Johan Jansson, Niclas Jansson and Murtazo Nazarov 193

20.1 Unified Continuum modeling . . . . . . . . . . . . . . . . . . . . . . 194
20.1.1 Automated computational modeling and software design . . 195

20.2 Space-time General Galerkin discretization . . . . . . . . . . . . . . 195

20.2.1 Standard Galerkin . . . . . . . . . . . . . . . . . . . . . . . . 196
20.2.2 Local ALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
20.2.3 Streamline diffusion stabilization . . . . . . . . . . . . . . . . 197
20.2.4 Duality-based adaptive error control . . . . . . . . . . . . . . 197
20.2.5 Unicorn/FEniCS software implementation . . . . . . . . . . 197

20.3 Unicorn classes: data types and algorithms . . . . . . . . . . . . . . 198
20.3.1 Unicorn software design . . . . . . . . . . . . . . . . . . . . . 198
20.3.2 TimeDependentPDE . . . . . . . . . . . . . . . . . . . . . . . 199
20.3.3 ErrorEstimate . . . . . . . . . . . . . . . . . . . . . . . . . 200
20.3.4 SlipBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

20.4 Mesh adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

20.4.1 Local mesh operations: Madlib . . . . . . . . . . . . . . . . . 203
20.4.2 Elastic mesh smoothing: cell quality optimization . . . . . . 203
20.4.3 Recusive Rivara bisection . . . . . . . . . . . . . . . . . . . . 203

20.5 Parallel computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
20.5.1 Tensor assembly . . . . . . . . . . . . . . . . . . . . . . . . . . 203
20.5.2 Mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . 203

20.6 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
20.6.1 Incompressible flow . . . . . . . . . . . . . . . . . . . . . . . . 203
20.6.2 Compressible flow . . . . . . . . . . . . . . . . . . . . . . . . . 203
20.6.3 Fluid-structure interaction . . . . . . . . . . . . . . . . . . . 203

21 Viper: A Minimalistic Scientific Plotter
By Ola Skavhaug 207

12



22 Lessons Learnt in Mixed Language Programming
By Kent-Andre Mardal, Anders Logg, and Ola Skavhaug 209

III Applications 211

23 Finite Elements for Incompressible Fluids
By Andy R. Terrel, L. Ridgway Scott, Matthew G. Knepley, Robert C. Kirby and
Garth N. Wells 213

24 Benchmarking Finite Element Methods for Navier–Stokes
By Kristian Valen-Sendstad, Anders Logg and Kent-Andre Mardal 215

25 Image-Based Computational Hemodynamics
By Luca Antiga 217

26 Simulating the Hemodynamics of the Circle of Willis
By Kristian Valen-Sendstad, Kent-Andre Mardal and Anders Logg 219

27 Cerebrospinal Fluid Flow
By Susanne Hentschel, Svein Linge, Emil Alf Løvgren and Kent-Andre Mardal 221

27.1 Medical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
27.2 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . 223
27.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 223

27.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 223
27.3.2 Example 1. Simulation of a Pulse in the SAS. . . . . . . . . . 230
27.3.3 Example 2. Simplified Boundary Conditions. . . . . . . . . . 234
27.3.4 Example 3. Cord Shape and Position. . . . . . . . . . . . . . 235
27.3.5 Example 4. Cord with Syrinx. . . . . . . . . . . . . . . . . . . 236

28 Turbulent Flow and Fluid–Structure Interaction with Unicorn
By Johan Hoffman, Johan Jansson, Niclas Jansson, Claes Johnson and Murtazo
Nazarov 239

28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
28.2 Continuum models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
28.3 Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . 241
28.4 Computational method . . . . . . . . . . . . . . . . . . . . . . . . . . 241
28.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
28.6 Geometry modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
28.7 Fluid-structure interaction . . . . . . . . . . . . . . . . . . . . . . . . 242
28.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

28.8.1 Turbulent flow separation . . . . . . . . . . . . . . . . . . . . 242
28.8.2 Flight aerodynamics . . . . . . . . . . . . . . . . . . . . . . . 242
28.8.3 Vehicle aerodynamics . . . . . . . . . . . . . . . . . . . . . . . 242
28.8.4 Biomedical flow . . . . . . . . . . . . . . . . . . . . . . . . . . 242

13



28.8.5 Aeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
28.8.6 Gas flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

28.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

29 Fluid–Structure Interaction using Nitsche’s Method
By Kristoffer Selim and Anders Logg 245

30 Improved Boussinesq Equations for Surface Water Waves
By N. Lopes, P. Pereira and L. Trabucho 247

30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
30.2 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

30.2.1 Standard models . . . . . . . . . . . . . . . . . . . . . . . . . 251
30.2.2 Second-order model . . . . . . . . . . . . . . . . . . . . . . . . 253

30.3 Linear dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . 253
30.4 Wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

30.4.1 Initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . 255
30.4.2 Incident wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
30.4.3 Source function . . . . . . . . . . . . . . . . . . . . . . . . . . 256

30.5 Reflective walls and sponge layers . . . . . . . . . . . . . . . . . . . 257
30.6 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
30.7 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 259
30.8 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . 260
30.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

31 Multiphase Flow Through Porous Media
By Xuming Shan and Garth N. Wells 263

32 Computing the Mechanics of the Heart
By Martin S. Alnæs, Kent-Andre Mardal and Joakim Sundnes 265

33 Simulation of Ca
2+
Dynamics in the Dyadic Cleft

By Johan Hake 267

33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
33.2 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . 268
33.3 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

33.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
33.3.2 Ca2+Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
33.3.3 Stochastic models of single channels . . . . . . . . . . . . . . 271

33.4 Numerical methods for the continuous system . . . . . . . . . . . . 272
33.4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
33.4.2 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

33.5 diffsim an event driven simulator . . . . . . . . . . . . . . . . . . 280
33.5.1 Stochastic system . . . . . . . . . . . . . . . . . . . . . . . . . 280
33.5.2 Time stepping algorithm . . . . . . . . . . . . . . . . . . . . . 281

14



33.5.3 diffsim an example . . . . . . . . . . . . . . . . . . . . . . . 282

34 Electromagnetic Waveguide Analysis
By Evan Lezar and David B. Davidson 289

34.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
34.1.1 Waveguide Cutoff Analysis . . . . . . . . . . . . . . . . . . . 291
34.1.2 Waveguide Dispersion Analysis . . . . . . . . . . . . . . . . . 293

34.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
34.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
34.2.2 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 296

34.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
34.3.1 Hollow Rectangular Waveguide . . . . . . . . . . . . . . . . . 298
34.3.2 Half-Loaded Rectangular Waveguide . . . . . . . . . . . . . . 301
34.3.3 Shielded Microstrip . . . . . . . . . . . . . . . . . . . . . . . . 303

34.4 Analysis of Waveguide Discontinuities . . . . . . . . . . . . . . . . . 305
34.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

35 Applications in Solid Mechanics
By Kristian B. Ølgaard and Garth N. Wells 309

36 Modelling Evolving Discontinuities
By Mehdi Nikbakht and Garth N. Wells 311

37 Optimal Control Problems
By Kent-Andre Mardal, Oddrun Christine Myklebust and Bjørn Fredrik Nielsen313

38 Automatic Calibration of Depositional Models
By Hans Joachim Schroll 315

38.1 Issues in dual lithology sedimentation . . . . . . . . . . . . . . . . . 315
38.2 A multidimensional sedimentation model . . . . . . . . . . . . . . . 316
38.3 An inverse approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
38.4 The Landweber algorithm . . . . . . . . . . . . . . . . . . . . . . . . 317
38.5 Evaluation of gradients by duality arguments . . . . . . . . . . . . 318
38.6 Aspects of the implementation . . . . . . . . . . . . . . . . . . . . . . 320
38.7 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 321
38.8 Results and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 323

39 Computational Thermodynamics
By Johan Hoffman, Claes Johnson and Murtazo Nazarov 331

39.1 FEniCS as Computational Science . . . . . . . . . . . . . . . . . . . 331
39.2 The 1st and 2nd Laws of Thermodynamics . . . . . . . . . . . . . . 332
39.3 The Enigma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
39.4 Computational Foundation . . . . . . . . . . . . . . . . . . . . . . . . 335
39.5 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
39.6 Joule’s 1845 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 338

15



39.7 The Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
39.8 Energy Estimates for Viscosity Solutions . . . . . . . . . . . . . . . 340
39.9 Compression and Expansion . . . . . . . . . . . . . . . . . . . . . . . 342
39.10A 2nd Law witout Entropy . . . . . . . . . . . . . . . . . . . . . . . . 342
39.11Comparison with Classical Thermodynamics . . . . . . . . . . . . . 343
39.12EG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
39.13The 2nd Law for EG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
39.14The Stabilization in EG2 . . . . . . . . . . . . . . . . . . . . . . . . . 345
39.15Output Uniqueness and Stability . . . . . . . . . . . . . . . . . . . . 345

40 Saddle Point Stability
By Marie E. Rognes 347

A Notation 359

16



CHAPTER 1

Introduction

By Anders Logg, Garth N. Wells and Kent-Andre Mardal

Chapter ref: [intro]
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CHAPTER 2

A FEniCS Tutorial

By Hans Petter Langtangen

Chapter ref: [langtangen]

A series of complete, worked out examples, starting with simple mathemati-
cal PDE problems, progressing with physics/mechanics problems, and ending up
with advanced computational mechanics problems. The essence is to show that
the programming tasks scale with themathematical formulation of the problems.
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CHAPTER 3

The Finite Element Method

By Robert C. Kirby and Anders Logg

Chapter ref: [kirby-7]

The finite element method has grown out of Galerkin’s method, emerging as
a universal method for the solution of differential equations. Much of the success
of the finite element method can be contributed to its generality and simplicity,
allowing a wide range of differential equations from all areas of science to be
analyzed and solved within a common framework. Another contributing factor to
the success of the finite element method is the flexibility of formulation, allowing
the properties of the discretization to be controlled by the choice of finite element
approximating spaces.

In this chapter, we review the finite element method and introduce some basic
concepts and notation. In the coming chapters, we discuss these concepts in more
detail, with a particular focus on the implementation and automation of the finite
element method as part of the FEniCS project.

3.1 A Simple Model Problem

In 1813, Siméon Denis Poisson (Figure 3.1) published in Bulletin de la société

philomatique his famous equation as a correction of an equation published ear-
lier by Pierre-Simon Laplace. Poisson’s equation is a second-order partial differ-
ential equation stating that the negative Laplacian −∆u of some unknown field
u = u(x) is equal to a given function f = f(x) on a domain Ω ⊂ R

d, possibly
amended by a set of boundary conditions for the solution u on the boundary ∂Ω
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The Finite Element Method

Figure 3.1: Siméon Denis Poisson (1781–1840), inventor of Poisson’s equation.

of Ω:
−∆u = f in Ω,

u = u0 on ΓD ⊂ ∂Ω,
−∂nu = g on ΓN ⊂ ∂Ω.

(3.1)

The Dirichlet boundary condition u = u0 signifies a prescribed value for the un-
known u on a subset ΓD of the boundary and the Neumann boundary condition
−∂nu = g signifies a prescribed value for the (negative) normal derivative of u
on the remaining boundary ΓN = ∂Ω \ ΓD. Poisson’s equation is a simple model
for gravity, electromagnetism, heat transfer, fluid flow, and many other physical
processes. It also appears as the basic building block in a large number of more
complex physical models, including the Navier–Stokes equations that we return
to below in Chapters ??.

To derive Poisson’s equation (3.1), we may consider a model for the tempera-
ture u in a body occupying a domain Ω subject to a heat source f . Letting σ = σ(x)
denote heat flux, it follows by conservation of energy that the outflow of energy
over the boundary ∂ω of any test volume ω ⊂ Ω must be balanced by the energy
transferred from the heat source f ,

∫

∂ω

σ · n ds =

∫

ω

f dx.

Integrating by parts, it follows that

∫

ω

∇ · σ dx =

∫

ω

f dx

for all test volumes ω and thus that ∇·σ = f (by suitable regularity assumptions
on σ and f ). If we now make the assumption that the heat flux σ is proportional
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Figure 3.2: Poisson’s equation is a simple consequence of balance of energy in an
arbitrary test volume ω ⊂ Ω.

to the negative gradient of the temperature u (Fourier’s law),

σ = −κ∇u,

we arrive at the following system of equations:

∇ · σ = f in Ω,
σ +∇u = 0 in Ω,

(3.2)

where we have assumed that the the heat conductivity κ = 1. Replacing σ in
the first of these equations by −∇u, we arrive at Poisson’s equation (3.1). We
note that one may as well arrive at the system of first order equations (3.2) by
introducing σ = −∇u as an auxiliary variable in the second order equation (3.1).
We also note that the Dirichlet and Neumann boundary conditions in (3.1) corre-
spond to prescribed values for the temperature and heat flux respectively.

3.2 Finite Element Discretization

3.2.1 Discretizing Poisson’s equation

To discretize Poisson’s equation (3.1) by the finite element method, we first mul-
tiply by a test function v and integrate by parts to obtain

∫

Ω

∇v · ∇u dx−
∫

Ω

v ∂nu ds =

∫

Ω

vf dx.
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Letting the test function v vanish on the Dirichlet boundary ΓD where the solu-
tion u is known, we arrive at the following classical variational problem: Find
u ∈ V such that ∫

Ω

∇v · ∇u dx =

∫

Ω

vf dx−
∫

ΓN

v g ds ∀v ∈ V̂ . (3.3)

The test space V̂ is defined by

V̂ = {v ∈ H1(Ω) : v = 0 on ΓD},
and the trial space V contains members of V̂ shifted by the Dirichlet condition,

V = {v ∈ H1(Ω) : v = u0 on ΓD}.
We may now discretize Poisson’s equation by restricting the variational prob-

lem (3.3) to a pair of discrete spaces: Find uh ∈ Vh ⊂ V such that
∫

Ω

∇v · ∇uh dx =

∫

Ω

vf dx−
∫

ΓN

v g ds ∀v ∈ V̂h ⊂ V̂ . (3.4)

We note here that the Dirichlet condition u = u0 on ΓD enters into the definition of
the trial space Vh (it is an essential boundary condition), whereas the Neumann
condition −∂nu = g on ΓN enters into the variational problem (it is a natural

boundary condition).
To solve the discrete variational problem (3.4), we must construct a suitable

pair of discrete test and trial spaces V̂h and Vh. We return to this issue below, but
assume for now that we have a basis {φ̂i}Ni=1 for V̂h and a basis {φj}Nj=1 for Vh. We
may then make an ansatz for uh in terms of the basis functions of the trial space,

uh =

N∑

j=1

Ujφj,

where U ∈ R
N is the vector of degrees of freedom to be computed. Inserting this

into (3.4) and varying the test function v over the basis functions of the discrete
test space V̂h, we obtain

N∑

j=1

Uj

∫

Ω

∇φ̂i · ∇φj dx =

∫

Ω

φ̂if dx−
∫

ΓN

φ̂ig ds, i = 1, 2, . . . , N.

We may thus compute the finite element solution uh =
∑N

j=1Ujφj by solving the
linear system

AU = b,

where

Aij =

∫

Ω

∇φ̂i · ∇φj dx,

bi =

∫

Ω

φ̂if dx−
∫

ΓN

φ̂ig ds.
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3.2.2 Discretizing the first order system

We may similarly discretize the first order system (3.2) by multiplying the first
equation by a test function v and the second by a test function τ . Summing up
and integrating by parts, we find

∫

Ω

v∇ · σ + τ · σ −∇ · τ u dx+

∫

∂Ω

τ · nu ds =

∫

Ω

vf dx ∀v ∈ V̂ .

The normal flux σ ·n = g is known on the Neumann boundary ΓN so we may take
τ · n = 0 on ΓN . Inserting the value for u on the Dirichlet boundary ΓD, we thus
arrive at the following variational problem: Find (u, σ) ∈ V such that

∫

Ω

v∇ · σ + τ · σ −∇ · τ u dx =

∫

Ω

vf dx−
∫

ΓD

τ · nu0 ds ∀(v, τ) ∈ V̂ . (3.5)

Now, V̂ and V are a pair of suitable test and trial spaces, here

V̂ = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div; Ω), τ · n = 0 on ΓN},
V = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div; Ω), τ · n = g on ΓN}.

As above, we restrict this variational problem to a pair of discrete test and
trial spaces V̂h ⊂ V̂ and Vh ⊂ V andmake an ansatz for the finite element solution
of the form

(uh, σh) =
N∑

j=1

Uj(φj, ψj),

where {(φj, ψj)}Nj=1 is a basis for the trial space Vh. Typically, either φj or ψj will
vanish, so that the basis is really the tensor product of a basis for an L2 space
with an H(div) space. We thus obtain a linear system for the degrees of freedom
U ∈ R

N by solving a linear system AU = b, where now

Aij =

∫

Ω

φ̂i∇ · ψj + ψ̂i · ψj −∇ · ψ̂i φj dx,

bi =

∫

Ω

φ̂if dx−
∫

ΓD

ψ̂i · nu0 ds.

We note that the variational problem (3.5) differs from the variational prob-
lem (3.3) in that the Dirichlet condition u = u0 on ΓD enters into the variational
formulation (it is now a natural boundary condition), whereas the Neumann con-
dition σ = g on ΓN enters into the definition of the trial space V (it is now an
essential boundary condition).

Such mixed methods require some care in selecting spaces that discretize L2

and H(div) in a compatible way. Stable discretizations must satisfy the so-called
inf–sup or Ladysenskaja–Babuška–Brezzi (LBB) condition. This theory explains
why many of the elements for mixed methods seem complicated compared to
those for standard Galerkin methods.
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3.3 Finite Element Abstract Formalism

3.3.1 Linear problems

We saw above that the finite element solution of Poisson’s equation (3.1) or (3.2)
can be obtained by restricting an infinite dimensional variational problem to a
finite dimensional variational problem and solving a linear system.

To formalize this, we consider a general linear variational problem written in
the following canonical form: Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂ , (3.6)

where V̂ is the test space and V is the trial space. We may thus express the
variational problem in terms of a bilinear form a and linear form (functional) L,

a : V̂ × V → R,

L : V̂ → R.

As above, we discretize the variational problem (3.6) by restricting to a pair of
discrete test and trial spaces: Find uh ∈ Vh ⊂ V such that

a(v, uh) = L(v) ∀v ∈ V̂h ⊂ V̂ . (3.7)

To solve the discrete variational problem (3.7), we make an ansatz of the form

uh =

N∑

j=1

Ujφj, (3.8)

and take v = φ̂i, i = 1, 2, . . . , N , where {φ̂i}Ni=1 is a basis for the discrete test
space V̂h and {φj}Nj=1 is a basis for the discrete trial space Vh. It follows that

N∑

j=1

Uj a(φ̂i, φj) = L(φ̂i), i = 1, 2, . . . , N.

We thus obtain the degrees of freedom U of the finite element solution uh by
solving a linear system AU = b, where

Aij = a(φ̂i, φj), i, j = 1, 2, . . . , N,

bi = L(φ̂i).
(3.9)
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3.3.2 Nonlinear problems

We also consider nonlinear variational problems written in the following canon-
ical form: Find u ∈ V such that

F (u; v) = 0 ∀v ∈ V̂ , (3.10)

where now F : V × V̂ → R is a semilinear form, linear in the argument(s) subse-
quent to the semicolon. As above, we discretize the variational problem (3.10) by
restricting to a pair of discrete test and trial spaces: Find uh ∈ Vh ⊂ V such that

F (uh; v) = 0 ∀v ∈ V̂h ⊂ V̂ .

The finite element solution uh =
∑N

j=1Ujφj may then be computed by solving a
nonlinear system of equations,

b(U) = 0, (3.11)

where b : R
N → R

N and

bi(U) = F (uh; φ̂i), i = 1, 2, . . . , N. (3.12)

To solve the nonlinear system (3.11) by Newton’s method or some variant of
Newton’s method, we compute the Jacobian A = b′. We note that if the semilinear
form F is differentiable in u, then the entries of the Jacobian A are given by

Aij(uh) =
∂bi(U)

∂Uj
=

∂

∂Uj
F (uh; φ̂i) = F ′(uh; φ̂i)

∂uh

∂Uj
= F ′(uh; φ̂i)φj ≡ F ′(uh; φ̂i, φj).

(3.13)

In each Newton iteration, we must then evaluate (assemble) the matrix A and
the vector b, and update the solution vector U by

Uk+1 = Uk − δUk,

where δUk solves the linear system

A(uk
h) δU

k = b(uk
h). (3.14)

We note that for each fixed uh, a = F ′(uh; ·, ·) is a bilinear form and L = F (uh; ·)
is a linear form. In each Newton iteration, we thus solve a linear variational
problem of the canonical form (3.6): Find δu ∈ V0 such that

F ′(uh; v, δu) = F (uh; v) ∀v ∈ V̂ , (3.15)

where V0 = {v − w : v, w ∈ V }. Discretizing (3.15) as in Section 3.3.1, we recover
the linear system (3.14).
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Example 3.1 (Nonlinear Poisson equation). As an example, consider the follow-

ing nonlinear Poisson equation:

−∇ · ((1 + u)∇u) = f in Ω,

u = 0 on ∂Ω.
(3.16)

Multiplying (3.16) with a test function v and integrating by parts, we obtain
∫

Ω

∇v · ((1 + u)∇u) dx =

∫

Ω

vf dx,

which is a nonlinear variational problem of the form (3.10), with

F (u; v) =

∫

Ω

∇v · ((1 + u)∇u) dx−
∫

Ω

v f dx.

Linearizing the semilinear form F around u = uh, we obtain

F ′(uh; v, δu) =

∫

Ω

∇v · (δu∇uh) dx+

∫

Ω

∇v · ((1 + uh)∇δu) dx.

We may thus compute the entries of the Jacobian matrix A(uh) by

Aij(uh) = F ′(uh; φ̂i, φj) =

∫

Ω

∇φ̂i · (φj∇uh) dx+

∫

Ω

∇φ̂i · ((1 + uh)∇φj) dx. (3.17)

3.4 Finite Element Function Spaces

In the above discussion, we assumed that we could construct discrete subspaces
Vh ⊂ V of infinite dimensional function spaces. A central aspect of the finite
element method is the construction of such subspaces by patching together lo-
cal function spaces defined on a set of finite elements. We here give a general
overview of the construction of finite element function spaces and return below
in Chapters 4 and 5 to the construction of specific function spaces such as subsets
of H1(Ω), H(curl), H(div) and L2(Ω).

3.4.1 The mesh

To define Vh, we first partition the domain Ω into a finite set of disjoint cells
T = {K} such that

∪K∈TK = Ω.

Together, these cells form a mesh of the domain Ω. The cells are typically simple
polygonal shapes like intervals, triangles, quadrilaterals, tetrahedra or hexahe-
dra as shown in Figure 3.3. But other shapes are possible, in particular curved
cells to correctly capture the boundary of a non-polygonal domain as shown in
Figure 3.4.
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Figure 3.3: Finite element cells in one, two and three space dimensions.

Figure 3.4: A straight triangular cell (left) and curved triangular cell (right).
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3.4.2 The finite element definition

Once a domain Ω has been partitioned into cells, one may define a local function
space PK on each cell K and use these local function spaces to build the global
function space Vh. A cell K together with a local function space PK and a set of
rules for describing functions in PK is called a finite element. This definition of
finite element was first formalized by Ciarlet in [Cia78, Cia02], and it remains
the standard formulation today. [BS94, BS08]. The formal definition reads as
follows: A finite element is a triple (K,PK ,LK), where

• K ⊂ R
d is a bounded closed subset of R

d with nonempty interior and piece-
wise smooth boundary;

• PK is a function space on K of dimension nK <∞;

• LK = {ℓK1 , ℓK2 , . . . , ℓKnK
} is a basis for P ′

K (the bounded linear functionals on
PK).

As an example, consider the standard linear Lagrange finite element on the
triangle in Figure 3.5. The cell K is given by the triangle and the space PK is
given by the space of first degree polynomials on K. As a basis for P ′

K , we may
take point evaluation at the three vertices of K, that is,

ℓKi : PK → R,

ℓKi (v) = v(xi),

for i = 1, 2, 3 where xi is the coordinate of the ith vertex. To check that this
is indeed a finite element, we need to verify that LK is a basis for P ′

K . This
is equivalent to the unisolvence of LK , that is, if v ∈ PK and ℓKi (v) = 0 for all
ℓKi , then v = 0. [BS08] For the linear Lagrange triangle, we note that if v is
zero at each vertex, then v must be zero everywhere, since a plane is uniquely
determined by its value a three non-collinear points. Thus, the linear Lagrange
triangle is indeed a finite element. In general, determining the unisolvence of
LK may be non-trivial.

3.4.3 The nodal basis

Expressing finite element solutions in Vh in terms of basis functions for the local
function spaces PK may be greatly simplified by introducing a nodal basis for
PK . A nodal basis {φK

i }nK

i=1 for PK is a basis for PK that satisfies

ℓKi (φK
j ) = δij , i, j = 1, 2, . . . , nK . (3.18)

It follows that any v ∈ PK may be expressed by

v =

nK∑

i=1

ℓKi (v)φK
i . (3.19)
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Figure 3.5: The linear Lagrange (Courant) triangle).

In particular, any function v in PK for the linear Lagrange triangle is given by
v =

∑3
i=1 v(x

i)φK
i . In other words, the degrees of freedom of any function v may be

obtained by evaluating the linear functionals LK . We shall therefore sometimes
refer to LK as degrees of freedom.
◮ Author note: Give explicit formulas for some nodal basis functions. Use example envi-

ronment.

For any finite element (K,PK ,LK), the nodal basis may be computed by solv-
ing a linear system of size nK × nK . To see this, let {ψK

i }nK

i=1 be any basis (the
prime basis) for PK . Such a basis is easy to construct if PK is a full polyno-
mial space or may otherwise be computed by a singular-value decomposition or
a Gram-Schmidt procedure, see [Kir04]. We may then make an ansatz for the
nodal basis in terms of the prime basis:

φj =

nK∑

k=1

αjkψ
K
k , j = 1, 2, . . . , nK .

Inserting this into (3.18), we find that

nK∑

k=1

αjkℓ
K
i (ψK

k ) = δij , j = 1, 2, . . . , nK .

In other words, the expansion coefficients α for the nodal basis may be computed
by solving the linear system

Bα⊤ = I,

where Bij = ℓKi (ψK
j ).

3.4.4 The local-to-global mapping

Now, to define a global function space Vh = span{φi}Ni=1 on Ω from a given set
{(K,PK,LK)}K∈T of finite elements, we also need to specify how the local function
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Figure 3.6: Local-to-global mapping for a simple mesh consisting of two triangles.

spaces are patched together. We do this by specifying for each cell K ∈ T a local-

to-global mapping,
ιK : [1, nK ]→ N. (3.20)

This mapping specifies how the local degrees of freedom LK = {ℓKi }nK

i=1 are mapped
to global degrees of freedom L = {ℓi}Ni=1. More precisely, the global degrees of
freedom are given by

ℓιK(i)(v) = ℓKi (v|K), i = 1, 2, . . . , nK , (3.21)

for any v ∈ Vh. Thus, each local degree of freedom ℓKi ∈ LK corresponds to a
global degree of freedom νιK(i) ∈ L determined by the local-to-global mapping ιK .
As we shall see, the local-to-global mapping together with the choice of degrees
of freedom determine the continuity of the global function space Vh.

For standard piecewise linears, one may define the local-to-global mapping
by simply mapping each local vertex number i for i = 1, 2, 3 to the corresponding
global vertex number ιK(i). This is illustrated in Figure 3.6 for a simple mesh
consisting of two triangles.

3.4.5 The global function space

One may now define the global function space Vh as the set of functions on Ω
satisfying the following pair of conditions. We first require that

v|K ∈ PK ∀K ∈ T , (3.22)

that is, the restriction of v to each cell K lies in the local function space PK .
Second, we require that for any pair of cells (K,K ′) ∈ T × T and any pair (i, i′) ∈
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Figure 3.7: Patching together local function spaces on a pair of cells (K,K ′) to
form a global function space on Ω = K ∪K ′.

[1, nK ]× [1, nK ′] satisfying
ιK(i) = ιK ′(i′), (3.23)

it holds that
ℓKi (v|K) = ℓK

′

i′ (v|K ′). (3.24)

In other words, if two local degrees of freedom ℓKi and ℓK
′

i′ are mapped to the same
global degree of freedom, then they must agree for each function v ∈ Vh. Here, v|K
denotes the continuous extension to K of the restriction of v to the interior of K.
This is illustrated in Figure 3.7 for the space of continuous piecewise quadratics
obtained by patching together two quadratic Lagrange triangles.

Note that by this construction, the functions of Vh are undefined on cell bound-
aries, unless the constraints (3.24) force the (restrictions of) functions of Vh to be
continuous on cell boundaries. However, this is usually not a problem, since we
can perform all operations on the restrictions of functions to the local cells.

The local-to-global mapping together with the choice of degrees of freedom de-
termine the continuity of the global function space Vh. For the Lagrange triangle,
the choice of degrees of freedom as point evaluation at vertices ensures that the
restrictions v|K and v|K ′ of a function v ∈ Vh to a pair of adjacent triangles K
agree at the two common vertices, since ιK and ιK ′ map corresponding degrees of
freedom to the same global degree of freedom and this global degree of freedom
is single-valued. It follows that the functions of Vh are continuous not only at
vertices but along each shared edge since a first-degree polynomial on a line is
uniquely determined by its values at two distinct points. Thus, the global func-
tion space of piecewise linears generated by the Lagrange triangle is continuous
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Figure 3.8: The degree of continuity is determined by the choice of degrees of free-
dom, illustrated here for a pair of linear Lagrange triangles, Crouzeix–Raviart
triangles, Brezzi–Douglas–Marini triangles and Nédélec triangles.

and thus H1-conforming, that is, Vh ⊂ H1(Ω).
One may also consider degrees of freedom defined by point evaluation at the

midpoint of each edge. This is the so-called Crouzeix–Raviart triangle. The cor-
responding global Crouzeix–Raviart space Vh is consequently continuous only at
edge midpoints and so Vh is not a subspace of H1. The Crouzeix–Raviart triangle
is an example of an H1-nonconforming element. Other choices of degrees of free-
dom may ensure continuity of normal components like for the H(div)-conforming
Brezzi–Douglas–Marini elements or tangential components as for the H(curl)-
conforming Nédélec elements. This is illustrated in Figure 3.8. In Chapter 4,
other examples of particular elements are given which ensure different kinds of
continuity by the choice of degrees of freedom and local-to-global mapping.

3.4.6 The mapping from the reference element

◮ Editor note: Need to change the notation here to (K0,P0,L0) since ·̂ is already used for

the test space.

As we have seen, the global function space Vh may be described by a mesh
T , a set of finite elements {(K,PK ,LK)}K∈T and a set of local-to-global mappings
{ιK}K∈T . We may simplify this description further by introducing a reference fi-

nite element (K̂, P̂, L̂), where L̂ = {ℓ̂1, ℓ̂2, . . . , ℓ̂n̂}, and a set of invertible mappings
{FK}K∈T that map the reference cell K̂ to the cells of the mesh,

K = FK(K̂) ∀K ∈ T . (3.25)

This is illustrated in Figure 3.9. Note that K̂ is generally not part of the mesh.
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Figure 3.9: The (affine) mapping FK from a reference cell K̂ to some cell K ∈ T .

For function spaces discretizing H1 as in (3.3), the mapping FK is typically
affine, that is, FK can be written in the form FK(x̂) = AK x̂ + bK for some ma-
trix AK ∈ R

d×d and some vector bK ∈ R
d, or isoparametric, in which case the

components of FK are functions in P̂. For function spaces discretizing H(div) like
in (3.5) orH(curl), the appropriate mappings are the contravariant and covariant
Piola mappings which preserve normal and tangential components respectively,
see [RKL08]. For simplicity, we restrict the following discussion to the case when
FK is affine or isoparametric.

For each cell K ∈ T , the mapping FK generates a function space on K given
by

PK = {v : v = v̂ ◦ F−1
K , v̂ ∈ P̂}, (3.26)

that is, each function v = v(x) may be expressed as v(x) = v̂(F−1
K (x)) = v̂ ◦ F−1

K (x)

for some v̂ ∈ P̂ .
The mapping FK also generates a set of degrees of freedom LK on PK given

by
LK = {ℓKi : ℓKi (v) = ℓ̂i(v ◦ FK), i = 1, 2, . . . , n̂}. (3.27)

The mappings {FK}K∈T thus generate from the reference finite element (K̂, P̂, L̂)
a set of finite elements {(K,PK ,LK)}K∈T given by

K = FK(K̂),

PK = {v : v = v̂ ◦ F−1
K : v̂ ∈ P̂},

LK = {ℓKi : ℓKi (v) = ℓ̂i(v ◦ FK), i = 1, 2, . . . , n̂ = nK}.
(3.28)

By this construction, we also obtain the nodal basis functions {φK
i }nK

i=1 onK from a

set of nodal basis functions {φ̂i}n̂i=1 on the reference element satisfying ℓ̂i(φ̂j) = δij .
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Letting φK
i = φ̂i ◦ F−1

K for i = 1, 2, . . . , nK , we find that

ℓKi (φK
j ) = ℓ̂i(φ

K
j ◦ FK) = ℓ̂i(φ̂j) = δij , (3.29)

so {φK
i }nK

i=1 is a nodal basis for PK .
We may thus define the function space Vh by specifying a mesh T , a reference

finite element (K̂, P̂, L̂), a set of local-to-global mappings {ιK}K∈T and a set of
mappings {FK}K∈T from the reference cell K̂. Note that in general, the mappings
need not be of the same type for all cells K and not all finite elements need to
be generated from the same reference finite element. In particular, one could
employ a different (higher-degree) isoparametric mapping for cells on a curved
boundary.

The above construction is valid for so-called affine-equivalent elements [BS08]
like the family H1-conforming Lagrange finite elements. A similar construc-
tion is possible for H(div)- and H(curl) conforming elements, like the Raviart–
Thomas, Brezzi–Douglas–Marini and Nédélec elements, where an appropriate
Piola mapping must be used to map the basis functions. However, not all finite
elements may be generated from a reference finite element using this simple
construction. For example, this construction fails for the family of Hermite finite
elements. [Cia02, BS08].

3.5 Finite Element Solvers

Finite elements provide a powerful methodology for discretizing differential equa-
tions, but solving the resulting algebraic systems also presents quite a chal-
lenge, even for linear systems. Good solvers must handle the sparsity and ill-
conditioning of the algebraic system, but also scale well on parallel computers.
The linear solve is a fundamental operation not only in linear problems, but also
within each iteration of a nonlinear solve via Newton’s method, an eigenvalue
solve, or time-stepping.

A classical approach that has been revived recently is direct solution, based
on Gaussian elimination. Thanks to techniques enabling parallel scalability
and recognizing block structure, packages such as UMFPACK [Dav04] and Su-
perLU [Li05] have made direct methods competitive for quite large problems.

The 1970s and 1980s saw the advent of modern iterative methods. These
grew out of classical iterative methods such as relaxation methods [?] and the
conjugate gradient iteration of Hestenes and Stieffel [HS52]. These techniques
can use much less memory than direct methods and are easier to parallelize.
◮ Author note: Missing reference for relaxation methods

Multigrid methods [Bra77, Wes92] use relaxation techniques on a hierarchy
of meshes to solve elliptic equations, typically for symmetric problems, in nearly
linear time. However, they require a hierarchy of meshes that may not always be
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available. This motivated the introduction of algebraicmultigrid methods (AMG)
that mimic mesh coarsening, working only on the matrix entries. Successful
AMG distributions include the Hypre package [FY02] and the ML package inside
Trilinos [HBH+05].

Krylov methods such as conjugate gradients and GMRES [SS86] generate
a sequence of approximations converging to the solution of the linear system.
These methods are based only on the matrix–vector product. The performance of
these methods is significantly improved by use of preconditioners, which trans-
form the linear system

AU = b

into

P−1AU = P−1b,

which is known as left preconditioning. The preconditioner P−1 may also be
applied from the right by recognizing that AU = AP−1(PU). To ensure good con-
vergence, the preconditioner P−1 should be a good approximation of A−1. Some
preconditioners are strictly algebraic, meaning they only use information avail-
able from the entries of A. Classical relaxation methods such as Gauss–Seidel
may be used as preconditioners, as can so-called incomplete factorizations [?].
If multigrid or AMG is available, it also can serve as a powerful preconditioner.
Other kinds of preconditioners require special knowledge about the differential
equations being solved and may require new matrices modeling related physi-
cal processes. Such methods are sometimes called physics-based precondition-
ers [?]. An automated system, such as FEniCS, provides an interesting oppor-
tunity to assist with the development and implementation of these powerful but
less widely used methods.
◮ Author note: Missing reference for incomplete LU factorization and physics-based pre-

conditioners

Fortunately, many of the methods discussed here are included in modern li-
braries such as PETSc [BBE+04] and Trilinos [HBH+05]. FEniCS typically in-
teracts with the solvers discussed here through these packages and so mainly
need to be aware of the various methods at a high level, such as when the vari-
ous methods are appropriate and how to access them.

3.6 Finite Element Error Estimation and Adaptivity

The error e = uh − u in a computed finite element solution uh approximating the
exact solution u of (3.6) may be estimated either a priori or a posteriori. Both
types of estimates are based on relating the size of the error to the size of the
(weak) residual r : V → R defined by

r(v) = a(v, uh)− L(v). (3.30)
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We note that the weak residual is formally related to the strong residual R ∈ V ′

by r(v) = (v, R).
A priori error estimates express the error in terms of the regularity of the

exact (unknown) solution and may give useful information about the order of
convergence of a finite element method. A posteriori error estimates express
the error in terms of computable quantities like the residual and (possibly) the
solution of an auxiliary dual problem.

3.6.1 A priori error analysis

We consider the linear variational problem (3.6). We first assume that the bilin-
ear form a and the linear form L are continuous (bounded), that is, there exists
a constant C > 0 such that

a(v, w) ≤ C‖v‖V ‖w‖V , (3.31)

L(v) ≤ C‖v‖V , (3.32)

for all v, w ∈ V . For simplicity, we assume in this section that V̂ = V is a Hilbert
space. For (3.1), this corresponds to the case of homogeneous Dirichlet boundary
conditions and V = H1

0 (Ω). Extensions to the general case V̂ 6= V are possible,
see for example [OD96]. We further assume that the bilinear form a is coercive
(V -elliptic), that is, there exists a constant α > 0 such that

a(v, v) ≥ α‖v‖V , (3.33)

for all v ∈ V . It then follows by the Lax–Milgram theorem [LM54] that there
exists a unique solution u ∈ V to the variational problem (3.6).

To derive an a priori error estimate for the approximate solution uh defined
by the discrete variational problem (3.7), we first note that

a(v, uh − u) = a(v, uh)− a(v, u) = L(v)− L(v) = 0

for all v ∈ Vh ⊂ V . By the coercivity and continuity of the bilinear form a, we find
that

α‖uh − u‖2V ≤ a(uh − u, uh − u) = a(uh − v, uh − u) + a(v − u, uh − u)
= a(v − u, uh − u) ≤ C‖v − u‖V ‖uh − u‖V .

for all v ∈ Vh. It follows that

‖uh − u‖V ≤
C

α
‖v − u‖V ∀v ∈ Vh. (3.34)

The estimate (3.34) is referred to as Cea’s lemma. We note that when the bilinear
form a is symmetric, it is also an inner product. We may then take ‖v‖V =
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Figure 3.10: The finite element solution uh ∈ Vh ⊂ V is the a-projection of u ∈ V
onto the subspace Vh and is consequently the best possible approximation of u in
the subspace Vh.

√
a(v, v) and C = α = 1. In this case, uh is the a-projection onto Vh and Cea’s

lemma states that
‖uh − u‖V ≤ ‖v − u‖V ∀v ∈ Vh, (3.35)

that is, uh is the best possible solution of the variational problem (3.6) in the
subspace Vh. This is illustrated in Figure 3.10.

Cea’s lemma together with a suitable interpolation estimate now yields the
a priori error estimate for uh. By choosing v = πhu, where πh : V → Vh is an
interpolation operator into Vh, we find that

‖uh − u‖V ≤
C

α
‖πhu− u‖V ≤

CCi

α
‖hpDqu‖, (3.36)

where Ci is an interpolation constant and the values of p and q depend on the
accuracy of interpolation and the definition of ‖ · ‖V . For the solution of Poisson’s
equation in H1

0 , we have C = α = 1 and p = q = 1.

3.6.2 A posteriori error analysis

Energy norm error estimates

The continuity and coercivity of the bilinear form a also allows a simple deriva-
tion of an a posteriori error estimate. In fact, it follows that the V -norm of the
error e = uh − u is equivalent to the V ′-norm of the residual r. To see this, we
note that by the continuity of the bilinear form a, we have

r(v) = a(v, uh)− L(v) = a(v, uh)− a(v, u) = a(v, uh − u) ≤ C‖uh − u‖V ‖v‖V .
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Furthermore, by coercivity, we find that

α‖uh − u‖2 ≤ a(uh − u, uh − u) = a(uh − u, uh)− L(uh − u) = r(uh − u).

It follows that
α‖uh − u‖V ≤ ‖r‖V ′ ≤ C‖uh − u‖V , (3.37)

where ‖r‖V ′ = supv∈V,v 6=0 r(v)/‖v‖V .
The estimates (3.36) and (3.37) are sometimes referred to as energy norm

error estimates. This is the case when the bilinear form a is symmetric and thus
defines an inner product. One may then take ‖v‖V =

√
a(v, v) and C = α = 1. In

this case, it follows that
‖e‖V = ‖r‖V ′ . (3.38)

The term energy norm refers to a(v, v) corresponding to physical energy in many
applications.

Duality-based error control

The classical a priori and a posteriori error estimates (3.36) and (3.37) relate
the V -norm of the error e = uh − u to the regularity of the exact solution u and
the residual r = a(v, uu) − L(v) of the finite element solution uh respectively.
However, in applications it is often necessary to control the error in a certain
output functional M : V → R of the computed solution to within some given
tolerance TOL > 0. In these situations, one would thus ideally like to choose the
finite element space Vh ⊂ V such that the finite element solution uh satisfies

|M(uh)−M(u)| ≤ TOL (3.39)

with minimal computational work. We assume here that both the output func-
tional and the variational problem are linear, but the analysis may be easily
extended to the full nonlinear case, see [EEHJ95, BR01].

To estimate the error in the output functionalM, we introduce an auxiliary
dual problem: Find z ∈ V ∗ such that

a∗(v, z) =M(v) ∀v ∈ V̂ ∗. (3.40)

We note here that the functionalM enters as data in the dual problem. The dual
(adjoint) bilinear form a∗ : V̂ ∗ × V ∗ is defined by

a∗(v, w) = a(w, v).

The dual trial and test spaces are given by

V ∗ = V̂ ,

V̂ ∗ = V0 = {v − w : v, w ∈ V },
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that is, the dual trial space is the primal test space and the dual test space is
the primal trial space modulo boundary conditions. In particular, if V = u0 + V̂
and Vh = u0 + V̂h then V̂ ∗ = V̂ , and thus both the dual test and trial functions
vanish at Dirichlet boundaries. The definition of the dual problem leads us to
the following representation of the error:

M(uh)−M(u) =M(uh − u)
= a∗(uh − u, z)
= a(z, uh − u)
= a(z, uh)− L(z)

= r(z).

We thus find that the error is exactly represented by the residual applied to the
dual solution,

M(uh)−M(u) = r(z). (3.41)

3.6.3 Adaptivity

As seen above, one may thus estimate the error in a computed finite element
solution uh, either the error in the V -norm or the error in an output functional,
by estimating the size of the residual r. This may be done in several different
ways. The estimate typically involves integration by parts to recover the strong
element-wise residual of the original PDE, possibly in combination with the so-
lution of local problems over cells or patches of cells. In the case of the standard
piecewise linear finite element approximation of Poisson’s equation (3.1), one
may obtain the following estimate:

‖uh − u‖V = ‖∇e‖ ≤ C

(
∑

K∈T

h2
K‖R‖2K + hK‖[∂nuh]‖2∂K

)1/2

,

where R|K = −∆uh|K − f |K is the strong residual, hK denotes the mesh size
(diameter of smallest circumscribed sphere) and [∂nuh] denotes the jump of the
normal derivative across mesh facets. Letting η2

K = h2
K‖R‖2K + hK‖[∂nuh]‖2∂K , one

thus obtains the estimate

‖uh − u‖V ≤ E ≡
(
C
∑

K

η2
K

)1/2

.

An adaptive algorithm seeks to determine a mesh size h = h(x) such that E ≤
TOL. Starting from an initial coarse mesh, the mesh is successively refined in
those cells where the error indicator ηK is large. Several strategies are available,
such as refining the top fraction of all cells where ηK is large, say the first 20%
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Figure 3.11: An adaptively refined mesh obtained by successive refinement of an
original coarse mesh.

of all cells ordered by ηK . Other strategies include refining all cells where ηK is
above a certain fraction of maxK∈T ηK , or refining a top fraction of all cells such
that the sum of their error indicators account for a significant fraction of E.
◮ Author note: Find good reference for adaptive strategies.

Once the mesh has been refined, a new solution and new error indicators
can be computed. The process is then repeated until either E ≤ TOL (the stop-
ping criterion) or the available resources (CPU time and memory) have been ex-
hausted. The adaptive algorithm thus yields a sequence of successively refined
meshes as illustrated in Figure 3.11. For time-dependent problems, an adaptive
algorithm needs to distribute both the mesh size and the size of the time step
in both space and time. Ideally, the error estimate E is close to the actual error,
as measured by the efficiency index E/‖uh − u‖V which should be close to one by
bounded below by one.

3.7 Automating the Finite Element Method

The FEniCS project seeks to automate Scientific Computing as explained in
Chapter [intro]. This is a formidable task, but it may be solved in part by au-
tomating the finite element method. In particular, this automation relies on the
following key steps:

(i) automation of discretization,

(ii) automation of discrete solution,
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(iii) automation of error control.

Since its inception in 2003, the FEniCS project has been concerned mainly with
the automation of discretization, resulting in the development of the form com-
pilers FFC and SyFi/SFC, the code generation interface UFC and the form lan-
guage UFL. As a result, the first step towards a complete automation is now
close to complete; variational problems for a large class of partial differential
equations may now be automatically discretized by the finite element method
using FEniCS. For the automation of discrete solution, that is, the solution of
linear and nonlinear systems arising from the automated discretization of vari-
ational problems, interfaces to state-of-the-art libraries for linear algebra have
been implemented as part of DOLFIN. Ongoing work is now seeking to automate
error control by automated error estimation and adaptivity as part of FEniCS.

3.8 Outlook

In the following chapters, we return to specific aspects of the automation of the
finite element method. In the next chapter, we review a number of common
and unusual finite elements, including the standard Lagrange elements but also
some more exotic elements. In Chapter 5, we then discuss the automated genera-
tion of finite element nodal basis functions from a given finite element definition
(K,PK ,LK). In Chapter 6, we consider general finite element variational forms
arising from the discretization of PDEs and discuss the automated assembly of
the corresponding discrete operators in Chapter 7. We then discuss specific opti-
mization strategies for form evaluation in Chapters ??–??.
◮ Author note: This section needs to be reworked when the following chapters have ma-

terialized.

3.9 Historical Notes

In 1915, Boris Grigoryevich Galerkin formulated a general method for solv-
ing differential equations. [Gal15] A similar approach was presented sometime
earlier by Bubnov. Galerkin’s method, or the Bubnov–Galerkin method, was
originally formulated with global polynomials and goes back to the variational
principles of Leibniz, Euler, Lagrange, Dirichlet, Hamilton, Castigliano [Cas79],
Rayleigh [Ray70] and Ritz [Rit08]. Galerkin’s method with piecewise polyno-
mial spaces (V̂h, Vh) is known as the finite element method. The finite element
method was introduced by engineers for structural analysis in the 1950s and
was independently proposed by Courant in 1943 [Cou43]. The exploitation of
the finite element method among engineers and mathematicians exploded in the
1960s. Since then, the machinery of the finite element method has been ex-
panded and refined into a comprehensive framework for design and analysis of
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Figure 3.12: Boris Galerkin (1871–1945), inventor of Galerkin’s method.

numerical methods for differential equations, see [ZTZ67, SF73, Cia76, Cia78,
BCO81, Hug87, BS94] Recently, the quest for compatible (stable) discretizations
of mixed variational problems has led to the introduction of finite element exte-
rior calculus. [AFW06a]

Work on a posteriori error analysis of finite element methods dates back to
the pioneering work of Babuška and Rheinboldt. [BR78]. Important references
include the works [BW85, ZZ87, EJ91, EJ95a, EJ, EJ95b, EJ95c, EJL98, AO93]
and the reviews papers [EEHJ95, Ver94, Ver99, AO00, BR01].
◮ Author note: Need to check for missing/inaccurate references here.

◮ Editor note: Might use a special box/layout for historical notes if they appear in many

places.
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CHAPTER 4

Common and Unusual Finite Elements

By Robert C. Kirby, Anders Logg and Andy R. Terrel

Chapter ref: [kirby-6]

This chapter provides a glimpse of the considerable range of finite elements
in the literature and the challenges that may be involved with automating “all”
the elements. Many of the elements presented here are included in the FEniCS
project already; some are future work.

4.1 Ciarlet’s Finite Element Definition

As discussed in Chapter 3, a finite element is defined by a triple (K,PK ,LK),
where

• K ⊂ R
d is a bounded closed subset of R

d with nonempty interior and piece-
wise smooth boundary;

• PK is a function space on K of dimension nK <∞;

• LK = {ℓK1 , ℓK2 , . . . , ℓKnK
} is a basis for P ′

K (the bounded linear functionals on
PK).

This definition was first introduced by Ciarlet in a set of lecture notes [Cia75]
and became popular after his 1978 book [Cia78, Cia02]. It remains the standard
definition today, see for example [BS08]. Similar ideas were introduced earlier
in [CR72] which discusses unisolvence of a set of interpolation points Σ = {ai}i.
This is closely related to the unisolvence of LK . In fact, the set of functionals LK

is given by ℓKi (v) = v(ai). It is also interesting to note that the Ciarlet triple was
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originally written as (K,P,Σ) with Σ denoting LK . Conditions for uniquely deter-
mining a polynomial based on interpolation of function values and derivatives at
a set of points was also discussed in [BZ70], although the term unisolvence was
not used.

4.2 Notation

It is common to refer to the space of linear functionals LK as the degrees of free-

dom of the element (K,PK ,LK). The degrees of freedom are typically given by
point evaluation or moments of function values or derivatives. Other commonly
used degrees of freedom are point evaluation or moments of certain components
of function values, such as normal or tangential components, but also directional
derivatives. We summarize the notation used to indicate degrees of freedom
graphically in Figure 4.1. A filled circle at a point x̄ denotes point evaluation at
that point,

ℓ(v) = v(x̄).

We note that for a vector valued function v with d components, a filled circle de-
notes evaluation of all components and thus corresponds to d degrees of freedom,

ℓ1(v) = v1(x̄),

ℓ2(v) = v2(x̄),

ℓ3(v) = v3(x̄).

An arrow denotes evaluation of a component of a function value in a given di-
rection, such as a normal component ℓ(v) = v(x̄) · n or tangential component
ℓ(v) = v(x̄) · t. A plain circle denotes evaluation of all first derivatives, a line
denotes evaluation of a directional first derivative such as a normal derivative
ℓ(v) = ∇v(x̄) · n. A dotted circle denotes evaluation of all second derivatives. Fi-
nally, a circle with a number indicates a number of interior moments (integration
against functions over the domain K).
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3

point evaluation

point evaluation of directional component

point evaluation of all first derivatives

point evaluation of directional derivative

point evaluation of all second derivatives

interior moments

Figure 4.1: Notation
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4.3 The Argyris Element

4.3.1 Definition

The Argyris triangle [AFS68, Cia02] is based on the space PK = P5(K) of quintic
polynomials over some triangle K. It can be pieced together with full C1 con-
tinuity between elements with C2 continuity at the vertices of a triangulation.
Quintic polynomials in R

2 are a 21-dimensional space, and the dual basis LK

consists of six degrees of freedom per vertex and one per each edge. The ver-
tex degrees of freedom are the function value, two first derivatives to specify the
gradient, and three second derivatives to specify the unique components of the
(symmetric) Hessian matrix.

Figure 4.2: The quintic Argyris triangle.

4.3.2 Historical notes

The Argyris element [AFS68] was first called the TUBA element and was applied
to fourth-order plate-bending problems. In fact, as Ciarlet points out [Cia02], the
element also appeared in an earlier work by Felippa [Fel66].

The normal derivatives in the dual basis for the Argyris element prevent it
from being affine-interpolation equivalent. This prevents the nodal basis from
being constructed on a reference cell and affinely mapped. Recent work by
Dominguez and Sayas [DS08] has developed a transformation that corrects this
issue and requires less computational effort than directly forming the basis on
each cell in a mesh.

The Argyris element can be generalized to polynomial degrees higher than
quintic, still giving C1 continuity with C2 continuity at the vertices [ŠSD04]. The
Argyris element also makes an appearance in exact sequences of finite elements,
where differential complexes are used to explain the stability of many kinds of
finite elements and derive new ones [AFW06a].
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4.4 The Brezzi–Douglas–Marini element

4.4.1 Definition

The Brezzi–Douglas–Marini element [BDM85b] discretizes H(div). That is, it
provides a vector field that may be assembled with continuous normal compo-
nents so that global divergences are well-defined. The BDM space on a simplex
in d dimensions (d = 2, 3) consists of vectors of length d whose components are
polynomials of degree q for q ≥ 1.

3 8

Figure 4.3: The linear, quadratic and cubic Brezzi–Douglas–Marini triangles.

The degrees of freedom for the BDM triangle include the normal component
on each edge, specified either by integral moments against Pq or the value of the
normal component at q+1 points per edge. For q > 1, the degrees of freedom also
include integration against gradients of Pq(K) over K. For q > 2, the degrees of
freedom also include integration against curls of bKPq−2(K) over K, where bK is
the cubic bubble function associated with K.
◮ Author note: What about tets? Will also make up for the empty space on the next page.

The BDM element is also defined on rectangles and boxes, although it has
quite a different flavor. Unusually for rectangular domains, it is not defined
using tensor products of one-dimensional polynomials, but instead by supple-
menting polynomials of complete degree [Pq(K)]d with extra functions to make
the divergence onto Pq(K). The boundary degrees of freedom are similar to the
simplicial case, but the internal degrees of freedom are integral moments against
[Pq(K)]d.

4.4.2 Historical notes

The BDM element was originally derived in two dimensions [BDM85b] as an
alternative to the Raviart–Thomas element using a complete polynomial space.
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Extensions to tetrahedra came via the “second-kind” elements of Nédélec [Néd86]
as well as in Brezzi and Fortin [BF91]. While Nédélec uses quite different inter-
nal degrees of freedom (integral moments against the Raviart–Thomas spaces),
the degrees of freedom in Brezzi and Fortin are quite similar to [BDM85b].

A slight modification of the BDM element constrains the normal components
on the boundary to be of degree q − 1 rather than q. This is called the Brezzi–
Douglas–Fortin–Marini or BDFM element [BF91]. In similar spirit, elements
with differing orders on the boundary suitable for varying the polynomial de-
gree between triangles were derived in [BDM85a]. Besides mixed formulations
of second-order scalar elliptic equations, the BDM element also appears in elas-
ticity [AFW07], where it is seen that each row of the stress tensor may be approx-
imated in a BDM space with the symmetry of the stress tensor imposed weakly.
◮ Author note: Fill up the blank space here. Adding a discussion and possibly a figure

for tets should help.
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4.5 The Crouzeix–Raviart element

4.5.1 Definition

The Crouzeix–Raviart element [CR73] most commonly refers to a linear non-
conforming element. It uses piecewise linear polynomials, but unlike the La-
grange element, the degrees of freedom are located at edge midpoints rather
than at vertices. This gives rise to a weaker form of continuity, but it is still a
suitable C0-nonconforming element. The extension to tetrahedra in R

3 replaces
the degrees of freedom on edge midpoints by degrees of freedom on face mid-
points.
◮ Author note: What other element does it refer to? Sounds like there may be several, but

I just know about this one.

Figure 4.4: The linear Crouzeix–Raviart triangle.

4.5.2 Historical notes

Crouzeix and Raviart developed two simple Stokes elements, both using point-
wise evaluation for degrees of freedom. The second element used extra bubble
functions to enrich the typical Lagrange element, but the work of Crouzeix and
Falk [CF89] later showed that the bubble functions were in fact not necessary
for quadratic and higher orders.
◮ Author note: The discussion in the previous paragraph should be expanded so it states

more explicitly what this has to do with the CR element.

The element is usually associated with solving the Stokes problem but has
been used for linear elasticity [HL03] and Reissner-Mindlin plates [AF89] as a
remedy for locking. There is an odd order extension of the element from Arnold
and Falk.
◮ Author note: Missing reference here to odd order extension.

53



Common and Unusual Finite Elements

4.6 The Hermite Element

4.6.1 Definition

The Hermite element [Cia02] generalizes the classic cubic Hermite interpolating
polynomials on the line segment. On the triangle, the space of cubic polynomials
is ten-dimensional, and the ten degrees of freedom are point evaluation at the
triangle vertices and barycenter, together with the components of the gradient
evaluated at the vertices. The generalization to tetrahedra is analagous.

Figure 4.5: The cubic Hermite triangle.

Unlike the cubic Hermite functions on a line segment, the cubic Hermite tri-
angle and tetrahedron cannot be patched together in a fully C1 fashion.

4.6.2 Historical notes

Hermite-type elements appear in the finite element literature almost from the
beginning, appearing at least as early as the classic paper of Ciarlet and Raviart [CR72].
They have long been known as usefulC1-nonconforming elements [Bra07, Cia02].
Under affinemapping, the Hermite elements form affine-interpolation equivalent

families. [BS08].
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4.7 The Lagrange Element

4.7.1 Definition

The best-known and most widely used finite element is the Lagrange P1 element.
In general, the Lagrange element uses PK = Pq(K), polynomials of degree q onK,
and the degrees of freedom are simply pointwise evaluation at an array of points.
While numerical conditioning and interpolation properties can be dramatically
improved by choosing these points in a clever way [?], for the purposes of this
chapter the points may be assumed to lie on an equispaced lattice.

◮ Author note: Missing reference for statement about node placement.

Figure 4.6: The linear Lagrange interval, triangle and tetrahedron.

Figure 4.7: The quadratic Lagrange interval, triangle and tetrahedron.
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Figure 4.8: The Lagrange Pq triangle for q = 1, 2, 3, 4, 5, 6.

4.7.2 Historical notes

Reams could be filled with all the uses of the Lagrange elements. The Lagrange
element predates the modern study of finite elements. The lowest-order triangle
is sometimes called the Courant triangle, after the seminal paper [Cou43] in
which variational techniques are considered and the P1 triangle is used to derive
a finite difference method. The rest is history.
◮ Author note: Expand the historical notes for the Lagrange element. As far as I can see,

Bramble and Zlamal don’t seem to be aware of the higher order Lagrange elements (only

the Courant triangle). Their paper from 1970 focuses only on Hermite interpolation.
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4.8 The Morley Element

4.8.1 Definition

The Morley triangle [Mor68] is a simple H2-nonconforming quadratic element
that is used in fourth-order problems. The function space is simply PK = P2(K),
the six-dimensional space of quadratics. The degrees of freedom consist of point-
wise evaluation at each vertex and the normal derivative at each edge midpoint.
It is interesting that the Morley triangle is neither C1 nor even C0, yet it is
suitable for fourth-order problems, and is the simplest known element for this
purpose.

Figure 4.9: The quadratic Morley triangle.

4.8.2 Historical notes

The Morley element was first introduced to the engineering literature by Morley
in 1968 [Mor68]. In the mathematical literature, Lascaux and Lesaint [LL75]
considered it in the context of the patch test in a study of plate-bending elements.
◮ Author note: Fill up page.
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4.9 The Nédélec Element

4.9.1 Definition

The widely celebrated H(curl)-conforming elements of Nédélec [Néd80, Néd86]
are much used in electromagnetic calculations and stand as a premier example of
the power of “nonstandard” (meaning not lowest-order Lagrange) finite elements.

2 6

Figure 4.10: The linear, quadratic and cubic Nédélec triangles.

On triangles, the function space PK may be obtained by a simple rotation
of the Raviart–Thomas basis functions, but the construction of the tetrahedral
element is substantially different. In the lowest order case q = 1, the space PK

may be written as functions of the form

v(x) = α + β × x,

where α and β are vectors in R
3. Hence, PK contains all vector-valued constant

functions and some but not all linears. In the higher order case, the function
space may be written as the direct sum

PK = [Pq−1(K)]3 ⊕ Sq,

where
Sq = {v ∈ [P̃q(K)]3 : v · x = 0}.

Here, P̃q(K) is the space of homogeneous polynomials of degree q on K. An alter-
nate characterization of PK is that it is the space of polynomials of degree q + 1
on which the qth power of the elastic stress tensor vanishes. The dimension of Pq

is exactly

nK =
q(q + 2)(q + 3)

2
.

◮ Author note: What is the qth power of the elastic stress tensor?
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Simplex H(div) H(curl)

K ⊂ R
2

RTq−1 P−
q Λ1(K)

BDMq PqΛ
1(K)

NEDq−1(curl) —

K ⊂ R
3

RTq−1 = NED1
q−1(div) P−

q Λ2(K)

BDMq = NED2
q(div) PqΛ

2(K)

NED1
q−1(curl) P−

q Λ1(K)

NED2
q(curl) PqΛ

1(K)

Table 4.1: Nedelec elements of the first and second kind and their relation to the
Raviart–Thomas and Brezzi–Douglas–Marini elements as well as to the notation
of finite element exterior calculus.

◮ Author note: What is the dimension on triangles?

The degrees of freedom are chosen to ensure tangential continuity between
elements and thus a well-defined global curl. In the lowest order case, the six
degrees of freedom are the average value of the tangential component along each
edge of the tetrahedron, hence the term “edge elements”. In the more general
case, the degrees of freedom are the q − 1 tangential moments along each edge,
moments of the tangential components against (Pq−2)

2 on each face, and mo-
ments against (Pq−3)

3 in the interior of the tetrahedron.
For tetrahedra, there also exists another family of elements known as Nedelec

elements of the second kind, appearing in [Néd86]. These have a simpler func-
tion space at the expense of more complicated degrees of freedom. The second
kind space of order q is simply vectors of polynomials of degree q. The degrees of
freedom are integral moments of degree q along each edge together with integral
moments against lower-order first-kind bases on the faces and interior.
◮ Author note: Note different numbering compared to RT, starting at 1, not zero.

4.9.2 Historical notes

Nédélec’s original paper [Néd80] provided rectangular and simplicial elements
for H(div) and H(curl) based on incomplete function spaces. This built on ear-
lier two-dimensional work for Maxwell’s equations [AGSNR80] and extended
the work of Raviart and Thomas for H(div) to three dimensions. The second
kind elements, appearing in [Néd86], extend the Brezzi–Douglas–Marini trian-
gle [BDM85b] to three dimensions and curl-conforming spaces. We summarize
the relation between the Nedelec elements of first and second kind with the
Raviart–Thomas and Brezzi–Douglas–Marini elements in Table 4.1.

In many ways, Nédélec’s work anticipates the recently introduced finite ele-
ment exterior calculus [AFW06a], where the first kind spaces appear as P−

q Λk

spaces and the second kind as PqΛ
k. Moreover, the use of a differential operator
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(the elastic strain) in [Néd80] to characterize the function space foreshadows the
use of differential complexes [AFW06b].
◮ Author note: Should we change the numbering of the Nedelec elements and Raviart–

Thomas elements to start at q = 1?
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4.10 The PEERS Element

4.10.1 Definition

The PEERS element [ABD84] provides a stable tensor space for discretizing
stress in two-dimensional mixed elasticity problems. The stress tensor σ is rep-
resented as a 2× 2 matrix, each row of which is discretized with a vector-valued
finite element. Normally, one expects the stress tensor to be symmetric, although
the PEERS element works with a variational formulation that enforces this con-
dition weakly.

The PEERS element is based on the Raviart–Thomas element described in
Section 4.11. If RT0(K) is the lowest-order Raviart-Thomas function space on
a triangle K and bK is the cubic bubble function that vanishes on ∂K, then the
function space for the PEERS element is given by

PK = [RT0(K)⊕ span{curl(bK)}]2 .

?

Figure 4.11: The PEERS triangle. One vector-valued component is shown.

◮ Author note: Which degrees of freedom in the interior? The curl?

◮ Author note: Is this really an element? We could also introduce other mixed elements

like Taylor–Hood. But perhaps it’s suitable to include it since it is not a trivial combina-

tion of existing elements (the extra curl part).

4.10.2 Historical notes

Discretizing the mixed form of planar elasticity is quite a difficult task. Polyno-
mial spaces of symmetric tensors providing inf-sup stability are quite rare, only
appearing in the last decade [AW02]. A common technique is to relax the sym-
metry requirement of the tensor, imposing it weakly in a variational formulation.
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This extended variational form requires the introduction of a new field discretiz-
ing the assymetric portion of the stress tensor. When the PEERS element is used
for the stress, the displacement is discretized in the space of piecewise constants,
and the asymmetric part is discretized in the standard space of continuous piece-
wise linear elements.

The PEERS element was introduced in [ABD84], and some practical details,
including postprocessing and hybridization strategies, are discussed in [AB85].
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4.11 The Raviart–Thomas Element

4.11.1 Definition

The Raviart–Thomas element, like the Brezzi–Douglas–Marini and Brezzi–Douglas–
Fortin–Marini elements, is an H(div)-conforming element. The space of order q
is constructed to be the smallest polynomial space such that the divergence maps
RTq(K) onto Pq(K). The function space PK is given by

PK = Pq−1(K) + xPq−1(K).

The lowest order Raviart–Thomas space thus consists of vector-valued functions
of the form

v(x) = α+ βx,

where α is a vector-valued constant and β is a scalar constant.
On triangles, the degrees of freedom are the moments of the normal compo-

nent up to degree q, or, alternatively, the normal component at q + 1 points per
edge. For higher order spaces, these degrees of freedom are supplemented with
integrals against a basis for [Pq−1(K)]2.

2 6

Figure 4.12: The zeroth order, linear and quadratic Raviart–Thomas triangles.

4.11.2 Historical notes

The Raviart–Thomas element was introduced in [RT77] in the late 1970’s, the
first element to discretize the mixed form of second order elliptic equations.
Shortly thereafter, it was extended to tetrahedra and boxes by Nédélec [Néd80]
and so is sometimes referred to as the Raviart–Thomas–Nédélec element or a
first kind H(div) element.

On rectangles and boxes, there is a natural relation between the lowest order
Raviart–Thomas element and cell-centered finite differences. This was explored
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in [RW83], where a special quadrature rule was used to diagonalize the mass
matrix and eliminate the flux unknowns. Similar techniques are known for tri-
angles [ADK+98], although the stencils are more complicated.
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4.12 Summary

Notation Element family LK dimPK References

ARG5 Quintic Argyris 21

BDM1 Brezzi–Douglas–Marini 6

BDM2 Brezzi–Douglas–Marini 3 12

BDM3 Brezzi–Douglas–Marini
8

20

CR1 Crouzeix–Raviart 3

HERMq Hermite 10
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P1 Lagrange 3

P2 Lagrange 6

P3 Lagrange 10

MOR1 Morley 6

NED1 Nédélec 3

NED2 Nédélec

2

8

NED3 Nédélec

6

15
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PEERS PEERS
?

?

RT0 Raviart–Thomas 3

RT0 Raviart–Thomas 2 8

RT0 Raviart–Thomas 6 15
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◮ Author note: Add references to table.

◮ Author note: Indicate which elements are supported by FIAT and SyFi.

◮ Author note: Include formula for space dimension as function of q for all elements.
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CHAPTER 5

Constructing General Reference Finite Elements

By Robert C. Kirby and Kent-Andre Mardal

Chapter ref: [kirby-1]

◮ Editor note: Reuse color figures from chapter [kirby-7] for RT elements etc.

5.1 Introduction

The finite element literature contains a huge collection of approximating spaces
and degrees of freedom, many of which are surveyed in Chapter ??, Some appli-
cations, such as Cahn-Hilliard and other fourth-order problems, can benefit from
very smooth finite element bases. While porous media flow requires vector fields
discretized by piecewise polynomial functions with normal components contin-
uous across cell boundaries. Many problems in electromagnetism call for the
tangentially continuous vector fields obtained by using Nedelec elements [?, ?].
Many elements are carefully designed to satisfy the inf-sup condition [?, ?], origi-
nally developed to explain stability of discretizations of incompressible flow prob-
lems. Additionally, some problems call for low-order discretizations, while others
are effectively solved with high-order polynomials.

While the automatic generation of computer programs for finite elementmeth-
ods requires one to confront the panoply of finite element families found in the
literature, it also provides a pathway for wider employment of Raviart-Thomas,
Nedelec, and other difficult-to-program elements. Ideally, one would like to de-
scribe the diverse finite element spaces at an abstract level, whence a computer
code discerns how to evaluate and differentiate their basis functions. Such goals
are in large part accomplished by the FIAT and SyFi projects, whose implemen-
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tations are described in later chapters.

Projects like FIAT and SyFi may ultimately remain mysterious to the end
user of a finite element system, as interactions with finite element bases are
typically mediated through tools that construct the global finite element opera-
tors. The end user will typically be satisfied if two conditiones are met. First, a
finite element system should support the common elements used in the applica-
tion area of interest. Second, it should provide flexibility with respect to order of
approximation.

It is entirely possible to satisfy many users by a priori enumerating a list
of finite elements and implement only those. At certain times, this would even
seem ideal. For example, after the rash of research that led to elements such as
the Raviart-Thomas-Nedelec and Brezzi-Douglas-Marini families, development
of new families slowed considerably. Then, more recent work of lead forth by
Arnold, Falk, and Winther in the context of exterior calculus has not only led
to improved understanding of existing element families, but has also brought a
new wave of elements with improved proprerties. A generative system for finite
element bases can far more readily assimilate these and future developments.
Automation also provides generality with respect to the order of approximation
that standard libraries might not otherwise provide. Finally, the end-user might
even easilly define his own new element and test its numerical properties before
analyzing it mathematically.

In the present chapter, we describe the mathematical formulation underlying
such projects as FIAT [?, ?], SyFi [?, AM09] and Exterior [?]. This formulation
starts from definitions of finite elements as given classically by Ciarlet [?]. It
then uses basic linear algebra to construct the appropriate nodal basis for an
abstract finite element in terms of polynomials that are easy to implement and
well-behaved in floating point arithmetic. We focus on constructing nodal bases
for a single, fixed reference element. As we will see in Chapter ??, form compil-
ers such as ffc [Log07] and sfc [?] will work in terms of this single reference
element.

Other approaches exist in the literature, such as the hierarchical bases stud-
ied by Szabo and Babuska [?] and extended to H(curl) and H(div) spaces in work
such as [?]. These can provide greater flexibility for refining the mesh and poly-
nomial degree in finite element methods, but they also require more care during
assembly and are typically constructed on a case-by-case basis for each element
family. When they are available, they may be cheaper to construct than using
the technique studied here, but this present technique is easier to apply to an
“arbitrary” finite element and so is considered in the context of automatic soft-
ware.
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5.2 Preliminaries

Both FIAT and SyFi work a slightly modified version of the abstract definition of
a finite element introduced by Ciarlet [?].

Definition 5.1 (A Finite Element). A finite element is a triple (K,P,N) with

1. K ⊂ R
d a bounded domain with piecewise smooth boundary.

2. A finite-dimensional space P of BCm(K, V ), where V is some normed vector

space and BCm is the space of m-times bounded and continuosly differen-

tiable functions from K into V .

3. A dual basis for P , writtenN = {Li}dimP
i=1 . These are bounded linear function-

als in (BCm(K, V ))′ and frequently called the nodes or degrees of freedom.

In this definition, the term “finite element” refers not only to a particular
cell in a mesh, but also to the associated function space and degrees of freedom.
Typically, the domain K is some simple polygonal or polyhedral shape and the
function space P consists of polynomials.

Given a finite element, a concrete basis, often called the nodal basis, for this
element can be computed by using the following defintion.

Definition 5.2. The nodal basis for a finite element (K,P,N) be a finite element

is the set of functions {ψi}dimP
i=1 such that for all 1 ≤ i, j ≤ dimP ,

Li(ψj) = δi,j. (5.1)

The main issue at hand in this chapter is the construction of this nodal ba-
sis. For any given finite element, one may construct the nodal basis explicitly
with elementary algebra. However, this becomes tedious as we consider many
different familes of elements and want arbitrary order instances of each family.
Hence, we present a linear algebraic paradigm here that undergirds computer
programs for automating the construction of nodal bases.

In addition to the construction of the nodal base we need to keep in mind
that finite elements are patched together to form a piecewise polynomial field
over a mesh. The fitness (or stability) of a particular finite element method for
a particular problem relies on the continuity requirements of the problem. The
degrees of freedom of a particular element are often choosen such that these
continuity requirements are fulfilled.

Hence, in addition to computing the nodal basis, the mathematical structure
developed here simplifies software for the following tasks:

1. Evaluate the basis function and their derivatives at points.

2. Associtate the basis function (or degree of freedom) with topological facets
of K such as its vertices, edges and its placement on the edges.
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3. Associtate the basis function with additional metadata such as a sign or
a mapping that should be used together with the evaluation of the basis
functions or its derivatives.

4. Provide rules for the degrees of freedom applied to arbitrary input functions
determined at run-time.

The first of these is relatively simple in the framework of symbolic compu-
tation (SyFi), but they require more care if an implementation uses numerical
arithmetic (FIAT). The middle two encode the necessary information for a client
code to transform the reference element and assemble global degrees of freedom
when the finite element is either less or more than C0 continuous. The final task
may take the form of a point at which data is evaluated or differentiated or more
generally as the form of a sum over points and weights, much like a quadrature
rule.

A common practice, employed throuought the FEniCS software and in many
other finite element codes, is to map the nodal basis functions from this refer-
ence element to each cell in a mesh. Sometimes, this is as simple as an affine
change of coordinates; in other cases it is more complicated. For completeness,
we briefly describe the basics of creating the global finite elements in terms of a
mapped reference element. Let therefore T be a polygon and T̂ the correspond-
ing reference polygon. Between the coordinates x ∈ T and xi ∈ T̂ we use the
mapping

x = G(xi) + x0, (5.2)

and define the Jacobian determinant of this mapping as

J(x) =

∣∣∣∣
∂G(xi)

∂xi

∣∣∣∣ . (5.3)

The basis functions are defined in terms of the basis function on the reference
element as

Nj(x) = N̂j(xi), (5.4)

where N̂j is basis function number j on the reference element. The integral can
then be performed on the reference polygon,

∫

T

f(x) dx =

∫

T̂

f(xi) Jdxi, (5.5)

and the spatial derivatives are defined by the derivatives on the reference ele-
ment and the geometry mapping simply by using the chain rule,

∂N

∂xi
=
∂N

∂ξj

∂ξj
∂xi

. (5.6)
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The above definition of a global element is commonly called isoparametric and
is common for approximations in H1. For approximations in H(div) or H(curl) it
is neccessary to modify (5.4) with the Piola mapping. Furthermore, some ele-
ments like the Rannacher-Turek element [?, ?] has far better properties when
defined globally compared its analogous definition in terms of a reference ele-
ment.

5.3 Mathematical Framework

5.3.1 Change of basis

◮ Editor note: Coordinate with notation in Chapter 3 where B is used for the Vander-

monde matrix. Perhaps we could use V? Also use ℓ for the functionals and α for the

expansion coefficients.

The fundamental idea in constructing nodal basis is from elementary linear
algebra: one constructs the desired (nodal) basis as a linear combination of a
basis one has “in hand”. We will start with some basis {φ}dim P

i=1 ⊂ P . From this,
we construct each nodal basis function

ψj = Ajkφk, (5.7)

where summation is implied over the repeated index k. The task is to compute
the matrix A. Each fixed ψj must satisfy

Li(ψj) = δi,j, (5.8)

and using the above expansion for ψj, we obtain

δi,j = Li(Ajkφk) = AjkLi(φk). (5.9)

So, for a fixed j, we have a system of dimP equations

VikAjk = ej , (5.10)

where
Vik = Li(φk) (5.11)

is a kind of generalized Vandermonde matrix and ej is the canonical basis vector.
Of course, (5.10) can be used to write a matrix equation for A as a linear system
with dimP right hand sides and obtain

V At = I. (5.12)

In practice, this, supposes that one has an implementation of the original basis
for which the actions of the nodes (evaluation, differentiation, and integration)
may be readily computed.

This discussion may be summarized as a proposition.

Proposition 5.3.1. Define V and A as above. Then

V = A−t. (5.13)
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5.3.2 Polynomial spaces

In Definition 5.1 we defined the finite element in terms of a finite dimensional
function space P . Although it is not strictly neccessary, the functions used in
finite elements are typically polynomials. While our general strategy will in
principle accomodate non-polynomial bases, we only deal with polynomials in
this chapter. A common space is P

d
n, the space of polynomials of degree n in R

d.
There are many different ways to represent P

d
n. We will discuss the power ba-

sis, orthogonal bases, and the Bernstein basis. Each of these bases has explicit
representations and well-known evaluation algorithms. In addition to P

d
n we will

also for some elements need H
d
n, the space of homogenous polynomials of degree

n in d variables.
Typically, the developed techniques here are used on simplices, where poly-

nomials do not have a nice tensor-product structure. Some rectangular ele-
ments like the Brezzi-Douglas-Marini family [], however, are not based on tensor-
product polynomial spaces, and the techniques described in this chapther apply
in that case as well. SyFi has explicit support for rectangular domains, but FIAT
does not.

Power basis

On a line segment, P
1
n = Pn the monomial, or power basis is {xi}ni=0, so that any

v ∈ Pn is written as

v = a0 + a1x+ . . . anx
n =

n∑

i=0

aix
i. (5.14)

In 2D on triangles, Pn is spanned by functions on the form {xiyj}i+j≤n
i,j=0 , with a

similar definition in three dimensions.
This basis is quite easy to evaluate, differentiate, and integrate but is very

ill-conditioned in numerical calculations.

Legendre basis

A popular polynomial basis for polygons that are either intervals, rectangles or
boxes are the Legendre polynomials. This polynomial basis is also usable to
represent polynomials of high degree. The basis is defined on the interval [−1, 1],
as

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1), k = 0, 1, . . . ,

A nice feature with these polynomials is that they are orthogonal with respect to
the L2 inner product, i.e.,

∫ 1

−1

Lk(x)Ll(x) dx =

{
2

2k+1
, k = l,

0, k 6= l,
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The Legendre polynomials are extended to rectangular domains in 2D and 3D
simply by taking the tensor product,

Lk,l,m(x, y, z) = Lk(x)Ll(y)Lm(z).

and P
n is defined by functions on the form (in 3D),

v =

k,l,m<=n∑

k,l,m=0

ak,l,mLk,l,m.

Dubiner basis

Orthogonal polynomials in simplicial domains are also known, although they
lack some of the rotational symmetry of the Legendre polynomials. The Dubiner
basis, frequently used in simplicial spectral elements [], is known under many
names in the literature. It is an L2-orthogonal basis that can be constructed
by mapping particular tensor products of Jacobi polynomials on a square by a
singular coordinate change to a fixed triangle. Let P α,β

n denote the nth Jacobi
polynomial with weights α, β. Then, define the new coordinates

η1 = 2

(
1 + x

1− y

)
− 1

η2 = y,

(5.15)

whichmap the square [−1, 1]2 to the triangle with vertices (−1,−1), (−1, 1), (1,−1)
as shown in Figure ??. This is the natural domain for defining the Dubiner poly-
nomials, but they may easily be mapped to other domains like the the triangle
with vertices (0, 0), (0, 1), (1, 0) by an affine mapping. Then, one defines

φp,q(x, y) = P 0,0
p (η1)

(
1− η2

2

)p

P 2p+1,0
q (η2). (5.16)

Though it is not obvious from the definition, φp,q(x, y) is a polynomial in x and y
of degree p+ q. Moreover, for (p, q) 6= (i, j), φp,q is L2-orthogonal to φi,j.

While this basis is more complicated than the power basis, it is very well-
conditioned for numerical calculations even with high degree polynomials. The
polynomials can also be ordered hierarchically so that {φi}dimPk

i=1 forms a basis for
polynomials of degree k for each k > 0. As a possible disadvantage, the basis
lacks rotational symmetry that can be found in other bases.

Bernstein basis

The Bernstein basis is another well-conditioned basis that can be used in gener-
ating finite element bases. In 1D, the basis functions take the form,

Bi,n =

(
i

n

)
xi(1− x)n−i, i = 0, . . . , n,
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and then Pn is spanned by {Bi,n}ni=0 And with this basis, Pn can be spanned by
functions on the form,

The terms x and 1 − x appearing in Bi,n are the barycentric coordinates for
[0, 1], an observation that makes it easy to extend the basis to simplices in higher
dimensions.

Let b1, b2, and b3 be the barycentric coordinates for the triangle shown in
Figure ??, i.e., b1 = x, b2 = y, and b3 = 1− x− y. Then the basis is of the form,

Bi,j,k,n =
n!

i!j!k!
bi1b

j
2b

k
3 , for i+ j + k = n.

and a basis for Pn is simply.
{Bi,j,k,n}i+j+k=n

i,j,k≥0 .

The Bernstein polynomials on the tetrahedron are completely analogous [?].
These polynomials, though less common in the finite element community, are

well-known in graphics and splines. They have a great deal of rotational symme-
try and are totally nonnegative and so give positive mass matrices, though they
are not hierarchical.

Homogeneous Polynomials

Another set of polynomials which sometimes are useful are the set of homoge-
neous polynomials H

n. These are polynomials where all terms have the same
degree. H

n is in 2D spanned by polynomials on the form:

v =
∑

i,j, i+j=n

ai,j,kx
iyj

with a similar definition in nD.

Vector or Tensor valued Polynomials

It is straightforward to generalize the scalar valued polynomials discussed ear-
lier to vector or tensor valued polynomials. Let {ei} be canonical basis in R

d.
Then a basis for the vector valued polynomials is

Pij = Pjei,

with a similar definition extending the basis to tensors.

5.4 Examples of Elements

We include some standard finite elements to illustrate the concepts and motivate
the need for different finite elements. Notice that the different continuity of the
elements result in different approximation properties. We refer the reader to
Chapter [] for a more thorough review of elements.
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Figure 5.1: Lagrangian elements of order 1, 2, and 3.

Figure 5.2: Hermite elements of order 3.

Example 5.1. The Lagrange Element

The Lagrangian element shown in Figure 5.1 is the most common element,

where the black dots mean point evaluation. The first order element is shown in

the leftmost triangle, it consists of three degrees of freedom in each of the vertices.

The cooresponding basis functions are x, y, and 1−x−y. The second order element

is shown in middle triangle, it has six degrees of freedom, three at the vertices

and three at the edges. Finally, we have the third order Lagrangian element in

the rightmost triangle, with ten degrees of freedom.

The Lagrangian element produce piecewise continuous polynomials and they

are therefore well suited for approximation in H1. In general the number of

degress of freedom Pn in 2D is (n + 2)(n + 1)/2, which is the same as the num-

ber of degrees of freedom in the Lagrange element. In fact, on a simplex in any

dimension d the degrees of freedom of the Lagrange element of order n is the same

as P
d
n.

Example 5.2. The Hermite Element

In Figure 5.2 we show the Hermite element. The black dots mean point eval-

uation, while the white circles mean evaluation of derivatives in both x and y
direction. Hence, the degrees of freedom for this element is three point evaluations

at the vertices + six derivatives in the vertices + one internal point evaluation,

which in total is ten degrees of freedom, which is the same number of degrees of
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2 6

Figure 5.3: Triangular Raviart–Thomas elements of order 0, 1, and 2.

freedom as in P
2
3. The advantage of the Hermite element is that it has contin-

uous derivatives at the vertices (it will however not neccessarily result in a H2

conforming approximation).

Example 5.3. The Raviart-Thomas Element

In Figure 5.3 we illustrate the Raviart-Thomas element. In contrast to the

previous elements, this element has a vector-valued function space. The arrows

represent normal vectors while the double dots indicate pointwise evaluation in

both the x− and y− direction. Starting at n = 0, the dimension of RTn is (n +
1)(n + 3). The Raviart-Thomas element is typically used for approximations in

H(div).

Remark 5.4.1. Earlier we saw common bases for P
n
d , but elements like the Raviart-

Thomas element described above use function spaces other than P
n
d or vectors or

tensors thereof. To fix this, we must either construct a basis for the appropriate

polynomial space or work with a different element that includes full vectors of

P
n
d . In the case of H(div) elements, this corresponds to using the Brezzi-Douglas-

Fortin-Marini elements.

5.4.1 Bases for other polynomial spaces

The basis presented above are suitable for constructing many finite elements,
but as we have just seen, they do not work in all cases. The Raviart-Thomas
function space,

(
P

2
n

)2 ⊕
(
x
y

)
H

2
n,

requires a basis for vectors of polynomials to be supplemented with an extra
dim H

2
n = dim P

2
n − dim P

2
n−1 = n functions. In fact, any n polynomials in P

2
n\P2

n−1

will work, not just homogeneous polynomials, although the sum above will no
longer be direct.
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While the Raviart-Thomas element requires supplementing a standard basis
with extra functions, the Brezzi-Douglas-Fortin-Marini triangle uses the func-
tion space {

u ∈ (P2
n(K))2 : u · n ∈ P

1
n−1(γ), γ ∈ E(K)

}
.

Obtaining a basis for this space is somewhat more subtle. FIAT and SyFi have
developed different but mathematically equivalent solutions. Both rely on recog-
nizing that the required function space sits inside (P2

n)
2
and can be characterized

by certain functionals that vanish on this larger space.
Three such functionals describe the basis for the BDFM triangle. If µγ

n is the
Legendre polynomial of order n on an edge γ, then the functional

ℓγ(u) =

∫

γ

(u · n)µγ
n

acting on (P2
n)

2
must vanish on the BDFM space, for the nth degree Legendre

polynomial is orthogonal to all polynomials of lower degree.
Now, we define the matrix

V =

(
V 1

V 2

)
. (5.17)

Here, V 1 ∈ R
2 dim P

2
n−3,2 dim P

2
n and V 2 ∈ R

3,2 dim P
2
n are defined by

V 1
ij = Li(φj),

V 2
ij = ℓi(φj),

where {φj}2 dim P
2
n

j=1 is a basis for (P2
n)2.

Consider now the matrix equation

V At = I2 dimPn,2 dimPn−3, (5.18)

where Im,n denotes the m × n identity matrix with Ii,j = δi,j. As before, the
columns of A still contain the expansion coefficients of the nodal basis functions
ψi in terms of {φj}. Moreover, V2A = 0, which imples that the nodal basis func-
tions are in fact in the BDFM space.

More generally, we can think of our finite element space P being embedded
in some larger space P̄ for which there is a readily usable basis. If we may
characterize P by

P = ∩dim P̄−dim P
i=1 ℓi,

where ℓi : P̄ → R are linear functionals, then we may apply this technique.
In this case, V1 ∈ R

dimP,dim P̄ and V2 ∈ R
dim P̄−dimP,dim P̄ . This scenario, though

somewhat abstract, is applicable not only to BDFM, but also to the Nédélec [?],
Arnold-Winther [AW02], Mardal-Tai-Winther [?], Tai-Winther [?], and Bell [] el-
ement families.

Again, we summarize the discussion as a proposition.
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Proposition 5.4.1. Let (K,P,N) be a finite element with P ⊂ P̄ . Let {φi}dim P̄
i=1 be

a basis for P̄ . Suppose that there exist functionals {ℓi}dim P̄−dimP
i=1 on P̄ such that

P = ∩dim P̄−dimP
i=1 null(ℓi).

Define the matrix A as in (5.18). Then, the nodal basis for P may be expressed as

ψi = Aijφj,

where 1 ≤ i ≤ dimP and 1 ≤ j ≤ dim P̄ .

5.5 Operations on the Polynomial spaces

Here, we show various important operations may be cast in terms of linear alge-
bra, supposing that they may be done on original basis {φi}dimP

i=1 .

5.5.1 Evaluation

In order to evaluate the nodal basis {ψi}dimP
i=1 at a given point x ∈ K, one simply

computes the vector
Φi = φi(x)

followed by the product
ψi(x) ≡ Ψi = AijΦj .

Generally, the nodal basis functions are required at an array of points {xj}mj=1 ⊂
K. For performance reasons, performing matrix-matrix products may be advan-
tageous. So, define Φij = Φi(xj) and Ψij = Ψi(xj). Then all of the nodal basis
functions may be evaluated by the product

Ψij = AikΦkj .

5.5.2 Differentiation

Differentiation is more complicated, and also presents more options. We want
to handle the possibility of higher order derivatives. Let α = (α1, α2, . . . αd) be a
multiindex so that

Dα ≡ ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

,

where |α| =
∑d

i=1 αi.
We want to compute the array

Ψα
i = Dαψi(x)

for some x ∈ K.

80



Robert C. Kirby and Kent-Andre Mardal

One may differentiate the original basis functions {φi} to produce an array

Φα
i = Dαψi(x),

whence
Ψα

i = AijΦ
α
i .

This presupposes that one may conveniently compute all derivatives of the {φi}.
This is typically true in symbolic computation or when using the power basis. Al-
ternatively, automatic differentiation [] could be used in the power or Bernstein
basis. The Dubiner basis, as typically formulated, contains a coordinate singu-
larity that prevents automatic differentiation from working at the top vertex.
Recent work [] has reformulated recurrence relations to allow for this possibility.

If one prefers (or is required by the particular starting basis), one may also
compute matrices that encode first derivatives acting on the {φi} and construct
higher derivatives than these. For each coordinate direction xk, a matrix Dk is
constructed so that

∂φi

∂xi
= Dk

ijφj.

How to do this depends on which bases are chosen. For particular details on the
Dubiner basis, see []. Then, Ψα may be computed by

Ψα
i = (DαA)ijΦj ,

5.5.3 Integration

Integration of basis functions overK, including products of basis functions and/or
their derivatives, may be performed numerically, symbolically, or exactly with
some known formula. An important aspect of automation is that it allows gen-
eral orders of approximation. While this is not difficult in symbolic calculations,
a numerical implementation like FIAT must work harder. If Bernstein polyno-
mials are used, we may use the formula

∫

K

bi1b
j
2b

k
3 dx =

i!j!k!

(i+ j + k + 2)!

|K|
2

on triangles and a similar formula for lines and tetrahedra to calculate integrals
of things expressed in terms of these polynomials exactly. Alternately, if the
Dubiner basis is used, orthogonality may be used. In either case, when deriva-
tives occur, it may be as efficient to use numerical quadrature. On rectangular
domains, tensor products of Gauss or Gauss-Lobatto quadrature can be used to
give efficient quadrature families to any order accuracy. On the simplex, how-
ever, optimal quadrature is more difficult to find. Rules based on barycentric
symmetry [] may be used up to a certain degree (which is frequently high enough
in practice). If one needs to go beyond these rules, it is possible to use the map-
ping (5.15) to map tensor products of Gauss-Jacobi quadrature rules from the
square to the triangle.
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5.5.4 Linear functionals

Integration, pointwise evaluation and differentiation all are examples of linear
functionals. In each case, the functionals are evaluated by their action on the
{φi}
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CHAPTER 6

Finite Element Variational Forms

By Robert C. Kirby and Anders Logg

Chapter ref: [kirby-5]

Summarize notation for variational forms. Introduce global tensor A and ele-
ment tensor AK .
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CHAPTER 7

Finite Element Assembly

By Anders Logg

Chapter ref: [logg-3]

Overview of general assembly algorithm.
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CHAPTER 8

Quadrature Representation of Finite Element

Variational Forms

By Kristian B. Ølgaard and Garth N. Wells

Chapter ref: [oelgaard-2]

Summarise work on optimizing quadrature representation using automated
code generation and address automated selection of best representation.
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CHAPTER 9

Tensor Representation of Finite Element Variational

Forms

By Anders Logg and possibly others

Chapter ref: [logg-4]

Overview of tensor representation.
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CHAPTER 10

Discrete Optimization of Finite Element Matrix

Evaluation

By Robert C. Kirby, Matthew G. Knepley, Anders Logg, L. Ridgway Scott and Andy R.

Terrel

Chapter ref: [kirby-4]

The tensor constraction structure obtained in the representation results for
variational forms enables not only the construction of a compiler for variational
forms, but an optimizing compiler. For typical variational forms, the reference
element tensor has significant structure that allows it to be contracted for an
arbitrary element tensor in a reduced amount of arithmetic. Reducing the num-
ber of operations based on this structure leads naturally to several problems in
discrete mathematics. This chapter introduces the idea of complexity-reducing
relations and discusses compile-time graph and hypergraph optimization prob-
lems that form the core of the FErari project.
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CHAPTER 11

Parallel Adaptive Mesh Refinement

By Johan Hoffman, Johan Jansson and Niclas Jansson

Chapter ref: [hoffman-4]

For many interesting problems one is often interested in rather localized fea-
tures of a solution, for example separation or transition to turbulence in flow
problems. It is often the case that it is to expensive to uniformly refine a mesh
to such an extent that these features develops. The solution is to only refine the
mesh in the regions of most interest, or for example where the error is large.

This chapter is based on the work in [?]. First a brief summary of the theory
behind mesh refinement is given, followed by a discussion of the issues with
parallel refinement together with our proposed solution. The chapter ends with a
presentation of our implementation of a fully distributed parallel adaptive mesh
refinement framework on a Blue Gene/L.

11.1 A brief overview of parallel computing

In this chapter, parallel computing refers to distributed memory systems with
message passing. It is assumed that the system is formed by linking compute
nodes together with some interconnect, in order to form a virtual computer (or
cluster) with a large amount of memory and processors.

It is also assumed that the data, the mesh in this case is distributed across
the available processors. Shared entities are duplicated or “ghosted” on adjacent
processors. In order to fully represent the original mesh from the smaller dis-
tributed sub meshes, it is essential that the information for the shared entities
are the same for all processors.
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11.2 Local mesh refinement

Local mesh refinement has been studied by several authors over the past years.
The general idea is to split an element into a set of new ones, with the constraint
that the produced mesh must be valid. Usually a mesh is valid if there are no
“hanging nodes”, that is no node should be on another element’s facet. How to
split the element in order to ensure this differs between different methods. One
common theme is edge bisection.

A common edge bisection algorithm bisects all edges in the element, intro-
ducing a new vertex on each edge, and connecting them together to form the new
elements (see for example [?]). Other methods bisect only one of the edges, which
edge depends on the method. For example one could select the edge which where
most recently refined, this method is often referred to as the newest vertex ap-
proach and where described in [?]. Another popular edge bisection method is the
longest edge [?], where one always select the longest edge for refinement. In or-
der to ensure that the mesh is free of “hanging nodes”, the algorithm recursively
bisects elements until there are no “hanging nodes” left.

11.2.1 The challenge of parallel mesh refinement

Performing the refinement in parallel adds additional constraints on the refine-
ment method. Not only should the method prevent “hanging nodes”, it must also
be guaranteed to terminate in a finite number of steps.

In the parallel case, each processor owns a small part of the distributed mesh.
So if a new vertex is introduced on the boundary between two processors, the
algorithm must ensure that the information propagates to all neighboring pro-
cessors.

For an algorithm that bisects all edges in an element, the problem reduces to a
global decision problem, deciding which of the processors information that should
be used on all the other processors. But for an algorithm that propagates the
refinement like the longest edge, the problem becomes a synchronization problem
i) to detect and handle refinement propagation between different processors and
ii) to detect global termination.

The first problem could easily be solved by dividing the refinement into two
different phases, one local refinement phase and one propagation phase. In the
first phase elements on the processor are refined with an ordinary serial refine-
ment method. This could create non conforming elements on the boundary be-
tween processors. These are fixed by propagating the refinement to the neigh-
boring processor. This is done in the second propagation phase. But since the
next local refinement phase could create an invalid mesh, one could get another
propagation phase and the possibility of another and so forth. However, if the
longest edge algorithm is used, termination is guaranteed [?]. But the problem
is to detect when all these local meshes are conforming, and also when they are
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conforming at the same time, that means one has to detect global termination,
which is a rather difficult problem to solve efficiently, especially for massively
parallel systems for which we are aiming.

There has been some other work related to parallel refinement with edge bi-
section. For example a parallel newest vertex algorithm has been done by Zhang
[?]. Since the algorithm does not need to solve the termination detection prob-
lem, scaling is simply a question of interconnect latency. Another work is the
parallel longest edge algorithm done by Castaños and Savage [?]. They solve the
termination detection problem with Dijkstras general distributed termination
algorithm, which simply detects termination by counting messages sent and re-
ceived from some controlling processor. However, in both of these methods they
only used a fairly small amount of processors, less then one hundred, so it is
difficult to estimate how efficient and scalable these algorithms are. For more
processors the effects of communication cost and concurrency in the communica-
tion patterns starts to be important, therefore we tried to design an algorithm
that would scale well for thousands of processors.

11.2.2 A modified longest edge bisection algorithm

Instead of trying to solve the termination detection problem, one could try to
modify the refinement algorithm in such a way that it would only require one
synchronization step, thus less communication. With less communication over-
head it should also scale better for a large number of processors.

1. 2. 3.

Figure 11.1: An example of the refinement algorithm used. First a set of ele-
ments are marked for refinement (1). The longest edges are found (2), and all
elements connected to these edges are finally bisected, the dashed lines in (3).

When this work started, DOLFIN did not have a pure longest edge imple-
mentation. Instead of recursively fixing “hanging nodes” it bisected elements in
pairs (or groups) (see figure 11.1). Since this algorithm always terminate the
refinement by bisecting all elements connected to the refined edge, it is a perfect
candidate for an efficient parallel algorithm. If the longest edge is shared by
different processors, the algorithm must only propagate the refinement onto all
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elements (processors) connected to that edge, but then no further propagation is
possible (see figure 11.2).

Cpu 0

Cpu 1

Cpu 2

Figure 11.2: An example of the two simple cases of propagation. The dashed
lines refers to how the processors wants to bisect the elements.

However, notifying an adjacent processor of propagation does not solve the
problem entirely. As mentioned in section 11.1, all mesh entities shared by sev-
eral processors must have the same information in order to correctly represent
the distributed mesh. The refinement process must therefore guarantee that
all newly created vertices are assigned the same unique information on all the
neighboring processors. Another problematic case arises when processors refine
the same edge and the propagation “collides” (see figure 11.2). In this case the
propagation is done implicitly but the processors must decide which of the new
information to use.

Cpu 0

Cpu 1

Cpu 2

Figure 11.3: An example of the problematic case with multiple propagations. The
dashed lines refers to how the processors wants to bisect the elements.

A more complicated case is when an element receives multiple propagation
(possibly from different processors) on different edges (see figure 11.3). Since
the modified longest edge algorithm only allows one edge to be bisected per ele-
ment, one of the propagations must be selected and the other one rejected. This
however adds a difficulty to the simple algorithm. First of all, how should the
processors decide upon which edge to be refined? Clearly this could not be done
arbitrarily since when a propagation is forbidden, all refinement done around
that edge must be removed. Thus, in the worst case it could destroy the entire
refinement.

To solve the edge selection problem perfectly one needs an algorithm with a
global view of the mesh. In two dimensions with a triangular mesh, the prob-
lem could be solved rather simple since each propagation could only come from
two different edges (one edge is always facing the interior). By exchanging the
desired propagation edges processors could match theirs selected edges with the
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propagated ones, in an attempt to minimize the number of forbidden propaga-
tions. However, in three dimensions the problem starts to be such complicated
that multiple exchange steps are needed in order to solve the problem. Hence, it
becomes too expensive to solve.

Instead we propose an algorithm which solves the problem using an edge vot-
ing scheme. Each processor refines the boundary elements, find their longest
edge and cast a vote for it. These votes are then exchanged between processors,
which add the received votes to its own set of votes. Now the refinement pro-
cess restarts, but instead of using the longest edge criteria, edges are selected
depending on the maximum numbers of votes. In the case of a tie, the edge is
selected depending on a random number assigned to all votes.

Once a set of edges has been selected from the voting phase the actually prop-
agation starts by exchanging these with the other processors. However, the vot-
ing could fail to “pair” refinements together. For example, an element could lie
between two processors which otherwise does not share any common face. Each
of these processors wants to propagate into the neighboring element but on dif-
ferent edges (see figure 11.4). Since the processors on the left and right side of the
element do not receive the edge vote from each other, the exchange of votes will
in this case not help with selecting an edge that would work for both processors.

Cpu 0

Cpu 1

Cpu 2

Figure 11.4: An example of the case when edge votes could be missed. The
dashed lines refers to how the processors wants to bisect the elements.

To fix this, an additionally exchange step is needed and maybe another and
so forth, rendering the perfect fix impossible. Instead, the propagation step ends
by exchanging the refined edges which gave rise to a forbidden propagation. All
processors could then remove all refinements that these edges introduced, and
in the process, remove any hanging nodes on the boundary between processors.

11.3 The need of dynamic load balancing

For parallel refinement, there is an additional problem not present in the se-
rial setting. As one refines the mesh, new vertices are added arbitrarily at any
processor. Thus, rendering an initially good load balance useless. Therefore, in
order to sustain a good parallel efficiency the mesh must be repartitioned and
redistributed after each refinement, in other words dynamic load balancing is
needed.
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Figure 11.5: An example of load balancing were the locality of the data is consid-
ered. The mesh is refined three times around the cylinder, and for each step load
balancing is performed, shading refers to processor id.

In the worst case, the load balancing routine must be invoked every time a
mesh is adapted, it has to be rather efficient, and for our aim, scale well for
a large number of processors. There are mainly two different load balancing
methods used today, diffusive and remapping methods. Diffusive methods, like
the physical meaning, by finding a diffusion solution a heavily loaded proces-
sor’s vertices would move to another processor and in that way smear out the
imbalance, described for example in [?, ?]. Remapping methods, relies on the
partitioner’s efficiency of producing good partitions from an already partitioned
dataset. In order to avoid costly data movement, a remapping method tries to
assign the new partitions to processors in an optimal way. For problems where
the imbalance occurs rather localized, the remapping methods seems to perform
better [?]. Hence, it maps perfectly to the localized imbalance from local mesh
refinement.

In this work, we used the load balancing framework of PLUM [?] a remap-
ping load balancer. The mesh is repartitioned according to an imbalance model.
Repartitioning is done before refinement, this would in theory minimize data
movement and speedup refinement, since a more balanced number of element
would be bisected on each processor.

11.3.1 Workload modelling

The workload is modelled by a weighted dual graph of the mesh. Let G = (V,E)
be the dual graph of the mesh, q be one of the partitions and let wi bet the compu-
tational work (weights) assigned to each graph vertex. The processor workload
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is then defined as
W (q) =

∑

∀wi∈q

wi (11.1)

where communication costs are neglected. LetWavg be the average workload and
Wmax be the maximum, then the graph is considered imbalanced if

Wmax/Wavg > κ (11.2)

where the threshold value κ is based on the problem or machine characteristics.
This model suits the modified longest edge algorithm (section 11.2.2) per-

fectly. Since the modifications reduces the algorithm to only have one propa-
gation and/or synchronization step. The workload calculation becomes a local
problem, thus it is rather cheap to compute. So if we let each element repre-
sent one unit of work, a mesh adapted by the modified algorithm would produce
a dual graph with vertex weights equal to one or two. Each element is only
bisected once, giving a computational weight of two elements for each element
marked for refinement.

11.3.2 Remapping strategies

Remapping of the new partitions could be done in numerous ways, depending on
what metric one tries to minimize. Usually one often talks about the two metrics
TOTALV and MAXV. MAXV tries to minimize the redistribution time by lowering
the flow of data, while TOTALV lower the redistribution time by trying to keep
the largest amount of data local, for a more detailed description see [?]. We have
chosen to focus on the TOTALV metric, foremost since it much cheaper to solve
then MAXV, and it produces equally good (or even better) balanced partitions.

Independent of which metric one tries to solve. The result from the reparti-
tioning is placed in a similarity matrix S, where each entry Si,j is the number of
vertices on processor i which would be placed in the new partition j. In our case,
we want to keep the largest amount of data local, hence to keep the maximum
row entry in S local. This could be solved by transforming the matrix S into a bi-
partite graph where each edge ei,j is weighted with Si,j, the problem then reduces
to the maximally weighted bipartite graph problem [?].

11.4 The implementation on a massively parallel sys-

tem

The adaptive refinement method described in this chapter was implemented us-
ing an early parallel version of DOLFIN, for a more detailed description see [?].
Parallelization was implemented for a message passing system, and all the algo-
rithms were designed to scale well for a large number of processors.
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The challenge of implementing a refinement algorithm on a massively par-
allel system is as always the communication latency. In order to avoid that the
message passing dominates the runtime, it is important that the communication
is kept at a minimum. Furthermore, in order to obtain a good parallel efficiency,
communication patterns must be design in such way that they are highly con-
current, reducing processors idle time etc.

11.4.1 The refinement method

Since element bisection is a local problem, without any communication, the only
part of the refinement algorithm that has to be well designed for a parallel sys-
tem is the communication pattern used for refinement propagation.

For small scale parallelism, one could often afford to do the naive approach,
loop over all processors and exchange messages without any problem. When the
number of processors are increased, synchronization, concurrency and deadlock
prevention starts to become important factors to considered when designing the
communication pattern. A simple and reliable pattern is easily implemented as
follows. If the processors send data to the left and receive data from the right
in a circular pattern, all processors would always be busy sending and receiving
data, thus no idle time.

Algorithm 1 Communication pattern

◮ Editor note: Package algorithmic.sty conflicts with algorithmicx.sty. Sort out
which packages to use for algorithms.

The refinement algorithm outlined in 11.2.2 is easily implemented as a loop
over all elements marked for refinement. For each element marked for refine-
ment it finds the longest edge and bisect all elements connected to that edge.
However, since an element is only allowed to be bisected once, the algorithm is
only allowed to select the longest edge which is part of an unrefined element. In
order to make this work in parallel, one could structure the algorithm in such
a way that it first refines the shared elements, and propagate the refinement.
After that it could refine all interior elements without any communication.

Algorithm 2 Refinement algorithm

◮ Editor note: Package algorithmic.sty conflicts with algorithmicx.sty. Sort out
which packages to use for algorithms.

If we let B be the set of elements on the boundary between processors, R the
set of elements marked for refinement. Then by using algorithm 1 we could ef-
ficiently express the refinement of shared entities in algorithm 2 with algorithm
3.
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Algorithm 3 Refinement of shared entities

◮ Editor note: Package algorithmic.sty conflicts with algorithmicx.sty. Sort out
which packages to use for algorithms.

11.4.2 The remapping scheme

The maximally weighted bipartite graph problem for the TOTALV metric could be
solved in an optimal way in O(V 2 log V +V E) steps [?]. Recall that the vertices in
the graph are the processors. Calculating the remapping could therefore become
rather expensive if a large number of processors are used. Since the solution
does not need to be optimal, a heuristic algorithm with a runtime of O(E) was
used.

The algorithm starts by generating a sorted list of the similarity matrix S.
It then steps through the list and selects the largest value which belongs to an
unassigned partition. It was proven in [?] that the algorithm’s solution is always
greater than half of the optimal solution, thus it should not be a problem to solve
the remapping problem in a sub optimal way. Sorting was implemented (as in the
original PLUM paper) by a serial binary radix sort (the matrix S were gathered
onto one processor), performing β passes and using 2r “buckets” for counting.
In order to save some memory the sorting was performed per byte of the integer
instead of the binary representation. Since each integer is represented by 4 bytes
(true even for most 64-bits architectures) the number of passes required was
β = 4, and since each byte have 8 bits the number of “buckets” needed were 28.

However, since the similarity matrix S is of the size P × P where P is the
number of processors, the sorting will have a runtime of O(P 2). This should not
cause any problem on a small or medium size parallel computer, as the one used
in the fairly old PLUM paper. But after 128-256 processors the complexity of the
sorting starts to dominates in the load balancer. To solve this problem, instead
of sorting S on one processor we implemented a parallel binary radix sort. The
unsorted data of length N was divided into N/P parts which were assigned to
the available processors. The internal β sorting phases were only modified with
a parallel prefix calculation and a parallel swap phase (when the elements are
moved to the new “sorted” locations).

Algorithm 4 Parallel radix sort

◮ Editor note: Package algorithmic.sty conflicts with algorithmicx.sty. Sort out
which packages to use for algorithms.
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Figure 11.6: Two of the meshes used during evaluation.

11.4.3 Theoretical and experimental analysis

The adaptive refinement method described in this chapter has been successfully
tested on a 1024 node Blue Gene/L, each dual-processor node could either be used
to run two separate programs (virtual mode) or run in coprocessor mode where
one of the processor works as an offload engine, for example handling parts of
the message passing stack [?, ?].

As a test problem we used an unstructured mesh and refined all elements
inside a small local region, timed mesh refinement and load balancing times.
The problem were tested on P = 32, 128, 512 nodes both in virtual and copro-
cessor mode. Since the smallest number of nodes that could be allocated was
32, all speedup results are presented as a comparison against the time for 32
processors. To capture possible communication bottlenecks, three different un-
structured meshes were used. First a cylinder mesh with nv = 566888 vertices,
secondly a hill with nV = 94720 vertices and finally, the cylinder again but with
nv = 1237628 vertices instead.

The regions selected for refinement were around the cylinder and behind the
hill. Since these regions already had the most number of elements in the mesh,
refinement would certainly result in an workload imbalance. Hence, trigger the
load balancing algorithms. In order to analyze the experimental results we used
a performance model which decompose the total runtime T into one serial com-
putational cost Tcomp, and a parallel communication cost Tcomm.

T = Tcomp + Tcomm (11.3)

The mesh refinement has a local computational costs consisting of iterating
over and bisecting all elements marked for refinement, for a mesh with Nc ele-
ments O(Nc/P ) steps. Communication only occurs when the boundary elements

102



Johan Hoffman, Johan Jansson and Niclas Jansson

needs to be exchanged. Thus, each processor would in the worst case communi-
cate with (P − 1) other processors. If we assume that there are Ns shared edges,
the total runtime with communication becomes,

Trefine = O

(
Nc

P

)
τf + (P − 1)(τs +Nsτb) (11.4)

where τf is the time to perform one (floating point) operation, τs is the latency and
τb the bandwidth. So based on the performance model, more processors would
lower the computational time, but in the same time increase the communication
time.

The most computationally expensive part of the load balancer is the remap-
ping or assignment of the new partitions. As discussed earlier, we used an heuris-
tic with a runtime of O(E), the number of edges in the bipartite graph. Hence,
in the worst case E ≈ P 2. The sorting phase is linear, and due to the parallel
implementation it runs in O(P ). Communication time for the parallel prefix cal-
culation is given by, for m data it sends and calculates in m/P steps. Since the
prefix consists of 2r elements, it would take 2r/P steps, and we have to do this for
each β sorting phases. In the worst case the reordering phase (during sorting)
needs to send away all the elements, thus P communication steps, which gives
the total runtime.

Tloadb = O(P 2)τf + β

(
τs +

(
2r

P
+ P

)
τb

)
(11.5)

According to this, load balancing should not scale well for a large number
of processors (due to the O(P 2) term). However the more realistic average case
should be O(P ). So again, with more processors the runtime could go up due to
the communication cost.

If we then compare with the experimental results presented in figure 11.7,
we see that the performance degenerates when a large number of processors are
used. The question is why? Is it solely due to the increased communication cost?
Or is the load balancer’s computational cost to blame?

First of all one could observe that when the number of elements per proces-
sor is small. The communication costs starts to dominate, see for example the
results for the smaller hill mesh (represented by a triangle in the figure). The
result is better for the medium size cylinder (represented by a diamond), and
even better for the largest mesh (represented by a square). If the load balanc-
ing time was the most dominating part, a performance drop should have been
observed around 128 - 256 processors. Instead performance generally drops af-
ter 256 processors. A possible explanation for this could be the small amount of
local elements. Even for the larger 106 element mesh, with 1024 processors the
number of local elements is roughly 103, which is probably too few to balance the
communication costs.
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Figure 11.7: Refinement speedup (incl. load balancing)

Processors Execution time Speedup
256 33.50 1.0
512 23.19 1.44
1024 19.24 1.74

Table 11.1: Refinement time for a nine million vertices mesh

This illustrate the curse of massively parallel, distributed memory systems.
In order to gain anything from the large amount of processors, either one has to
have a large local computational cost, or one has to increase the dataset in order
to mask the communication latency. To illustrate how large the mesh needs to be,
we uniformly refined the larger cylinder, locally refined the same region as before
and timed it for 256,512 and 1024 processors. Now the refinement performance
better, as can be seen in table 11.1. But again performance drops between 512
and 1024 processors.

However, despite the decrease in speedup, one could see that the algorithm
seems to scale well, given that the local amount of elements are fairly large. It
is close to linear scaling from 32 to 256 processors, and we see no reason for it
to not scale equally good between 256 and 1024 processors, given that the local
part of the mesh is large enough.
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11.5 Summary and outlook

In this chapter we presented some of the challenges with parallel mesh refine-
ment. How these could be solved and finally how these solutions were imple-
mented for a distributed memory system. In the final section some theoretical
and experimental performance results were presented and explained. One could
observe how well the implementation performs, until the curse of slow intercon-
nect starts to affect the results.

One aspect of the refinement problem that has not been touched upon in this
chapter is the mesh quality. The modification done to the longest edge algorithm
(see section 11.2.2), unfortunately destroys the good properties of the original
recursive algorithm. It was a trade off between efficiency and mesh quality. As
mentioned before, the problem with the original algorithm is the efficiency of
propagation and global termination detection. Currently our work is focused
in overcoming these problems, implementing an efficient parallel refinement
method with good quality aspects, which also performs well for thousands of
processors.
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CHAPTER 12

DOLFIN: A C++/Python Finite Element Library

By Anders Logg and Garth N. Wells

Chapter ref: [logg-2]

Overview and tutorial of DOLFIN.
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CHAPTER 13

FFC: A Finite Element Form Compiler

By Anders Logg and possibly others

Chapter ref: [logg-1]

◮ Editor note: Oelgaard/Wells might possibly write something here on FFC quadrature

evaluation, or it will be included in a separate chapter. Marie will possibly write some-

thing here on H(div)/H(curl), or it will be included in a separate chapter.

Overview and tutorial of FFC.
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CHAPTER 14

FErari: An Optimizing Compiler for Variational Forms

By Robert C. Kirby and Anders Logg

Chapter ref: [kirby-3]

We describe the implementation of an optimizing compiler for variational
forms based on the discrete optimization methodology described in an earlier
chapter. The major issues are communicating reference tensors from FFC to the
optimizer, FErari, performing the actual optimization, and communicating ab-
stract syntax for the optimized algorithm back to FFC for code generation. We
include some results indicating the kinds of speedups that may be achieved and
what factors influence the effectiveness of the optimizations.
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CHAPTER 15

FIAT: Numerical Construction of Finite Element Basis

Functions

By Robert C. Kirby

Chapter ref: [kirby-2]

15.1 Introduction

The FIAT project [?, ?] implements the mathematical framework described in
Chapter ?? as a Python package, working mainly in terms of numerical linear
algebra. Although an implementation floating-point arithmetic presents some
challenges relative to symbolic computation, it can allow greater efficiency and
consume fewer resources, especially for high order elements. To obtain efficiency
in Python, the compute-intensive operations are expressed in terms of numerical
linear algebra and performed using the widely distributed numpy package.

The FIAT project is one of the first FEniCS projects, providing the basis func-
tion back-end for ffc and enabling high-order H1, H(div) and H(curl) elements.
It is widely distributed, with downloads on every inhabited continent and in over
sixty countries, averaging about 100 downloads per month.

This chapter works in the context of a Ciarlet triple (K,P,N) [?], where K
is a fixed reference domain, typically a triangle or tetrahedron. P is a finite-
dimensional polynomial space, though perhaps vector- or tensor-valued and not

coincident with polynomials of some fixed degree. N = {ℓi}|P |
i=1 is a set of linear

functionals spanning P ′. Recalling Chapter [], the goal is first to enumerate

a convenient basis {φi}|P |
i=1 for P and then to form a generalized Vandermonde
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system
V A = I,

where Vij = ℓi(φj). The columns of A = V −1 store the expansion coefficients of the
nodal basis for (K,P,N) in terms of the basis {φi}.

15.2 Prime basis: Collapsed-coordinate polynomials

High order polynomials in floating-point arithmetic require stable evaluation al-
gorithms. FIAT uses the so-called collapsed-coordinate polynomials [?] on the
triangle and tetrahedra. Let P α,β

i (x) denote the Jacobi polynomial of degree i
with weights α and β. On the triangle K with vertices (−1, 1), (1,−1), (−1, 1), the
polynomials are of the form

Dp,q(x, y) = P 0,0
p (η1)

(
1− η2

2

)i

P 2i+1,0
j (η2)

where

η1 = 2

(
1 + x

1− y

)
− 1

η2 = y

is called the collapsed-coordinate mapping is a singular transformation between
the triangle and the biunit square. The set {Dp,q(x, y)}p+q≤n

p,q≥0 forms a basis for
polynomoials of degree n. Moreover, they are orthogonal in the L2(K) inner
product. Recently [?], it has been shown that these polynomials may be com-
puted directly on the triangle without reference to the singular mapping. This
means that no special treatment of the singular point is required, allowing use
of standard automatic differentiation techniques to compute derivatives.

The recurrences are obtained by rewriting the polynomials as

Dp,q(x, y) = χp(x, y)ψp,q(y),

where

χp(x, y) = P 0,0
p (η1)

(
1− η2

2

)p

and
ψp,q(y) = P 2p+1,0

q (η2) = P 2p+1,0
q (y).

This representation is not separable in η1 and η2, which may seem to be a draw-
back to readers familiar with the usage of these polynomials in spectral methods.
However, they do still admit sum-factorization techniques. More importantly for
present purposes, each χp is in fact a polynomial in x and y and may be computed
by recurrence. ψp,q is just a Jacobi polynomial in y and so has a well-known three-
term recurrence. The recurrences derived in [?] are presented in Algorithm 5
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Algorithm 5 Computes all triangular orthogonal polynomials up to degree d by
recurrence
1: D0,0(x, y) := 1
2: D1,0(x, y) := 1+2x+y

2

3: for p← 1, d− 1 do

4: Dp+1,0(x, y) :=
(

2p+1
p+1

) (
1+2x+y

2

)
Dp,0(x, y)−

(
p

p+1

) (
1−y
2

)2
Dp−1,0(x, y)

5: end for

6: for p← 0, d− 1 do

7: Dp,1(x, y) := Dp,0(x, y)
(

1+2p+(3+2p)y
2

)

8: end for

9: for p← 0, d− 1 do

10: for q ← 1, d− p− 1 do

11: Dp,q+1(x, y) :=
(
a2p+1,0

q y + b2p+1,0
q

)
Dp,q(x, y)− c2p+1,0

q Dp,q−1(x, y)
12: end for

13: end for

15.3 Representing polynomials and functionals

Even using recurrence relations and numpy vectorization for arithmetic, further
care is required to optimize performance. In this section, standard operations
on polynomials will be translated into vector operations, and then batches of
such operations cast as matrix multiplication. This helps eliminate the inter-
pretive overhead of Python while moving numerical computation into optimized
library routines, since numpy.dot wraps level 3 BLAS and other functions such
as numpy.svd wrap relevant LAPACK routines.

Since polynomials and functionals over polynomials both form vector spaces,
it is natural to represent each of them as vectors representing expansion coeffi-
cients in some basis. So, let {φi} be the set of polynomials described above.

Now, any p ∈ P is written as a linear combination of the basis functions {φi}.
Introduce a mapping R from P into R

|P | by taking the expansion coefficients of p
in terms of {φi}. That is,

p = R(p)iφi,

where summation is implied over i.
A polynomial p may then be evaluated at a point x as follows. Let Φi be the

basis functions tabulated at x. That is,

Φi = φi(x). (15.1)

Then, evaluating p follows by a simple dot product:

p(x) = R(p)iΦi. (15.2)
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More generally in FIAT, a set of polynomials {pi} will need to be evaulated
simultaneously, such as evaluating all of the members of a finite element basis.
The coefficients of the set of polynomials may be stored in the rows of a matrix
C, so that

Cij = R(pi)j.

Tabulating this entire set of polynomials at a point x is simply obtained by
matrix-vector multiplication. Let Φi be as in (15.1). Then,

pi(x) = CijΦj .

The basis functions are typically needed at a set of points, such as those of a
quadrature rule. Let {xj} now be a collection of points in K and let

Φij = φi(xj),

where the rows of Φ run over the basis functions and the columns over the col-
lection of points. As before, the set of polynomials may be tabulated at all the
points by

pi(xj) = CikΦkj ,

which is just the matrix product CΦ and may may be efficiently carried out by a
library operation, such as the numpy.dot wrapper to level 3 BLAS.

Finite element computation also requires the evaluation of derivatives of
polynomials. In a symbolic context, differentiation presents no particular dif-
ficulty, but working in a numerical context requires some special care.

For some differential operator D, the derivatives Dφi are computed at apoint
x, any polynomial p = R(p)iφi may be differentiated at x by

Dp(x) = R(p)i(Dφi),

which is exactly analagous to (15.2). By analogy, sets of polynomials may be
differentiated at sets of points just like evaluation.

The formulae in Algorithm 5 and their tetrahedral counterpart are fairly easy
to differentiate, but derivatives may also be obtained through automatic differ-
entiation. Some experimental support for this using the AD tools in Scientific
Python has been developed in an unreleased version of FIAT.

The released version of FIAT currently evaluates derivatives in terms of lin-
ear operators, which allows the coordinate singularity in the standard recurrence
relations to be avoided. For each Cartesian partial derivative ∂

∂xk
, a matrix Dk is

calculated such that

R
(
∂p

∂xk

)

i

= Dk
ijR(p)j .

Then, derivatives of sets of polynomials may be tabulated by premultiplying the
coefficient matrix C with such a Dk matrix.
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This paradigm may also be extended to vector- and tensor-valued polynomi-
als, making use of the multidimensional arrays implemented in numpy. Let P be
a space of scalar-valued polynomials and n > 0 an integer. Then, a member of
(P )m, a vector withm components in P , may be represented as a two-dimensional
array. Let p ∈ (P )m and pi be the jth component of p. Then p = R(p)jkφk, so that
R(p)jk is the coefficient of φk for pj .

The previous discussion of tabulating collections of functions at collections
of points is naturally extended to this context. If {pi} is a set of members of
Pm, then their coefficients may be stored in an array Cijk, where Ci is the two-
dimensional array R(p)jk of coefficients for pi. As before, Φij = φi(xj) contains the
of basis functions at a set of points. Then, the jth component of vi at the point xk

is naturally given by a three-dimensional array

pi(xk)
j = Cijlφlk.

Psychologically, this is just a matrix product if Cijl is stored contiguously in gen-
eralized row-major format, and the operation is readly cast as dense matrix mul-
tiplication.

Returning for the moment to scalar-valued polynomials, linear functionals
may also be represented as Euclidean vectors. Let ℓ : P → R be a linear func-
tional. Then, for any p ∈ P ,

ℓ(p) = ℓ(R(p)iφi) = R(p)iℓ(φi),

so that ℓ acting on p is determined entirely by its action on the basis {φi}. As
with R, define R′ : P ′ → R

|P | by

R′(ℓ)i = ℓ(φi),

so that
ℓ(p) = R′(ℓ)iR(p)i.

Note that the inverse of R′ is the Banach-space adjoint of R.
Just as with evaluation, sets of linear functionals can be applied to sets of

functions via matrix multiplication. Let {ℓi}Ni=1 ⊂ P ′ and {ui}Ni=1 ⊂ P . The func-
tionals are represented by a matrix

Lij = R′(ℓi)j

and the functions by
Cij = R(ui)j

Then, evaluating all of the functionals on all of the functions is computed by the
matrix product

Aij = LikCjk, (15.3)
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or A = LCt. This is especially useful in the setting of the next section, where the
basis for the finite element spaceneeds to be expressed as a linear combination
of orthogonal polynomials.

Also, the formalism ofR′ may be generalized to functionals over vector-valued

spaces. As before, let P be a space of degree n with basis {φi}|P |
i=1 and to each

v ∈ (P )m associate the representation vi = R(v)ijφj. In this notation, v = R(v)ijφj

is the vector indexed over i. For any functional ℓ ∈ ((P )m)
′
, a representation

R′(ℓ)ij must be defined such that

ℓ(v) = R′(ℓ)ijR(v)ij,

with summation implied over i and j. To determine the representation of R′(f),
let ej be the canonical basis vector with (ej)i = δij and write

ℓ(v) = ℓ(Rijφj)

= ℓ(R(v)ijδike
kφj)

= ℓ(R(v)ije
iφj)

= R(v)ijℓ(e
iφj).

(15.4)

From this, it is seen that R′(ℓ)ij = ℓ(eiφj).
Now, let {vi}Ni=1 be a set of vector-valued polynomials and {ℓi}Mi=1 a set of linear

functionals acting on them. The polynomials may be stored by a coefficient tensor
Cijk = R(vi)jk. The functionals may be represented by a tensor Lijk = R′(ℓi)jk.
The matrix Aij = ℓi(vj) is readily computed by the contraction

Aij = LiklCjkl.

Despite having three indices, this calculation may still be performed by matrix
multiplication. Since numpy stores arrays in row-major format, a simple reshap-
ing may be performed without data motion so that A = L̃C̃t, for L̃ and C̃ reshaped
to two-dimensional arrays by combining the second and third axes.

15.4 Other polynomial spaces

Many of the complicated elements that motivate the development of a tool like
FIAT polynomial spaces that are not polynomials of some complete degree (or
vectors or tensors of such). Once a process for providing bases for such spaces is
described, the techniques of the previous section may be applied directly. Most
finite element polynomial spaces are described either by adding a few basis func-
tions to some polynomials of complete degree or else by constraining such a space
by some linear functionals.
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15.4.1 Supplemented polynomial spaces

A classic example of the first case is the Raviart-Thomas element, where the
function space of order r is

RTr = (Pr(K))d ⊕
(
P̃r(K)

)
x,

where x ∈ R
d is the coordinate vector and P̃r is the space of homogeneous poly-

nomials of degree r. Given any basis {φi} for Pr(K) such as the Dubiner basis, it
is easy to obtain a basis for (Pr(K))d by taking vectors where one component is
some φi and the rest are zero. The issue is obtaining a basis for the entire space.

Consider the case d = 2 (triangles). While monomials of the form xiyr−i span
the space of homoegeneous polynomials, they are subject to ill-conditioning in

numerical computations. On the other hand, the Dubiner basis of order r, {φi}|Pr|
i=1

may be ordered so that the last r + 1 functions, {φi}|Pr|
i=|Pr|−r, have degree exactly

r. While they do not span P̃r, the span of {xφi}|Pr|
i=|Pr|−r together with a basis for

(Pr(K))2 does span RTr.
So, this gives a basis for the Raviart-Thomas space that can be evaluated

and differentiated using the recurrence relations described above. A similar
technique may be used to construct elements that consist of standard elements
augmented with some kind of bubble function, such as the PEERS element of
elasticity or MINI element for Stokes flow.

15.4.2 Constrained polynomial spaces

An example of the second case is the Brezzi-Douglas-Fortin-Marini element [?].
Let E(K) be the set of dimension one cofacets ofK (edges in 2d, faces in 3d). Then
the function space is

BDFMr(K) = {u ∈ (Pr(K))d : u · n|γ ∈ Pr−1(γ), γ ∈ E(K)}

This space is naturally interpreted as taking a function space, (Pr(K))d, and
imposing linear constraints. For the case d = 2, there are exactly three such
constraints. For γ ∈ E(K), let µγ be the Legendre polynomial of degree r mapped
to γ. Then, if a function u ∈ (Pr(K))d, it is in BDFMr(K) iff

∫

γ

(u · n)µγ ds = 0

for each γ ∈ E(K).
Number the edges by {γi}3i=1 and introduce linear functionals

ℓi(u) =
∫

γi
(u · n)µγi ds. Then,

BDFMr(K) = ∩3
i=1null(ℓi).
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This may naturally be cast into linear algebra and so evaluated with LAPACK.
Following the techniques for constructing Vandermonde matrices, a constraint

matrix may be constructed. Let {φ̄i} be a basis for (Pr(K))2. Define the 3× |(Pr)|2
matrix

Cij = ℓi(φj).

Then, a basis for the null space of this matrix is constructed using the singular
value decomposition [?]. The vectors of this null-space basis are readily seen to
contain the expansion coefficients of a basis for BDFMr in terms of a basis for
Pr(K)2. With this basis in hand, the nodal basis for BDFMr(K) is obtained by
constructing the generalized Vandermonde matrix.

This technique may be generalized to three dimensions, and it also applies
to Nédélec [?], Arnold-Winther [?], Mardal-Tai-Winther [?], and many other ele-
ments.

15.5 Conveying topological information to clients

Most of this chapter has provided techniques for constructing finite element
bases and evaluating and differentiating them. FIAT must also indicate which
degrees of freedom are associated with which entities of the reference element.
This information is required when local-global mappings are generated by a form
compiler such as ffc .

The topological information is provided by a graded incidence relation and is
similar to the presentation of finite element meshes in [?]. Each entity in the
reference element is labeled by its topological dimension (e.g. 0 for vertices and
1 for edges), and then the entities of the same dimension are ordered by some
convention. To each entity, a list of the local nodes is associated. For example,
the reference triangle with entities labeled is shown in Figure 15.5, and the cubic
Lagrange triangle with nodes in the dual basis labeled is shown in Figure 15.5.

Figure 15.1: The reference triangle, with vertices, edges, and the face numbered.

122



Robert C. Kirby

Figure 15.2: The cubic Lagrange triangle, with nodes in the dual basis labelled.

For this example, the graded incidence relation is stored as

{ 0: { 0: [ 0 ] ,
1: [ 1 ] ,
2: [ 2 ] } ,

1: { 0: [ 3 , 4 ] ,
1: [ 5 , 6 ] ,
2: [ 7 , 8 ] } ,

2: { 0: [ 9 ] } }

15.6 Functional evaluation

In order to construct nodal interpolants or strongly enforce boundary conditions,
FIAT also provides information to numerically evaluate linear functionals. These
rules are typically exact for a certain degree polynomial and only approximate
on general functions. For scalar functions, these rules may be represented by a
collection of points and corresponding weights {xi}, {wi} so that

ℓ(f) ≈ wif(xi).

For example, pointwise evaluation at a point x is simply represented by the
coordinates of x together with a weight of 1. If the functional is an integral
moment, such as

ℓ(f) =

∫

K

gf dx,

then the points {xi} will be those of some quadrature rule and the weights will
be wi = ωig(xi), where the ωi are the quadrature weights.

This framework is extended to support vector- and tensor-valued function
spaces, by including a component corresponding to each point and weight. If v is
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a vector-valued function and vα is its component, then functionals are written in
the form

ℓ(v) ≈ wivαi
(xi),

so that the sets of weights, components, and points must be conveyed to the
client.

This framework may also support derivative-based degrees of freedom by in-
cluding a multiindex at each point corresponding to a particular partial deriva-
tive.

15.7 Overview of fundamental class structure

Many FEniCS users will never directly use FIAT; for them, interaction will be
moderated through a form compiler such as ffc . Others will want to use the
FIAT basis functions in other contexts. At a basic level, a user will access FIAT
through top-level classes such as Lagrange and RaviartThomas that imple-
ment the elements. Typically, the class constructors accept the reference ele-
ment and order of function space as arguments. This gives an interface that is
parametrized by dimension and degree. The classes such as Lagrange derive
from a base class FiniteElement that provides access to the three components
of the Ciarlet triple.

The currently released version of FIAT stores the reference element as a flag
indicating the simplex dimension, although a development version provides an
actual class describing reference element geometry and topology. This will allow
future releases of FIAT to be parametrized over the particular reference element
shape and topology.

The function space P is modelled by the base class PolynomialSet , while
contains a rule for constructing the base polynomials φi (e.g. the Dubiner basis)
and a multidimensional array of expansion coefficients for the basis of P . Special
subclasses of this provide (possibly array-valued) orthogonal bases as well as
the rules for constructing supplemented and constrained bases. These classes
provide mechanisms for tabulating and differentiating the polynomials at input
points as well as basic queries such as the dimension of the space.

The set of finite element nodes is similarly modeled by a class DualBasis .
This provides the functionals of the dual basis as well as their connection to
the reference element facets. The functionals are modeled by a FunctionalSet
object, which is a collection of Functional objects. Each Functional object
contains a reference to the PolynomialSet over which it is defined and the
array of coefficients representing it and owns a FunctionalType class providing
the information described in the previous section. The FunctionalSet class
batches these coefficients together in a single large array.

The constructor for the FiniteElement class takes a PolynomialSet mod-
eling the starting basis and a DualBasis defined over this basis and constructs
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a new PolynomialSet by building and inverting the generalized Vandermonde
matrix.

Beyond this basic finite element structure, FIAT provides quadrature such
as Gauss-Jacobi rules in one dimension and collapsed-coordinate rules in higher
dimensions. It also provides routines for constructing lattices of points on eah of
the reference element shapes and their facets.

In the future, FIAT will include the developments discussed already (more
general reference element geometry/topology and automatic differentiation). Au-
tomatic differentiation will make it easier to construct finite elements with deriva-
tive-type degrees of freedom such as Hermite, Morley, and Argyris. Aditionally,
we hope to expand the collection of quadrature rules and provide more advanced
point distributions, such as Warburton’s warp-blend points [?].
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CHAPTER 16

Instant: Just-in-Time Compilation of C/C++ Code in

Python

By Ilmar M. Wilbers, Kent-Andre Mardal and Martin S. Alnæs

Chapter ref: [wilbers]

16.1 Introduction

Instant is a small Python module for just-in-time compilation (or inlining) of
C/C++ code based on SWIG [SWIa] and Distutils1. Just-in-time compilation can
significantly speed up, e.g., your NumPy [Num] code in a clean and readable way.
This makes Instant a very convenient tool in combination with code generation.
Before we demonstrate the use of Instant in a series of examples, we briefly step
through the basic ideas behind the implementation. Instant relies on SWIG for
the generation of wrapper code needed for making the C/C++ code usable from
Python [Pyt]. SWIG is a mature and well-documented tool for wrapping C/C++
code in many languages. We refer to its website for a comprehensive user manual
and we also discuss some common tricks and troubles in Chapter 22. The code
to be inlined, in addition to the wrapper code, is then compiled into a Python
extension module (a shared library with functionality as specified by the Python
C-API) by using Distutils. To check whether the C/C++ code has changed since
the last execution, Instant computes the SHA1 sum2 of the code and compares
it to the SHA1 checksum of the code used in the previous execution. Finally,

1http://www.python.org/doc/2.5.2/lib/module-distutils.html
2http://www.apps.ietf.org/rfc/rfc3174.html
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Instant has implemented a set of SWIG typemaps, allowing the user to transfer
NumPy arrays between the Python code and the C/C++ code.

There exist several packages that are similar to Instant. Worth mentioning
here are Weave [Wea], Cython [Cyt], and F2PY [Peta]. Weave allows us to in-
line C code directly in our Python code. Unlike Instant, Weave does not require
the specification of the function signature and the return argument. For specific
examples of Weave and the other mentioned packages, we refer to [I. 09, Wea].
Weave is part of SciPy [Sci]. F2PY is currently part of NumPy, and is primar-
ily intended for wrapping Fortran code. F2PY can also be used for wrapping C
code. Cython is a rather new project, branched from the more well-known Pyrex
project [Pyr]. Cython is attractive because of its integration with NumPy arrays.
Cython differs from the other projects by being a programming language of its
own. Cython extends Python with concepts such as static typing, hence allowing
the user to incrementally speed up the code.

Instant accepts plain C/C++. This makes it particularly attractive to combine
Instant with tools capable of generating C/C++ code such as FFC (see Chap-
ter 13), SFC (see Chapter 17), Swiginac [Swib], and Sympy [CSP+09]. In fact,
tools like these have been the main motivation behind Instant, and both FFC
and SFC employ Instant. Instant is released under a BSD license, see the file
LICENSE in the source directory.

In this chapter we will begin with several examples in Section 16.2. Section
16.3 explains how Instant works, while Section 16.4 gives a detailed description
of the API.

16.2 Examples

All code from the examples in this section can be found online3. We will refer to
this location as $examples .

16.2.1 Installing Instant

Before trying to run the examples, you need to install Instant. The latest Instant
release can be downloaded from the FEniCS website [FEn]. It is available both
as a source code tarball and as a Debian package. In addition, the latest source
code can be checked out using Mercurial [Mer]:

hg clone http://www.fenics.org/hg/instant

Installing Instant from the source code is done with a regular Distutils script,
i.e,

3http://www.fenics.org/pub/documents/book/instant/examples
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python setup.py install

After successfully installing Instant, one can verify the installation by running
the scripts run tests.py followed by rerun tests.py in the tests -directory
of the source code. The first will run all the examples after having cleaned the
Instant cache, the second will run all examples using the compiled modules found
in the Instant cache from the previous execution.

16.2.2 Hello World

Our first example demonstrate the usage of Instant in a very simple case:

from instant import inline
c_code = r’’’
double add(double a, double b)
{

printf("Hello world! C function add is being called...\n") ;
return a+b;

}’’’
add_func = inline(c_code)
sum = add_func(3, 4.5)
print ’The sum of 3 and 4.5 is’, sum

Here Instant will wrap the C-function add into a Python extension module by
using SWIG and Distutils. The inlined function is written in standard C. SWIG
supports almost all of C and C++, including object orientation and templates.
When running this Python snippet the first time, compiling the C code takes a
few seconds. Next time we run it, however, the compilation is omitted, given that
no changes are made to the C source code.

Note that a raw string is used in this example, to avoid Python interpreting
escape sequences such as ’\n ’. Alternatively, special characters can be escaped
using a backslash.

Although Instant notifies the user when it is compiling, it might sometimes
be necessary, e.g. when debugging, to see the details of the Instant internals. We
can do this by setting the logging level before calling any other Instant functions:

from instant import output
output.set_logging_level(’DEBUG’)

The intrinsic Python module logging is used. First, the build function ar-
guments are displayed, whereafter the different steps performed by Instant are
shown in detail, e.g whether the module is found in cache and the arguments to
the Distutils file when building the module. This example can be found in the
file $examples/ex1.py .
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16.2.3 NumPy Arrays

One basic problem with wrapping C and C++ code is how to handle dynami-
cally allocated arrays. Arrays allocated dynamically are typically represented
in C/C++ by a pointer to the first element of an array and a separate integer
variable holding the array size. In Python the array variable is itself an object
contains the data array, array size, type information etc. However, a pointer in
C/C++ does not necessarily represent an array. Therefore, SWIG provides the
typemap functionality that allows the user to specify a mapping between Python
and C/C++ types. We will not go into details on typemaps in this chapter, but
the reader should be aware that it is a powerful tool that may greatly enhance
your code, but also lead to mysterious bugs when used wrongly. Typemaps are
discussed in Chapter 22 and at length at the SWIG webpage. In this chapter,
it is sufficient to illustrate how to deal with arrays in Instant using the NumPy
module. More details on how Instant NumPy arrays can be found in Section
16.3.1.

16.2.4 Ordinary Differential Equations

We introduce a solver for an ordinary differential equation (ODE) modeling blood
pressure by using a Windkessel model. The ODE is as follows:

d

dt
p(t) = BQ(t)−Ap(t), t ∈ (0, 1), (16.1)

p(0) = p0. (16.2)

Here p(t) is the blood pressure, Q(t) is the volume flux of blood, A is . . . and B is
. . .. An explicit scheme is:

pi = pi−1 + ∆t(BQi − Api−1), for i = 1, . . . , N − 1, (16.3)

p0 = p0. (16.4)

The scheme can be implemented in Python as follows using NumPy arrays:

def time_loop_py(p, Q, A, B, dt, N, p0):
p[0] = p0
for i in range(1, N):

p[i] = p[i-1] + dt * (B * Q[i] - A * p[i-1])

The C code given as argument to the Instant function inline with numpy looks
like:

void time_loop_c(int n, double * p,
int m, double * Q,
double A, double B,
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double dt, int N, double p0)
{

if ( n != m || N != m )
{

printf("n, m and N should be equal\n");
return;

}

p[0] = p0;
for (int i=1; i<n; i++)
{

p[i] = p[i-1] + dt * (B * Q[i] - A * p[i-1]);
}

}

In this example, (int n, double * p) represents an array of doubles with
length n. However, this can not be determined by the function signature:

void time_loop_C(int n, double * p, int m, double * Q, ...)

For example, double * p may be an array of lengthm or it may simply be output.
In Instant you can specify 1-dimensional arrays as follows:

time_loop_c = inline_with_numpy(c_code,
arrays = [[’n’, ’p’],

[’m’, ’Q’]])

Here we tell Instant that (int n, double * p) and (int m, double * Q)
are NumPy arrays (and Instant then employs a few typemaps). We may then
call the time loop function as follows:

time_loop_c(p, Q, 1.0, 1.0, 1.0/(N-1), N, 1.0)

In the above example we obtain a speed-up of about a factor 400 when using
100000 time steps compared to the pure Python with NumPy version, see Table
16.1. This is about the same as a pure C program. The result of solving the ODE
can be seen in Figure 16.1. The comparison between NumPy and Instant is not
really fair, as NumPy primarily gives a speed-up for code that can be vectorized,
something that is not the case with our current ODE. In fact, utilizing pure
Python lists instead of NumPy arrays, reduces the speed-up to a factor 100. For
code that can be vectorized, the speed-up is about one order of magnitude when
we use Instant instead [I. 09].

The complete code for this example can be found in $examples/ex2.py
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Figure 16.1: Plot of pressure and blood volume flux computed by solving the
Windkessel model.

N 100 1000 10000 100000 1000000
CPU time with NumPy 3.9e-4 3.9e-3 3.8e-2 3.8e-1 3.8
CPU time with Python 0.7e-4 0.7e-3 0.7e-2 0.7e-1 0.7
CPU time with Instant 5.0e-6 1.4e-5 1.0e-4 1.0e-3 1.1e-2
CPU time with C 4.0e-6 1.1e-5 1.0e-4 1.0e-3 1.1e-2

Table 16.1: CPU times of Windkessel model for different implementations (in
seconds).

16.2.5 Numpy Arrays and OpenMP

It is easy to speed up code on parallel computers with OpenMP. We will not de-
scribe OpenMP in any detail here, the reader is referred to [Ope]. However,
note that preprocessor directives like ’#pragma omp ... ’ are OpenMP direc-
tives and that OpenMP functions start with omp. In this example, we want to
solve a standard 2-dimensional wave equation in a heterogeneous medium with
local wave velocity k:

∂2u

∂t2
= ∇ · [k∇u] . (16.5)

We set the boundary condition to u = 0 for the whole boundary of a rectangu-
lar domain Ω = (0, 1) × (0, 1). Further, u has the initial value I(x, y) at t = 0
while ∂u/∂t = 0. We solve the wave equation using the following finite difference
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scheme:

ul
i,j =

(
∆t

∆x

)2

[ki+ 1
2
,j(ui+1,j − ui,j)− ki− 1

2
,j(ui,j − ui−1,j)]

l−1

+

(
∆t

∆y

)2

[ki,j+ 1
2
(ui,j+1 − ui,j)− ki,j− 1

2
(ui,j − ui,j−1)]

l−1. (16.6)

Here, ul
i,j represents u at the grid point xi and yj at time level tl, where

xi = i∆x, i = 0, . . . , n

yi = j∆y, j = 0, . . . , m and

tl = l∆t,

Also, ki+ 1
2
,j is short for k(xi+ 1

2
, yj).

The code for calculating the next time step using OpenMP looks like:

void stencil(double dt, double dx, double dy,
int ux, int uy, double * u,
int umx, int umy, double * um,
int kx, int ky, double * k,
int upn, double * up){

#define index(u, i, j) u[(i) * m + (j)]
int i=0, j=0, m = ux, n = uy;
double hx, hy, k_c, k_ip, k_im, k_jp, k_jm;
hx = pow(dt/dx, 2);
hy = pow(dt/dy, 2);
j = 0; for (i=0; i<m; i++) index(up, i, j) = 0;
j = n-1; for (i=0; i<m; i++) index(up, i, j) = 0;
i = 0; for (j=0; j<n; j++) index(up, i, j) = 0;
i = m-1; for (j=0; j<n; j++) index(up, i, j) = 0;
#pragma omp for
for (i=1; i<m-1; i++){

for (j=1; j<n-1; j++){
k_c = index(k, i, j);
k_ip = 0.5 * (k_c + index(k, i+1, j));
k_im = 0.5 * (k_c + index(k, i-1, j));
k_jp = 0.5 * (k_c + index(k, i, j+1));
k_jm = 0.5 * (k_c + index(k, i, j-1));
index(up, i, j) = 2 * index(u, i, j) - index(um, i, j) +

hx * (k_ip * (index(u, i+1, j) - index(u, i, j)) -
k_im * (index(u, i, j) - index(u, i-1, j))) +

hy * (k_jp * (index(u, i, j+1) - index(u, i, j)) -
k_jm * (index(u, i, j) - index(u, i, j-1)));
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}
}

}

We also need to add the OpenMP header omp.h and compile with the flag -fopenmp
and link with the OpenMP shared library, e.g. libgomp.so for Linux (specified
with -lgomp ). This can be done as follows:

instant_ext = \
build_module(code=c_code,

system_headers=[’numpy/arrayobject.h’,
’omp.h’],

include_dirs=[numpy.get_include()],
init_code=’import_array();’,
cppargs=[’-fopenmp’],
lddargs=[’-lgomp’],
arrays=[[’ux’, ’uy’, ’u’],
[’umx’, ’umy’, ’um’],
[’kx’, ’ky’, ’k’],
[’upn’, ’up’, ’out’]])

Note that the arguments include headers , init code , and the first element
of system headers could have been omitted had we chosen to use inline -
module with numpy instead of build module . We could also have used inline -
with numpy, which would have returned only the function, not the whole mod-
ule. For more details, see the next section. The complete code can be found in
$examples/ex3.py . It might very well be possible to write more efficient code
for many of these examples, but the primary objective is to examplify different
Instant features.

16.3 Instant Explained

The previous section concentrated on the usage of Instant and it may appear
mysterious how it actually works since it is unclear what files that are made
during execution and where they are located. In this section we explain this.

We will again use our first example, but this time with the keyword argument
modulename set explicitely. The file can be found under $examples/ex4.py :

from instant import inline
code = r’’’
double add(double a, double b)
{
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printf("Hello world! C function add is being called...\n") ;
return a+b;

}’’’
add_func = inline(code, modulename=’ex4_cache’)
sum = add_func(3, 4.5)
print ’The sum of 3 and 4.5 is’, sum

Upon calling Instant the first time for some C/C++ code, Instant compiles this
code and stores the resulting files in a directory ex4 cache . The output from
running the code the first time is:

--- Instant: compiling ---
Hello world! C function add is being called...
The sum of 3 and 4.5 is 7.5

Next time we ask Instant to call this code, it will check if the compiled files
are available either in cache or locally, and further whether we need to rebuild
these files based on the checksum of the source files and the arguments to the
Instant function. This means that Instant will perform the compile step only

if changes are made to the source code or arguments. More details about the
different caching options can be found in Section 16.3.2.

The resulting module files can be found in a directory reflecting the name of
the module, in this case ex4 cache :

ilmarw@multiboot:˜/instant_doc/code$ cd ex4_cache/
ilmarw@multiboot:˜/instant_doc/code/ex4_cache$ ls -g
total 224
drwxr-xr-x 4 ilmarw 4096 2009-05-18 16:52 build
-rw-r--r-- 1 ilmarw 844 2009-05-18 16:52 compile.log
-rw-r--r-- 1 ilmarw 183 2009-05-18 16:52 ex4_cache-0.0.0. egg-info
-rw-r--r-- 1 ilmarw 40 2009-05-18 16:52 ex4_cache.checksu m
-rw-r--r-- 1 ilmarw 402 2009-05-18 16:53 ex4_cache.i
-rw-r--r-- 1 ilmarw 1866 2009-05-18 16:52 ex4_cache.py
-rw-r--r-- 1 ilmarw 2669 2009-05-18 16:52 ex4_cache.pyc
-rwxr-xr-x 1 ilmarw 82066 2009-05-18 16:52 _ex4_cache.so
-rw-r--r-- 1 ilmarw 94700 2009-05-18 16:52 ex4_cache_wrap .cxx
-rw-r--r-- 1 ilmarw 23 2009-05-18 16:53 __init__.py
-rw-r--r-- 1 ilmarw 448 2009-05-18 16:53 setup.py

When building a new module, Instant creates a new directory with a number of
files. The first file it generates is the SWIG interface file, named ex4 cache.i
in this example. Then the Distutils file setup.py is generated based and ex-
ecuted. During execution, setup.py first runs SWIG in the interface file, pro-
ducing ex4 cache wrap.cxx and ex4 cache.py . The first file is then compiled
into a shared library ex4 cache.so (note the leading underscore). A file
ex4 cache-0.0.0.egg-info and a directory build will also be present as a
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result of these steps. The output from executing the Distutils file is stored in
the file compile.log . Finally, a checksum file named ex4 cache.checksum is
generated, containing a checksum based on the files present in the directory. The
final step consists of moving the whole directory from its temporary location to
either cache or a user-specified directory. The init .py imports the module
ex4 cache .

The script instant-clean removes compiled modules from the Instant cache,
located in the directory .instant in the home directory of the user running it.
In addition, all Instant modules located in the temporary directory where they
were first generated and compiled. It does not clean modules located elsewhere.

The script instant-showcache allow you to see the modules currently lo-
cated in the Instant cache:

Found 1 modules in Instant cache:
test_cache
Found 1 lock files in Instant cache:
test_cache.lock

Arguments to this script will output the files matching the specified pattern, for
example will instant-showcache ’test * .i’ show the content of the SWIG
interface file for any module beginning with the letters test .

16.3.1 Arrays and Typemaps

Instant has support for converting NumPy arrays to C arrays and vice versa.
For arrays with up to three dimensions, the SWIG interface file from NumPy is
used, with a few modifications. When installing Instant, this file is included as
well. arrays should be a list, each entry containing information about a specific
array. This entry should contain a list with strings, so the arrays argument is
a nested list.

Each array (i.e. each element in arrays ) is a list containing the names of
the variables describing that array in the C code. For a 1-dimensional array, this
means the names of the variables containing the length of the array (an int ),
and the array pointer (can have several tpes, but the default is double ). For 2-
dimensional arrays we need three strings, two for the length in each dimension,
and the third for the array pointer. For 3-dimensional arrays, there will be three
variables first. This example should make things clearer

arrays = [[’len’, ’a’],
[’len_bx’, ’len_by’, ’b’],
[’len_cx’, ’len_cy’, ’len_cz’, ’c’]]

These variables names specified reflect the variable names in the C function
signature. It is important that the order of the variables in the signature is
retained for each array, e.g. one cannot write:
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c_code = """
double sum (int len_a, int len_bx, int len_by,

double * a, double * b)
{

...
}
"""

The correct code would be:

c_code = """
double sum (int len_a, double * a,

int len_bx,
int len_by, double * b)

{
...

}
"""

The order of the arrays can be changed, as long as the arguments in the Python
function are changed as well accordingly.

Data Types

Default, all arrays are assumed to be of type double , but several other types are
supported. These are float , short , int , long , long long , unsigned short ,
unsigned int , unsigned long , and unsigned long long . The type can be
specified by adding an additional element to the list describing the array, e.g.

arrays = [[’len’, ’a’, ’long’]]

It is important that there is correspondance between the type of the NumPy
array and the type in the signature of the C function. For arrays that are changed
in-place, the types have to match exactly. For arrays that are input or output
(see next section), one has to make sure that the implicit casting is done to a
type with higher accuracy. For input arrays, the C type must be of higher (or the
same) accuracy than the NumPy array, while for output arrays the NumPy array
type must be of higher (or the same) accuracy than the C array. The NumPy
type float32 corresponds to the C type float , while float64 corresponds to
double . The NumPy type float is the same as float64 . For integer arrays,
the mapping between NumPy types and C types depends on your system. Using
long as the C type will work in most cases.
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Input/Output Arrays

All arrays are assumed to be both input and output arrays, i.e. any changes
to arrays in the C code result in the NumPy array being changed in-place. For
performace purposes, this is desirable, as we avoid unecessary copying of data.
The NumPy SWIG interface file has support for both input and output arrays
in addition to changing arrays in-place. Input arrays do not need to be NumPy
arrays, but can be any type of sequence, e.g. lists and tuples. The default be-
haviour of the NumPy SWIG interface file is to create new objects for sequences
that are not NumPy arrays, while using mere pointers to the data of NumPy
arrays. Instant deviates from this behaviour by taking copies of all input data,
allowing for the modification of the array in the C code, as might be necessary
for certain applications, while retaining the array as seen from the Python code.
An array is marked as input only by adding the additional element ’in’ to the
list describing the array:

arrays = [[’len’, ’a’, ’in’]]

It is also possible to create output arrays in the C code. Instead of creating
an array in the Python code and sending it as an in-place array to the C code,
the array is created by the wrapper code and returned. If there are are multiple
output arrays or the C function has a return argument, the wrapper function
returns a tuple with the different arguments. This approach is more Python-like
than changing arrays in-place.

We only need to specify the length of the array when calling the wrapper
function. The limitation is that only 1-dimensional arrays are supported, which
means that we need to set the shape of the array manually after calling the
wrapper function. In the C code all arrays are treated as 1-dimensional, so this
does not affect the C code. An array is marked as input only by adding the
additional element ’out’ to the list describing the array. The following code
shows an example where we calculate matrix-vector multiplication x = Ab. The
matrix A is marked as input, the vector b as in-place, and the vector x as output.
The example is only meant for illustrating the use of the different array options,
and can be found in the file $examples/ex5.py . We verify that the result is
correct by using the dot product from NumPy:

from instant import inline_with_numpy
from numpy import arange, dot

c_code = ’’’
void dot_c(int Am, int An, long * A, int bn, int * b,

int xn, double * x)
{

for (int i=0; i<Am; i++)

138



Ilmar M. Wilbers, Kent-Andre Mardal and Martin S. Alnæs

{
x[i] = 0;
for (int j=0; j<An; j++)
{

x[i] += A[i * Am + j] * b[j];
}

}
}
’’’
dot_c = \

inline_with_numpy(c_code,
arrays = [[’Am’, ’An’, ’A’, ’in’, ’long’],

[’bn’, ’b’, ’int’],
[’xn’, ’x’, ’out’]])

a = arange(9)
a.shape = (3, 3)
b = arange(3)

c1 = dot_c(a, b, a.shape[1])
c2 = dot(a, b)
print c1
print c2

Multi-dimensional Arrays

If one needs to work with arrays that are more than 3-dimensional, this is pos-
sible. However, the typemaps used for this employ less error checking, and can
only be used for the C type double . The list describing the array should contain
the variable name for holding the number of dimensions, the variable name for
an integer arrays holding the size in each dimension, the variable name for the
array, and the argument ’multi’ , indicating that it has more than 3 dimen-
sions. The arrays argument could for example be:

arrays = [[’m’, ’mp’, ’ar1’, ’multi’],
[’n’, ’np’, ’ar2’, ’multi’]]

In this case, the C function signature should look like:

void sum (int m, int * mp, double * ar1, int n,
int * np, double * ar2)

In the C code, all arrays are 1-dimensional. Indexing a 3-dimensional arrays
becames rather complicated because of striding. For instance, instead of writing
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u(i,j,k) we need to write u[i * ny * nz + j * ny + k] , where nx , ny , and nz
are the lengths of the array in each direction. One way of achieving a simpler
syntax is to use the #define macro in C:

#define index(u, i, j, k) u[(i) * nz * ny + (j) * ny + (k)]

which allows us to write index(u, i, j, k) instead.

16.3.2 Module name, signature, and cache

The Instant cache resides in the directory .instant in the directory of the user.
It is possible to specify a different directory, but the instant-clean script will
not remove these when executed. The three keyword arguments modulename ,
signature , and cache dir are connected. If none of them are given, the default
behaviour is to create a signature from the contents of the files and arguments
to the build module function, resulting in a name starting with instant -
module followed by a long checksum. The resulting code is copied to Instant
cache unless cache dir is set to a specific directory. Note that changing the
arguments or any of the files will result in a new directory in the Instant cache,
as the checksum no longer is the same. Before compiling a module, Instant will
always check if it is cached in both the Instant cache and in the current working
directory.

If modulename is used, the directory with the resulting code is named ac-
cordingly, but not copied to the Instant cache. Instead, it is stored in the current
working directory. Any changes to the argument or the source files will automat-
ically result in a recompilation. The argument cache dir is ignored.

When signature is given as argument, Instant uses this instead of calculat-
ing checksums. The resulting directory has the same name as the signature, pro-
vided the signature does not contain more than 100 characters containing only
letters, numbers, or a underscore. If the signature contains any of these char-
acters, the module name is generated based on the checksum of this string, re-
sulting in a module name starting with instant module followed by the check-
sum. Because the user specifies the signature herself, changes in the arguments
or source code will not cause a recompilation. The use of signatures is primarily
intended for external software making use of Instant, e.g. SFC. Sometimes, the
code output by this software might be different from the code used previously
by Instant, without these changes affecting the result of running this code (e.g.
comments are inserted to the code). By using signatures, the external program
can decide when recompilation is necessary instead of leaving this to Instant.
Unless otherwise specified, the modules is stored in the Instant cache.

It is not possible to specify both the module name and the signature. If both
are given, Instant will issue an error.
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In addition to the disk cache discussed so far, Instant also has a memory
cache. All modules used during the life-time of a program are stored in memory
for faster access. The memory cache is always checked before the disk cache.

16.3.3 Locking

Instant provides file locking functionality for cache modules. If multiple pro-
cesses are working on the same module, race conditions could potentially occur
whre two or more processes believe the module is missing from the cache and try
to write it simultaneously. To avoid race conditions, lock files were introduced.
The lock files reside in the Instant cache, and locking is only enabled for modules
that should be cached, i.e. where the module name is not given explicitely as
argument to build module or one of its wrapper functions. The first process to
reach the stage where the module is copied from its temporary location to the
Instant cache, will aquire a lock, and other processes cannot access this module
while it is being copied.

16.4 Instant API

In this section we will describe the various Instant functions and their argu-
ments visible to the user. The first ten functions are the core Instant functions,
with build module being the main one, while the next eight are wrapper func-
tions around this function. Further, there are four more helper functions avail-
able, intended for using Instant with other applications.

16.4.1 build module

This function is the most important one in Instant, and for most applications
the only one that developers need to use, combined with the existing wrapper
functions around this function. The return argument is the compiled module,
hence it can be used directly in the calling code (rather then importing it as a
Python module). It is also possible to import the module manually if compiled in
the same directory as the calling code.

There are a number of keyword arguments, and we will explain them in detail
here. Although one of the aims of Instant is to minimize the direct interaction
with SWIG, some of the keywords require a good knowledge of SWIG in order to
make sense. In this way, Instant can be used both by programmers new to the
use of extension languages for Python, as well as by experienced SWIG program-
mers. The keywords arguments are as follows:

• modulename

– Default: None
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– Type: String

– Comment: The name you want for the module. If specified, the module
will not be cached. If missing, a name will be constructed based on a
checksum of the other arguments, and the module will be placed in the
global cache. See Section 16.3.2 for more details.

• source directory

– Default: ’.’

– Type: String

– Comment: The directory where user supplied files reside. The files
given in sources , wrap headers , and local headers are expected
to exist in this directory.

• code

– Default: ’’

– Type: String

– Comment: The C or C++ code to be compiled and wrapped.

• init code

– Default: ’’

– Type: String

– Comment: Code that should be executed when the Instant module is
imported. This code is inserted in the SWIG interface file, and is used
for instance for calling import array() used for the initialization of
NumPy arrays.

• additional definitions

– Default: ’’

– Type: String

– Comment: Additional definitions (typically needed for inheritance) for
interface file. These definitions should be given as triple-quoted strings
in the case they span multiple lines, and are placed both in the initial
block for C/C++ code (%{,%}-block), and the main section of the inter-
face file.

• additional declarations

– Default: ’’

– Type: String
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– Comment: Additional declarations (typically needed for inheritance)
for interface file. These declarations should be given as triple-quoted
strings in the case they span multiple lines, and are placed in the main
section of the interface file.

• sources

– Default: []

– Type: List of strings

– Comment: Source files to compile and link with the module. These
files are compiled togehter with the SWIG-generated wrapper file into
the final library file. Should reside in directory specified in source -
directory .

• wrap headers

– Default: []

– Type: List of strings

– Comment: Local header files that should be wrapped by SWIG. The
files specified will be included both in the initial block for C/C++ code
(with a C directive) and in the main section of the interface file (with
a SWIG directive). Should reside in directory specified in source -
directory .

• local headers

– Default: []

– Type: List of strings

– Comment: Local header files required to compile the wrapped code.
The files specified will be included in the initial block for C/C++ code
(with a C directive). Should reside in directory specified in source -
directory .

• system headers

– Default: []

– Type: List of strings

– Comment: System header files required to compile the wrapped code.
The files specified will be included in the initial block for C/C++ code
(with a C directive).

• include dirs

– Default: []
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– Type: List of strings

– Comment: Directories to search for header files for building the exten-
sion module. Needs to be absolute path names.

• library dirs

– Default: []

– Type: List of strings

– Comment: Directories to search for libraries (-l ) for building the ex-
tension module. Needs to be absolute paths.

• libraries

– Default: []

– Type: List of strings

– Comment: Libraries needed by the Instant module. The libraries will
be linked in from the shared object file. The initial -l is added auto-
matically.

• swigargs

– Default: [’-c++’, ’-fcompact’, ’-O’, ’-I.’, ’-small’]

– Type: List of strings

– Comment: Arguments to swig, e.g. [’-lpointers.i’] to include the
SWIG pointers.i library.

• swig include dirs

– Default: []

– Type: List of strings

– Comment: Directories to include in the ’swig’ command.

• cppargs

– Default: [’-O2’]

– Type: List of strings

– Comment: Arguments to the C++ compiler, other than include directo-
ries, e.g. [’-Wall’, ’-fopenmp’] .

• lddargs

– Default: []

– Type: List of strings
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– Comment: Arguments to the linker, other than libraries and library
directories, e.g. [’-E’, ’-U’] .

• arrays

– Default: []

– Type: List of strings

– Comment: A nested list describing the C arrays to be made fromNumPy
arrays. The SWIG interface for fil NumPy is used. For 1D arrays,
the inner list should contain strings with the variable names for the
length of the arrays and the array itself. 2D matrices should contain
the names of the dimensions in the two directions as well as the name
of the array, and 3D tensors should contain the names of the dimen-
sions in the three directions in addition to the name of the array. If
the NumPy array har more than four dimensions, the inner list should
contain strings with variable names for the number of dimensions, the
length in each dimension as a pointer, and the array itself, respectively.
For more details, see Section 16.3.1.

• generate interface

– Default: True

– Type: Boolean

– Comment: Indicate whether you want to generate the interface files.

• generate setup

– Default: True

– Type: Boolean

– Comment: Indicate if you want to generate the setup.py file.

• signature

– Default: None

– Type: String

– Comment: A signature string to identify the form instead of the source
code. See Section 16.3.2.

• cache dir

– Default: None

– Type: String
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– Comment: A directory to look for cached modules and place new ones.
If missing, a default directory is used. Note that the module will not
be cached if modulename is specified. The cache directory should not
be used for anything else.

16.4.2 inline

The function inline creates a module given that the input is a valid C/C++ func-
tion. It is only possible to inline one C/C++ function each time. One mandatory
argument, which is the C/C++ code to be compiled.

The default keyword arguments from build module are used, with c code
as the C/C++ code given as argument to inline . These keyword argument can
be overridden, however, by giving them as arguments to inline , with the obvi-
ous exception of code . The function tries to return the single C/C++ function to
be compiled rather than the whole module, if it fails, the module is returned.

16.4.3 inline module

The same as inline , but returns the whole module rather than a single func-
tion. Except for the C/C++ code being a mandatory argument, the exact same as
build module .

16.4.4 inline with numpy

The difference between this function and the inline function is that C-arrays
can be used. This means that the necessary arguments (init code , system -
headers , and include dirs ) for converting NumPy arrays to C arrays are set
by the function.

16.4.5 inline module with numpy

The difference between this function and the inline module function is that
C-arrays can be used. This means that the necessary arguments (init code ,
system headers , and include dirs ) for converting NumPy arrays to C arrays
are set by the function.

16.4.6 import module

This function can be used to import cached modules from the current work di-
rectory or the Instant cache. It has one mandatory argument, moduleid , and
one keyword argument cache dir . If the latter is given, Instant searches the
specified directory instead of the Instant cache, if this directory exists. If the
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module is not found, None is returned. The moduleid arguments can be either
the module name, a signature, or an object with a function signature .

Using the module name or signature, assuming the module instant ext
exists in the current working directory or the Instant cache, we import a module
in the following way:

instant_ext = import_module(’instant_ext’)

Using an object as argument, assuming this object includes a function signature()
and the module is located in the directory /tmp :

instant_ext = import_module(signature_object, ’/tmp’)

The imported module, if found, is also placed in the memory cache.

16.4.7 header and libs from pkgconfig

This function returns a list of include files, flags, libraries and library directories
obtain from a pkg-config [pkg] file. It takes any number of arguments, one string
for every package name. It returns four or five arguments. Unless the keyword
argument returnLinkFlags is given with the value True , it returns lists with
the include directories, the compile flags, the libraries, and the library directories
of the package names given as arguments. If returnLinkFlags is True , the
link flags are returned as a fifth list. Let’s look at an example:

inc_dirs, comp_flags, libs, lib_dirs, link_flags = \
header_and_libs_from_pkgconfig(’ufc-1’, ’libxml-2.0’ ,

’numpy-1’,
returnLinkFlags=True)

This makes it a easy to write C code that makes use of a package providing a
pkg-config file, as we can use the returned lists for compiling and linking our
module correctly.

16.4.8 get status output

This function provides a platform-independent way of running processes in the
terminal and extracting the output using the Python module subprocess 4. The
one mandatory argument is the command we want to run. Further, there are
three keyword arguments. The first is input , which should be a string contain-
ing input to the process once it is running. The other two are cwd and env .
We refer to the documentation of subprocess for a more detailes description of
these, but in short the first is the directory in which the process should be exe-
cuted, while the second is used for setting the necessary environment variables.

4http://docs.python.org/library/subprocess.html
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16.4.9 get swig version

Returns the SWIG version installed on the system as a string, for instance ’1.3.36’.
Accepts no arguments.

16.4.10 check swig version

Takes a single argument, which should be a string on the same format as the
output of get swig version . Returns True if the version of the installed SWIG
is equal or greater than the version passed to the function. It also has one key-
word argument, same. If it is True , the function returns True if and only if the
two versions are the same.
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CHAPTER 17

SyFi: Symbolic Construction of Finite Element Basis

Functions

By Martin S. Alnæs and Kent-Andre Mardal

Chapter ref: [alnes-3]

SyFi is a C++ library for definition of finite elements based on symbolic com-
putations. By solving linear systems of equations symbolically, symbolic expres-
sions for the basis functions of a finite element can be obtained. SyFi contains a
collection of such elements.

The SyFi Form Compiler, SFC, is a Python module for generation of fi- nite
element code based on symbolic computations. Using equations in UFL format
as input and basis functions from SyFi, SFC can generate C++ code which im-
plements the UFC interface for computation of the discretized element tensors.
SFC supports generating code based on quadrature or using symbolic integration
prior to code generation to produce highly optimized code.
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UFC: A Finite Element Code Generation Interface

By Martin S. Alnæs, Anders Logg and Kent-Andre Mardal

Chapter ref: [alnes-2]

When combining handwritten libraries with automatically generated code
like we do in FEniCS, it is important to have clear boundaries between the two.
This is best done by having the generated code implement a fixed interface, such
that the library and generated code can be as independent as possible. Such an
interface is specified in the project Unified Form-assembly Code (UFC) for finite
elements and discrete variational forms. This interface consists of a small set of
abstract classes in a single header file, which is well documented. The details
of the UFC interface should rarely be visible to the end-user, but can be im-
portant for developers and technical users to understand how FEniCS projects
fit together. In this chapter we discuss the main design ideas behind the UFC
interface, including current limitations and possible future improvements.
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CHAPTER 19

UFL: A Finite Element Form Language

By Martin Sandve Alnæs

Chapter ref: [alnes-1]

◮ Editor note: Sort out what to do with all UFL specific macros and bold math fonts.

The Unified Form Language – UFL [?, ?] – is a domain specific language for
the declaration of finite element discretizations of variational forms and func-
tionals. More precisely, the language defines a flexible user interface for defining
finite element spaces and expressions for weak forms in a notation close to math-
ematical notation.

The FEniCS project [?, FEn, ?] provides a framework for building applications
for solving partial differential equations (PDEs). UFL is one of the core compo-
nents of this framework. It defines the language you express your PDEs in. It is
the input language and front-end of the form compilers FFC [?, ?, ?, ?, ?, ?] and
SFC [?, ?]. The UFL implementation provides algorithms that the form com-
pilers can use to simplify the compilation process. The output from these form
compilers is UFC [?, ?, ?] conforming C++ [?] code. This code can be used with the
C++ library DOLFIN1 [?, ?, ?] to efficiently assemble linear systems and compute
solution to PDEs.

The combination of domain specific languages and symbolic computing with
finite element methods has been pursued from other angles in several other
projects. Sundance [?, ?, ?] implements a symbolic engine directly in C++ to
define variational forms, and has support for automatic differentiation. The
Life [?, ?] project uses a domain specific language embedded in C++, based on ex-
pression template techniques to specify variational forms. SfePy [?] uses SymPy

1Note that in PyDOLFIN, some parts of UFL is wrapped to blend in with other software
components and make the compilation process hidden from the user. This is not discussed here.
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as a symbolic engine, extending it with finite element methods. GetDP [?, ?]
is another project using a domain specific language for variational forms. The
Mathematica package AceGen [?, ?] uses the symbolic capabilities of Mathemat-
ica to generate efficient code for finite element methods. All these packages have
in common a focus on high level descriptions of partial differential equations to
achive higher human efficiency in the development of simulation software.

UFL almost resembles a library for symbolic computing, but its scope, goals
and priorities are different from generic symbolic computing projects such as
GiNaC [?, ?], swiginac [Swib] and SymPy [?]. Intended as a domain specific lan-
guage and form compiler frontend, UFL is not suitable for large scale symbolic
computing.

This chapter is intended both for the FEniCS user who wants to learn how to
express her equations, and for other FEniCS developers and technical users who
wants to know how UFL works on the inside. Therefore, the sections of this chap-
ter are organized with an increasing amount of technical details. Sections 19.1-
19.5 give an overview of the language as seen by the end-user and is intended
for all audiences. Sections 19.6-19.9 explain the design of the implementation
and dive into some implementation details. Many details of the language has to
be omitted in a text such as this, and we refer to the UFL manual [?] for a more
thorough description. Note that this chapter refers to UFL version 0.3, and both
the user interface and the implementation may change in future versions.

Starting with a brief overview, we mention the main design goals for UFL and
show an example implementation of a non-trivial PDE in Section 19.1. Next we
will look at how to define finite element spaces in Section 19.2, followed by the
overall structure of forms and their declaration in Section 19.3. The main part
of the language is concerned with defining expressions from a set of data types
and operators, which are discussed in Section 19.4. Operators applying to entire
forms is the topic of Section 19.5.

The technical part of the chapter begins with Section 19.6 which discusses
the representation of expressions. Building on the notation and data structures
defined there, how to compute derivatives is discussed in Section 19.7. Some cen-
tral internal algorithms and key issues in their implementation are discussed in
Section 19.8. Implementation details, some of which are specific to the program-
ming language Python [Pyt], is the topic of Section 19.9. Finally, Section 19.10
discusses future prospects of the UFL project.

19.1 Overview

19.1.1 Design goals

UFL is a unification, refinement and reimplementation of the form languages
used in previous versions of FFC and SFC. The development of this language
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has been motivated by several factors, the most important being:

• A richer form language, especially for expressing nonlinear PDEs.

• Automatic differentiation of expressions and forms.

• Improving the performance of the form compiler technology to handle more
complicated equations efficiently.

UFL fulfils all these requirements, and by this it represents a major step forward
in the capabilities of the FEniCS project.

Tensor algebra and index notation support is modeled after the FFC form lan-
guage and generalized further. Several nonlinear operators and functions which
only SFC supported before have been included in the language. Differentiation
of expressions and forms has become an integrated part of the language, and is
much easier to use than the way these features were implemented in SFC be-
fore. In summary, UFL combines the best of FFC and SFC in one unified form
language and adds additional capabilities.

The efficiency of code generated by the new generation of form compilers
based on UFL has been verified to match previous form compiler benchmarks [?,
?]. The form compilation process is now fast enough to blend into the regular
application build process. Complicated forms that previously required too much
memory to compile, or took tens of minutes or even hours to compile, now com-
piles in seconds with both SFC and FFC.

19.1.2 Motivational example

One major motivating example during the initial development of UFL has been
the equations for elasticity with large deformations. In particular, models of bi-
ological tissue use complicated hyperelastic constitutive laws with anisotropies
and strong nonlinearities. To implement these equations with FEniCS, all three
design goals listed above had to be adressed. Below, one version of the hypere-
lasticity equations and their corresponding UFL implementation is shown. Keep
in mind that this is only intended as an illustration of the close correspondence
between the form language and the natural formulation of the equations. The
meaning of equations is not necessary for the reader to understand. Note that
many other examples are distributed together with UFL.

In the formulation of the hyperelasticity equations presented here, the un-
known function is the displacement vector field u. The material coefficients c1
and c2 are scalar constants. The second Piola-Kirchoff stress tensor S is com-
puted from the strain energy function W (C). W defines the constitutive law,
here a simple Mooney-Rivlin law. The equations relating the displacement and
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stresses read:

F = I + (∇u)T ,

C = FT F,

IC = tr(C),

IIC =
1

2
(tr(C)2 − tr(CC)),

W = c1(IC − 3) + c2(IIC − 3),

S = 2
∂W

∂C
,

P = FS.

(19.1)

Approximating the displacement field as u =
∑

k ukφ
1
k, the weak forms of the

equations are as follows (ignoring boundary conditions):

L(φ0;u, c1, c2) =

∫

Ω

P : (∇φ0)T dx, (19.2)

a(φ0,φ1
k;u, c1, c2) =

∂L

∂uk

. (19.3)

Figure 19.1.2 shows an implementation of these equations in UFL. Notice the
close relation between the mathematical notation and the UFL source code. In
particular, note the automated differentiation of both the constitutive law and
the residual equation. This means a new material law can be implemented by
simply changingW , the rest is automatic. In the following sections, the notation,
definitions and operators used in this implementation are explained.

19.2 Defining finite element spaces

A polygonal cell is defined by a basic shape and a degree2, and is declared

cell = Cell(shape, degree)

UFL defines a set of valid polygonal cell shapes: “interval”, “triangle”, “tetra-
hedron”, “quadrilateral”, and “hexahedron”. Linear cells of all basic shapes are
predefined and can be used instead by writing

cell = tetrahedron

2Note that at the time of writing, the other components of FEniCS does not yet handle higher
degree cells.
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# Finite element spaces
cell = tetrahedron
element = VectorElement("CG", cell, 1)

# Form arguments
phi0 = TestFunction(element)
phi1 = TrialFunction(element)
u = Function(element)
c1 = Constant(cell)
c2 = Constant(cell)

# Deformation gradient Fij = dXi/dxj
I = Identity(cell.d)
F = I + grad(u).T

# Right Cauchy-Green strain tensor C with invariants
C = variable(F.T * F)
I_C = tr(C)
II_C = (I_C ** 2 - tr(C * C))/2

# Mooney-Rivlin constitutive law
W = c1* (I_C-3) + c2 * (II_C-3)

# Second Piola-Kirchoff stress tensor
S = 2* diff(W, C)

# Weak forms
L = inner(F * S, grad(phi0).T) * dx
a = derivative(L, u, phi1)

Figure 19.1: UFL implementation of hyperelasticity equations with a Mooney-
Rivlin material law.
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In the rest of this chapter, a variable name cell will be used where any cell
is a valid argument, to make the examples dimension independent wherever
possible.

UFL defines syntax for declaring finite element spaces, but does not know
anything about the actual polynomial basis or degrees of freedom. The poly-
nomial basis is selected implicitly by choosing among predefined basic element
families and providing a polynomial degree, but UFL only assumes that there
exists a basis with a fixed ordering for each finite element space Vh, i.e.

Vh = span {φj}nj=1 . (19.4)

Basic scalar elements can be combined to form vector elements or tensor ele-
ments, and elements can easily be combined in arbitrary mixed element hierar-
chies.

The set of predefined3 element family names in UFL includes “Lagrange”
(short name “CG”), representing scalar Lagrange finite elements (continuous
piecewise polynomial functions), “Discontinuous Lagrange” (short name “DG”),
representing scalar discontinuous Lagrange finite elements (discontinuous piece-
wise polynomial functions), and a range of other families that can be found in
the manual. Each family name has an associated short name for convenience.
To print all valid families to screen from Python, call show elements() .

The syntax for declaring elements is best explained with some examples.

cell = tetrahedron

P = FiniteElement("Lagrange", cell, 1)
V = VectorElement("Lagrange", cell, 2)
T = TensorElement("DG", cell, 0, symmetry=True)

TH = V + P
ME = MixedElement(T, V, P)

In the first line a polygonal cell is selected from the set of predefined linear cells.
Then a scalar linear Lagrange element P is declared, as well as a quadratic vector
Lagrange element V. Next a symmetric rank 2 tensor element T is defined, which
is also piecewise constant on each cell. The code pproceeds to declare a mixed
element TH, which combines the quadratic vector element V and the linear scalar
element P. This element is known as the Taylor-Hood element. Finally another
mixed element with three sub elements is declared. Note that writing T + V +
Pwould not result in a mixed element with three direct sub elements, but rather
MixedElement(MixedElement(T + V), P) .

3Form compilers can register additional element families.
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19.3 Defining forms

Consider Poisson’s equation with two different boundary conditions on ∂Ω0 and
∂Ω1,

a(v, u;w) =

∫

Ω

w∇u · ∇v dx, (19.5)

L(v; f, g, h) =

∫

Ω

fv dx+

∫

∂Ω0

g2v ds+

∫

∂Ω1

hv ds. (19.6)

These forms can be expressed in UFL as

a = dot(grad(u), grad(v)) * dx
L = f * v* dx + g ** 2* v* ds(0) + h * v* ds(1)

where multiplication by the measures dx , ds(0) and ds(1) represent the inte-
grals

∫
Ω0

(·) dx,
∫

∂Ω0
(·) ds, and

∫
∂Ω1

(·) ds respectively.
Forms expressed in UFL are intended for finite element discretization fol-

lowed by compilation to efficient code for computing the element tensor. Consid-
ering the above example, the bilinear form a with one coefficient function w is
assumed to be evaluated at a later point with a range of basis functions and the
coefficient function fixed, that is

V 1
h = span

{
φ1

k

}
, V 2

h = span
{
φ2

k

}
, V 3

h = span
{
φ3

k

}
, (19.7)

w =

|V 2
h
|∑

k=1

wkφ
3
k, {wk} given, (19.8)

Aij = a(φ1
i , φ

2
j ;w), i = 1, . . . , |V 1

h |, j = 1, . . . , |V 2
h |. (19.9)

In general, UFL is designed to express forms of the following generalized
form:

a(φ1, . . . , φr;w1, . . . , wn) =
nc∑

k=1

∫

Ωk

Ic
k dx+

ne∑

k=1

∫

∂Ωk

Ie
k ds+

ni∑

k=1

∫

Γk

I i
k dS. (19.10)

Most of this chapter deals with ways to define the integrand expressions Ic
k, I

e
k

and I i
k. The rest of the notation will be explained below.

The form arguments are divided in two groups, the basis functions φ1, . . . , φr

and the coefficient functions w1, . . . , wn. All {φk} and {wk} are functions in some
discrete function space with a basis. Note that the actual basis functions {φk

j}
and the coefficients {wk} are never known to UFL, but we assume that the or-
dering of the basis for each finite element space is fixed. A fixed ordering only
matters when differentiating forms, explained in Section 19.7.

Each term of a valid form expression must be a scalar-valued expression in-
tegrated exactly once, and they must be linear in {φk}. Any term may have
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nonlinear dependencies on coefficient functions. A form with one or two basis
function arguments (r = 1, 2) is called a linear or bilinear form respectively, ig-
noring its dependency on coefficient functions. These will be assembled to vectors
and matrices when used in an application. A form depending only on coefficient
functions (r = 0) is called a functional, since it will be assembled to a real number.

The entire domain is denoted Ω, the external boundary is denoted ∂Ω, while
the set of interior facets of the triangulation is denoted Γ. Sub domains are
marked with a suffix, e.g., Ωk ⊂ Ω. As mentioned above, integration is expressed
by multiplication with a measure, and UFL defines the measures dx , ds and dS.
In summary, there are three kinds of integrals with corresponding UFL repre-
sentations

•
∫
Ωk

(·) dx↔ (·)* dx(k) , called a cell integral,

•
∫

∂Ωk
(·) ds↔ (·)* ds(k) , called an exterior facet integral,

•
∫
Γk

(·) dS ↔ (·)* dS(k) , called an interior facet integral,

Defining a different quadrature order for each term in a form can be achieved by
attaching meta data to measure objects, e.g.,

dx02 = dx(0, { "integration_order": 2 })
dx14 = dx(1, { "integration_order": 4 })
dx12 = dx(1, { "integration_order": 2 })
L = f * v* dx02 + g * v* dx14 + h * v* dx12

Meta data can also be used to override other form compiler specific options sep-
arately for each term. For more details on this feature see the manuals of UFL
and the form compilers.

19.4 Defining expressions

Most of UFL deals with how to declare expressions such as the integrand ex-
pressions in Equation 19.10. The most basic expressions are terminal values,
which do not depend on other expressions. Other expressions are called opera-
tors, which are discussed in sections 19.4.2-19.4.5.

Terminal value types in UFL include form arguments (which is the topic of
Section 19.4.1), geometric quantities, and literal constants. Among the literal
constants are scalar integer and floating point values, as well as the d by d iden-
tity matrix I = Identity(d) . To get unit vectors, simply use rows or columns
of the identity matrix, e.g., e0 = I[0,:] . Similarly, I[i,j] represents the
Dirac delta function δij (see Section 19.4.2 for details on index notation). Avail-
able geometric values are the spatial coordinates x↔ cell.x and the facet nor-
mal n↔ cell.n . The geometric dimension is available as cell.d .

160



Martin Sandve Alnæs

19.4.1 Form arguments

Basis functions and coefficient functions are represented by BasisFunction
and Function respectively. The ordering of the arguments to a form is decided
by the order in which the form arguments were declared in the UFL code. Each
basis function argument represents any function in the basis of its finite element
space

φj ∈ {φj
k}, V j

h = span
{
φj

k

}
. (19.11)

with the intention that the form is later evaluated for all φk such as in equation
(19.9). Each coefficient function w represents a discrete function in some finite
element space Vh; it is usually a sum of basis functions φk ∈ Vh with coefficients
wk

w =

|Vh|∑

k=1

wkφk. (19.12)

The exception is coefficient functions that can only be evaluated pointwise, which
are declared with a finite element with family “Quadrature”. Basis functions are
declared for an arbitrary element as in the following manner:

phi = BasisFunction(element)
v = TestFunction(element)
u = TrialFunction(element)

By using TestFunction and TrialFunction in declarations instead of Basis-
Function you can ignore their relative ordering. The only time BasisFunction
is needed is for forms of arity r > 2.

Coefficient functions are declared similarly for an arbitrary element, and
shorthand notation exists for declaring piecewise constant functions:

w = Function(element)
c = Constant(cell)
v = VectorConstant(cell)
M = TensorConstant(cell)

If a form argument u in a mixed finite element space Vh = V 0
h ×V 1

h is desired, but
the form is more easily expressed using sub functions u0 ∈ V 0

h and u1 ∈ V 1
h , you

can split the mixed function or basis function into its sub functions in a generic
way using split :

V = V0 + V1
u = Function(V)
u0, u1 = split(u)
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The split function can handle arbitrary mixed elements. Alternatively, a handy
shorthand notation for argument declaration followed by split is

v0, v1 = TestFunctions(V)
u0, u1 = TrialFunctions(V)
f0, f1 = Functions(V)

19.4.2 Index notation

UFL allows working with tensor expressions of arbitrary rank, using both tensor
algebra and index notation. A basic familiarity with tensor algebra and index
notation is assumed. The focus here is on how index notation is expressed in
UFL.

Assuming a standard orthonormal Euclidean basis 〈ek〉dk=1 for R
d, a vector can

be expressed with its scalar components in this basis. Tensors of rank two can be
expressed using their scalar components in a dyadic basis {ei⊗ej}di,j=1. Arbitrary
rank tensors can be expressed the same way, as illustrated here.

v =
d∑

k=1

vkek, (19.13)

A =

d∑

i=1

d∑

j=1

Aijei ⊗ ej, (19.14)

C =

d∑

i=1

d∑

j=1

∑

k

Cijkei ⊗ ej ⊗ ek. (19.15)

Here, v, A and C are rank 1, 2 and 3 tensors respectively. Indices are called
free if they have no assigned value, such as i in vi, and fixed if they have a fixed
value such as 1 in v1. An expression with free indices represents any expression
you can get by assigning fixed values to the indices. The expression Aij is scalar
valued, and represents any component (i, j) of the tensor A in the Euclidean ba-
sis. When working on paper, it is easy to switch between tensor notation (A)
and index notation (Aij) with the knowledge that the tensor and its components
are different representations of the same physical quantity. In a programming
language, we must express the operations mapping from tensor to scalar compo-
nents and back explicitly. Mapping from a tensor to its components, for a rank 2
tensor defined as

Aij = A : (ei ⊗ ej), (19.16)

(19.17)

162



Martin Sandve Alnæs

is accomplished using indexing with the notation A[i,j] . Defining a tensor A

from component values Aij is defined as

A = Aijei ⊗ ej , (19.18)

and is accomplished using the function as vector(Aij, (i,j)) . To illustrate,
consider the outer product of two vectors A = u ⊗ v = uivjei ⊗ ej , and the corre-
sponding scalar components Aij . One way to implement this is

A = outer(u, v)
Aij = A[i, j]

Alternatively, the components of A can be expressed directly using index nota-
tion, such as Aij = uivj. Aij can then be mapped to A in the following manner:

Aij = v[j] * u[i]
A = as_tensor(Aij, (i, j))

These two pairs of lines are mathematically equivalent, and the result of either
pair is that the variable A represents the tensor A and the variable Aij repre-
sents the tensor Aij . Note that free indices have no ordering, so their order of
appearance in the expression v[j] * u[i] is insignificant. Instead of as tensor ,
the specialized functions as vector and as matrix can be used. Although a
rank two tensor was used for the examples above, the mappings generalize to
arbitrary rank tensors.

When indexing expressions, fixed indices can also be used such as in A[0,1]
which represents a single scalar component. Fixed indices can also be mixed
with free indices such as in A[0,i] . In addition, slices can be used in place of an
index. An example of using slices is A[0,:] which is is a vector expression that
represents row 0 of A. To create new indices, you can either make a single one or
make several at once:

i = Index()
j, k, l = indices(3)

A set of indices i , j , k , l and p, q, r , s are predefined, and these should suffice
for most applications.

If your components are not represented as an expression with free indices,
but as separate unrelated scalar expressions, you can build a tensor from them
using as tensor and its peers. As an example, lets define a 2D rotation matrix
and rotate a vector expression by π

2
:

th = pi/2
A = as_matrix([[ cos(th), -sin(th)],

[ sin(th), cos(th)]])
u = A* v
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When indices are repeated in a term, summation over those indices is im-
plied in accordance with the Einstein convention. In particular, indices can be
repeated when indexing a tensor of rank two or higher (A[i,i] ), when differen-
tiating an expression with a free index (v[i].dx(i) ), or when multiplying two
expressions with shared free indices (u[i] * v[i] ).

Aii ≡
∑

i

Aii, viui ≡
∑

i

viui, vi,i ≡
∑

i

vi,i. (19.19)

An expression Aij = A[i,j] is represented internally using the Indexed
class. Aij will reference A, keeping the representation of the original tensor
expression A unchanged. Implicit summation is represented explicitly in the
expression tree using the class IndexSum . Many algorithms become easier to
implement with this explicit representation, since e.g. a Product instance can
never implicitly represent a sum. More details on representation classes are
found in Section 19.6.

19.4.3 Algebraic operators and functions

UFL defines a comprehensive set of operators that can be used for composing
expressions. The elementary algebraic operators +, - , * , / can be used between
most UFL expressions with a few limitations. Division requires a scalar expres-
sion with no free indices in the denominator. The operands to a sum must have
the same shape and set of free indices.

The multiplication operator * is valid between two scalars, a scalar and any
tensor, a matrix and a vector, and two matrices. Other products could have been
defined, but for clarity we use tensor algebra operators and index notation for
those rare cases. A product of two expressions with shared free indices implies
summation over those indices, see Section 19.4.2 for more about index notation.

Three often used operators are dot(a, b) , inner(a, b) , and outer(a,
b) . The dot product of two tensors of arbitrary rank is the sum over the last
index of the first tensor and the first index of the second tensor. Some examples
are

v · u = viui, (19.20)

A · u = Aijujei, (19.21)

A ·B = AikBkjeiej , (19.22)

C ·A = CijkAkleiejel. (19.23)

The inner product is the sum over all indices, for example

v : u = viui, (19.24)

A : B = AijBij, (19.25)

C : D = CijklDijkl. (19.26)
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Some examples of the outer product are

v⊗ u = viujeiej , (19.27)

A⊗ u = Aijukeiejek, (19.28)

A⊗B = AijBkleiejekel (19.29)

Other common tensor algebra operators are cross(u,v) , transpose(A) (or
A.T ), tr(A) , det(A) , inv(A) , cofac(A) , dev(A) , skew(A) , and sym(A) . Most
of these tensor algebra operators expect tensors without free indices. The de-
tailed definitions of these operators are found in the manual.

A set of common elementary functions operating on scalar expressions with-
out free indices are included, in particular abs(f) , pow(f, g) , sqrt(f) , exp(f) ,
ln(f) , sin(f) , cos(f) , and sign(f) .

19.4.4 Differential operators

UFL implements derivatives w.r.t. three different kinds of variables. The most
used kind is spatial derivatives. Expressions can also be differentiated w.r.t.
arbitrary user defined variables. And the final kind of derivatives are derivatives
of a form or functional w.r.t. the coefficients of a Function . Form derivatives are
explained in Section 19.5.1.

Note that derivatives are not computed immediately when declared. A dis-
cussion of how derivatives are computed is found in Section 19.7.

Spatial derivatives

Basic spatial derivatives ∂f
∂xi

can be expressed in two equivalent ways:

df = Dx(f, i)
df = f.dx(i)

Here, df represents the derivative of f in the spatial direction xi. The index i can
either be an integer, representing differentiation in one fixed spatial direction xi,
or an Index , representing differentiation in the direction of a free index. The
notation f.dx(i) is intended to mirror the index notation f,i, which is shorthand
for ∂f

∂xi
. Repeated indices imply summation, such that the divergence of a vector

can be written vi,i, or v[i].dx(i) .
Several common compound spatial derivative operators are defined, namely

div , grad , curl and rot (rot is a synonym for curl). The definition of these
operators in UFL follow from the vector of partial derivatives

∇ ≡ ek
∂

∂xk
, (19.30)
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and the definition of the dot product, outer product, and cross product. Hence,

div(C) ≡ ∇ · C, (19.31)

grad(C) ≡ ∇⊗ C, (19.32)

curl(v) ≡ ∇× v. (19.33)

Note that there are two common ways to define grad and div. This way of defining
these operators correspond to writing the convection term from, e.g., the Navier-
Stokes equations as

w · ∇u = (w · ∇)u = w · (∇u) = wiuj,i, (19.34)

which is expressed in UFL as

dot(w, grad(u))

Another illustrative example is the anisotropic diffusion term from, e.g., the bido-
main equations, which reads

(A∇u) · v = Aiju,jvi, (19.35)

and is expressed in UFL as

dot(A * grad(u), v)

In other words, the divergence sums over the first index of its operand, and the
gradient prepends an axis to the tensor shape of its operand. The above defi-
nition of curl is only valid for 3D vector expressions. For 2D vector and scalar
expressions the definitions are:

curl(u) ≡ u1,0 − u0,1, (19.36)

curl(f) ≡ f,1e0 − f,0e1. (19.37)

User defined variables

The second kind of differentiation variables are user-defined variables, which can
represent arbitrary expressions. Automating derivatives w.r.t. arbitrary quanti-
ties is useful for several tasks, from differentiation of material laws to computing
sensitivities. An arbitrary expression g can be assigned to a variable v. An ex-
pression f defined as a function of v can be differentiated f w.r.t. v:

v = g, (19.38)

f = f(v), (19.39)

h(v) =
∂f(v)

∂v
. (19.40)

Setting g = sin(x0) and f = ev2
, gives h = 2vev2

= 2 sin(x0)e
sin2(x0), which can be

implemented as follows:
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g = sin(cell.x[0])
v = variable(g)
f = exp(v ** 2)
h = diff(f, v)

Try running this code in a Python session and print the expressions. The result
is

>>> print v
var0(sin((x)[0]))
>>> print h
d/d[var0(sin((x)[0]))] (exp((var0(sin((x)[0]))) ** 2))

Note that the variable has a label 0 (“var0”), and that h still represents the ab-
stract derivative. Section 19.7 explains how derivatives are computed.

19.4.5 Other operators

A few operators are provided for the implementation of discontinuous Galerkin
methods. The basic concept is restricting an expression to the positive or neg-
ative side of an interior facet, which is expressed simply as v(’+’) or v(’-’)
respectively. On top of this, the operators avg and jump are implemented, de-
fined as

avg(v) =
1

2
(v+ + v−), (19.41)

jump(v) = v+ − v−. (19.42)

These operators can only be used when integrating over the interior facets (* dS).
The only control flow construct included in UFL is conditional expressions. A

conditional expression takes on one of two values depending on the result of a
boolean logic expression. The syntax for this is

f = conditional(condition, true_value, false_value)

which is interpreted as

f =

{
t, if condition is true,

f, otherwise.
(19.43)

The condition can be one of
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• lt(a, b) ↔ (a < b)

• le(a, b) ↔ (a ≤ b)

• eq(a, b) ↔ (a = b)

• gt(a, b) ↔ (a > b)

• ge(a, b) ↔ (a ≥ b)

• ne(a, b) ↔ (a 6= b)

19.5 Form operators

Once you have defined some forms, there are several ways to compute related
forms from them. While operators in the previous section are used to define ex-
pressions, the operators discussed in this section are applied to forms, producing
new forms. Form operators can both make form definitions more compact and
reduce the chances of bugs since changes in the original form will propagate to
forms computed from it automatically. These form operators can be combined
arbitrarily; given a semi-linear form only a few lines are needed to compute the
action of the adjoint of the Jacobi. Since these computations are done prior to
processing by the form compilers, there is no overhead at run-time.

19.5.1 Differentiating forms

The form operator derivative declares the derivative of a form w.r.t. coef-
ficients of a discrete function (Function ). This functionality can be used for
example to linearize your nonlinear residual equation (linear form) automati-
cally for use with the Newton-Raphson method. It can also be applied multiple
times, which is useful to derive a linear system from a convex functional, in or-
der to find the function that minimizes the functional. For non-trivial equations
such expressions can be tedious to calculate by hand. Other areas in which this
feature can be useful include optimal control and inverse methods, as well as
sensitivity analysis.

In its simplest form, the declaration of the derivative of a form L w.r.t. the
coefficients of a function w reads

a = derivative(L, w, u)

The form a depends on an additional basis function argument u, which must
be in the same finite element space as the function w. If the last argument is
omitted, a new basis function argument is created.

Let us step through an example of how to apply derivative twice to a func-
tional to derive a linear system. In the following, Vh is a finite element space
with some basis, w is a function in Vh, and f is a functional we want to minimize.
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Derived from f is a linear form F , and a bilinear form J .

Vh = span {φk} , (19.44)

w(x) =

|Vh|∑

k=1

wkφk(x), (19.45)

f : Vh → R, (19.46)

F (φi;w) =
∂

∂wi
f(w), (19.47)

J(φi, φj;w) =
∂

∂wj
F (φi;w). (19.48)

For a concrete functional f(w) =
∫
Ω

1
2
w2 dx, we can implement this as

v = TestFunction(element)
u = TrialFunction(element)
w = Function(element)
f = 0.5 * w** 2 * dx
F = derivative(f, w, v)
J = derivative(F, w, u)

This code declares two forms F and J . The linear form F represents the standard
load vector w* v* dx and the bilinear form J represents the mass matrix u* v* dx .

Derivatives can also be defined w.r.t. coefficients of a function in a mixed
finite element space. Consider the Harmonic map equations derived from the
functional

f(x, λ) =

∫

Ω

∇x : ∇x + λx · x dx, (19.49)

where x is a function in a vector finite element space V d
h and λ is a function in

a scalar finite element space Vh. The linear and bilinear forms derived from the
functional in Equation 19.49 have basis function arguments in the mixed space
V d

h + Vh. The implementation of these forms with automatic linearization reads

Vx = VectorElement("CG", triangle, 1)
Vy = FiniteElement("CG", triangle, 1)
u = Function(Vx + Vy)
x, y = split(u)
f = inner(grad(x), grad(x)) * dx + y * dot(x,x) * dx
F = derivative(f, u)
J = derivative(F, u)
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Note that the functional is expressed in terms of the subfunctions x and y , while
the argument to derivative must be the single mixed function u. In this exam-
ple the basis function arguments to derivative are omitted and thus provided
automatically in the right function spaces.

Note that in computing derivatives of forms, we have assumed that

∂

∂wk

∫

Ω

I dx =

∫

Ω

∂

∂wk

I dx, (19.50)

or in particular that the domain Ω is independent of w. Furthermore, note that
there is no restriction on the choice of element in this framework, in particular
arbitrary mixed elements are supported.

19.5.2 Adjoint

Another form operator is the adjoint a∗ of a bilinear form a, defined as a∗(u, v) =
a(v, u), which is similar to taking the transpose of the assembled sparse matrix.
In UFL this is implemented simply by swapping the test and trial functions, and
can be written:

a = inner(M * grad(u), grad(v)) * dx
ad = adjoint(a)

which corresponds to

a(M ; v, u) =

∫

Ω

(M∇u) : ∇v dx =

∫

Ω

Mikuj,kvj,i dx, (19.51)

a∗(M ; v, u) = a(M ; u, v) =

∫

Ω

(M∇v) : ∇u dx. (19.52)

This automatic transformation is particularly useful if we need the adjoint of
nonsymmetric bilinear forms computed using derivative , since the explicit ex-
pressions for a are not at hand. Several of the form operators below are most
useful when used in conjunction with derivative .

19.5.3 Replacing functions

Evaluating a form with new definitions of form arguments can be done by re-
placing terminal objects with other values. Lets say you have defined a form L
that depends on some functions f and g. You can then specialize the form by
replacing these functions with other functions or fixed values, such as

L(f, g; v) =

∫

Ω

(f 2/(2g))v dx, (19.53)

L2(f, g; v) = L(g, 3; v) =

∫

Ω

(g2/6)v dx. (19.54)

This feature is implemented with replace , as illustrated in this case:
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L = f ** 2 / (2 * g) * v * dx
L2 = replace(L, { f: g, g: 3})
L3 = g ** 2 / 6 * v * dx

Here L2 and L3 represents exactly the same form. Since they depend only on g,
the code generated for these forms can be more efficient.

19.5.4 Action

Sparse matrix-vector multiplication is an important operation in PDE solver ap-
plications. In some cases the matrix is not needed explicitly, only the action of
the matrix on a vector, the result of the matrix-vector multiplication. You can
assemble the action of the matrix on a vector directly by defining a linear form
for the action of a bilinear form on a function, simply writing L = action(a,
w) or L = a* w, with a any bilinear form and w being any Function defined on
the same finite element as the trial function in a.

19.5.5 Splitting a system

If you prefer to write your PDEs with all terms on one side such as

a(v, u)− L(v) = 0, (19.55)

you can declare forms with both linear and bilinear terms and split the equations
afterwards:

pde = u * v* dx - f * v* dx
a, L = system(pde)

Here system is used to split the PDE into its bilinear and linear parts. Alterna-
tively, lhs and rhs can be used to obtain the two parts separately.

19.5.6 Computing the sensitivity of a function

If you have found the solution u to Equation (19.55), and u depends on some
constant scalar value c, you can compute the sensitivity of u w.r.t. changes in c.
If u is represented by a coefficient vector x that is the solution to the algebraic
linear system Ax = b, the coefficients of ∂u

∂c
are ∂x

∂c
. Applying ∂

∂c
to Ax = b and

using the chain rule, we can write

A
∂x

∂c
=
∂b

∂c
− ∂A

∂c
x, (19.56)
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and thus ∂x
∂c

can be found by solving the same algebraic linear system used to
compute x, only with a different right hand side. The linear form corresponding
to the right hand side of Equation (19.56) can be written

u = Function(element)
sL = diff(L, c) - action(diff(a, c), u)

or you can use the equivalent form transformation

sL = sensitivity_rhs(a, u, L, c)

Note that the solution u must be represented by a Function , while u in a(v, u)
is represented by a BasisFunction .

19.6 Expression representation

19.6.1 The structure of an expression

Most of the UFL implementation is concerned with expressing, representing, and
manipulating expressions. To explain and reason about expression representa-
tions and algorithms operating on them, we need an abstract notation for the
structure of an expression. UFL expressions are representations of programs,
and the notation should allow us to see this connection without the burden of
implementation details.

The most basic UFL expressions are expressions with no dependencies on
other expressions, called terminals. Other expressions are the result of apply-
ing some operator to one or more existing expressions. All expressions are im-
mutable; once constructed an expression will never change. Manipulating an
expression always results in a new expression being created.

Consider an arbitrary (non-terminal) expression z. This expression depends
on a set of terminal values {ti}, and is computed using a set of operators {fi}.
If each subexpression of z is labeled with an integer, an abstract program can
be written to compute z by computing a sequence of subexpressions 〈yi〉ni=1 and
setting z = yn. Algorithm 6 shows such a program.

Algorithm 6 Program to compute an expression z

for i = 1, . . . , m:
yi = ti = terminal expression

for i = m+ 1, . . . , n:
yi = fi(〈yj〉j∈Ii

)
z = yn
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BasisFunction ... Inner ...

Expr

Terminal Operator

Figure 19.2: Expression class hierar-
chy.

Inner

Grad Grad

BasisFunction(element, 0) BasisFunction(element, 1)

Figure 19.3: Expression tree for ∇u :
∇v.

Each terminal expression yi = ti is a literal constant or input arguments to the
program. A non-terminal subexpression yi is the result of applying an operator
fi to a sequence of previously computed expressions 〈yj〉j∈Ii

, where Ii is a set of
expression labels. Note that the order in which subexpressions are computed
can be arbitrarily chosen, except that we require j < i ∀j ∈ Ii, such that all
dependencies of a subexpression yi has been computed before yi. In particular,
all terminals are numbered first in this algorithm for notational convenience
only.

The program can be represented as a graph, where each expression yi corre-
sponds to a graph vertex and each direct dependency between two expressions is
a graph edge. More formally,

G = (V,E), (19.57)

V = 〈vi〉ni=1 = 〈yi〉ni=1 , (19.58)

E = {ei} =

n⋃

i=1

{(i, j)∀j ∈ Ii} . (19.59)

This graph is clearly directed, since dependencies have a direction. It is acyclic,
since an expression can only be constructed from existing expressions and never
be modified. Thus we can say that an UFL expression represents a program, and
can be represented using a directed acyclic graph (DAG). There are two ways this
DAG can be represented in UFL, a linked representation called the expression
tree, and a linearized representation called the computational graph.

19.6.2 Tree representation

◮ Editor note: Redraw these figures in Inkscape.

An expression is usually represented as an expression tree. Each subexpres-
sion is represented by a tree node, which is the root of a tree of its own. The
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leaves of the tree are terminal expressions, and operators have their operands
as children. An expression tree for the stiffness term ∇u : ∇v is illustrated in
Figure 19.3. The terminals u and v have no children, and the term ∇u is itself
represented by a tree with two nodes. The names in this figure, Grad , Inner
and BasisFunction , reflect the names of the classes used in UFL to represent
the expression nodes. Taking the gradient of an expression with grad(u) gives
an expression representation Grad(u) , and inner(a, b) gives an expression
representation Inner(a, b) . In general, each expression node is an instance
of some subclass of Expr . The class Expr is the superclass of a hierarchy con-
taining all terminal types and operator types UFL supports. Expr has two direct
subclasses, Terminal and Operator , as illustrated in Figure 19.2.

Each expression node represents a single vertex vi in the DAG. Recall from
Algorithm 6 that non-terminals are expressions yi = fi(〈yj〉j∈Ii

). The operator
fi is represented by the class of the expression node, while the expression yi is
represented by the instance of this class. The edges of the DAG is not stored
explicitly in the tree representation. However, from an expression node repre-
senting the vertex vi, a tuple with the vertices 〈yj〉j∈Ii

can be obtained by calling
yi.operands() . These expression nodes represent the graph vertices that have
edges pointing to them from yi. Note that this generalizes to terminals where
there are no outgoing edges and t.operands() returns an empty tuple.

19.6.3 Expression node properties

Any expression node e (an Expr instance) has certain generic properties, and
the most important ones will be explained here. Above it was mentioned that
e.operands() returns a tuple with the child nodes. Any expression node can
be reconstructed with modified operands using e.reconstruct(operands) ,
where operands is a tuple of expression nodes. The invariant e.reconstruct(e.operands())
== e should always hold. This function is required because expression nodes are
immutable, they should never be modified. The immutable property ensures that
expression nodes can be reused and shared between expressions without side ef-
fects in other parts of a program.

◮ Editor note: Stick ugly text sticking out in margin.

In Section 19.4.2 the tensor algebra and index notation capabilities of UFL
was discussed. Expressions can be scalar or tensor-valued, with arbitrary rank
and shape. Therefore, each expression node has a value shape e.shape() ,
which is a tuple of integers with the dimensions in each tensor axis. Scalar ex-
pressions have shape () . Another important property is the set of free indices in
an expression, obtained as a tuple using e.free indices() . Although the free
indices have no ordering, they are represented with a tuple of Index instances
for simplicity. Thus the ordering within the tuple carries no meaning.

UFL expressions are referentially transparent with some exceptions. Ref-
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erential transparency means that a subexpression can be replaced by another
representation of its value without changing the meaning of the expression. A
key point here is that the value of an expression in this context includes the ten-
sor shape and set of free indices. Another important point is that the derivative
of a function f(v) in a point, f ′(v)|v=g, depends on function values in the vicin-
ity of v = g. The effect of this dependency is that operator types matter when
differentiating, not only the current value of the differentiation variable. In par-
ticular, a Variable cannot be replaced by the expression it represents, because
diff depends on the Variable instance and not the expression it has the value
of. Similarly, replacing a Function with some value will change the meaning of
an expression that contains derivatives w.r.t. function coefficients.

The following example illustrate this issue.

e = 0
v = variable(e)
f = sin(v)
g = diff(f, v)

Here v is a variable that takes on the value 0, but sin(v) cannot be simplified
to 0 since the derivative of f then would be 0. The correct result here is g =
cos(v) .

19.6.4 Linearized graph representation

A linearized representation of the DAG is useful for several internal algorithms,
either to achieve a more convenient formulation of an algorithm or for improved
performance. UFL includes tools to build a linearized representation of the DAG,
the computational graph, from any expression tree. The computational graph
G = V,E is a data structure based on flat arrays, directly mirroring the defini-
tion of the graph in equations (19.57)-(19.59). This simple data structure makes
some algorithms easier to implement or more efficient than the recursive tree
representation. One array (Python list) V is used to store the vertices 〈vi〉ni=1 of
the DAG. For each vertex vi an expression node yi is stored to represent it. Thus
the expression tree for each vertex is also directly available, since each expres-
sion node is the root of its own expression tree. The edges are stored in an array
E with integer tuples (i,j) representing an edge from vi to vj, i.e. that vj is an
operand of vi. The graph is built using a post-order traversal, which guarantees
that the vertices are ordered such that j < i∀j ∈ Ii.

From the edges E, related arrays can be computed efficiently; in particular
the vertex indices of dependencies of a vertex vi in both directions are useful:

Vout = 〈Ii〉ni=1 ,

Vin = 〈{j|i ∈ Ij}〉ni=1

(19.60)
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These data structures can be easily constructed for any expression:

G = Graph(expression)
V, E = G
Vin = G.Vin()
Vout = G.Vout()

A nice property of the computational graph built by UFL is that no two vertices
will represent the same identical expression. During graph building, subexpres-
sions are inserted in a hash map (Python dict) to achieve this.

Free indices in expression nodes can complicate the interpretation of the lin-
earized graph when implementing some algorithms. One solution to that can be
to apply expand indices before constructing the graph. Note however that free
indices cannot be regained after expansion.

19.6.5 Partitioning

UFL is intended as a front-end for form compilers. Since the end goal is gener-
ation of code from expressions, some utilities are provided for the code genera-
tion process. In principle, correct code can be generated for an expression from
its computational graph simply by iterating over the vertices and generating
code for each operation separately, basically mirroring Algorithm 6. However, a
good form compiler should be able to produce better code. UFL provides utili-
ties for partitioning the computational graph into subgraphs (partitions) based
on dependencies of subexpressions, which enables quadrature based form com-
pilers to easily place subexpressions inside the right sets of loops. The function
partition implements this feature. Each partition is represented by a simple
array of vertex indices.

19.7 Computing derivatives

When a derivative expression is declared by the end-user of the form language,
an expression node is constructed to represent it, but nothing is computed. The
type of this expression node is a subclass of Derivative . Differential opera-
tors cannot be expressed natively in a language such as C++. Before code can
be generated from the derivative expression, some kind of algorithm to evaluate
derivatives must be applied. Computing exact derivatives is important, which
rules out approximations by divided differences. Several alternative algorithms
exist for computing exact derivatives. All relevant algorithms are based on the
chain rule combined with differentiation rules for each expression node type. The
main differences between the algorithms are in the extent of which subexpres-
sions are reused, and in the way subexpressions are accumulated.

176



Martin Sandve Alnæs

Below, the differences and similarities between some of the simplest algo-
rithms are discussed. After the algorithm currently implemented in UFL has
been explained, extensions to tensor and index notation and higher order deriva-
tives are discussed. Finally, the section is closed with some remarks about the
differentiation rules for terminal expressions.

19.7.1 Relations to form compiler approaches

Before discussing the choice of algorithm for computing derivatives, let us con-
cider the context in which the results will be used. Although UFL does not gen-
erate code, some form compiler issues are relevant to this context.

Mixing derivative computation into the code generation strategy of each form
compiler would lead to a significant duplication of implementation effort. To
separate concerns and keep the code manageable, differentiation is implemented
as part of UFL in such a way that the form compilers are independent of the
chosen differentiation strategy. Before expressions are interpreted by a form
compiler, differential operators should be evaluated such that the only operators
left are non-differential operators4. Therefore, it is advantageous to use the same
representation for the evaluated derivative expressions and other expressions.

The properties of each differentiation algorithm is strongly related to the
structure of the expression representation. However, UFL has no control over
the final expression representation used by the form compilers. The main dif-
ference between the current form compilers is the way in which expressions
are integrated. For large classes of equations, symbolic integration or a spe-
cialized tensor representation have proven highly efficient ways to evaluate el-
ement tensors [?, ?, ?]. However, when applied to more complex equations, the
run-time performance of both these approaches is beaten by code generated with
quadrature loops [?, ?]. To apply symbolic differentiation, polynomials are ex-
panded which destroys the structure of the expressions, gives potential exponen-
tial growth of expression sizes, and hides opportunities for subexpression reuse.
Similarly, the tensor representation demands a canonical representation of the
integral expressions.

In summary, both current non-quadrature form compiler approaches change
the structure of the expressions they get from UFL. This change makes the in-
teraction between the differentiation algorithm and the form compiler approach
hard to control. However, this will only become a problem for complex equations,
in which case quadrature loop based code is more suitable. Code generation
using quadrature loops can more easily mirror the inherent structure of UFL
expressions.

4An exception is made for spatial derivatives of terminals which are unknown to UFL because
they are provided by the form compilers.
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19.7.2 Approaches to computing derivatives

Algorithms for computing derivatives are designed with different end goals in
mind. Symbolic Differentiation (SD) takes as input a single symbolic expression
and produces a new symbolic expression for the derivative of the input. Auto-
matic Differentiation (AD) takes as input a program to compute a function and
produces a new program to compute the derivative of the function. Several vari-
ants of AD algorithms exist, the two most common being Forward Mode AD and
Reverse Mode AD [?]. More advanced algorithms exist, and is an active research
topic.is a symbolic expression, represented by an expression tree. But the ex-
pression tree is a directed acyclic graph that represents a program to evaluate
said expression. Thus it seems the line between SD and AD becomes less distinct
in this context.

Naively applied, SD can result in huge expressions, which can both require a
lot of memory during the computation and be highly inefficient if written to code
directly. However, some illustrations of the inefficiency of symbolic differentia-
tion, such as in [?], are based on computing closed form expressions of deriva-
tives in some stand-alone computer algebra system (CAS). Copying the resulting
large expressions directly into a computer code can lead to very inefficient code.
The compiler may not be able to detect common subexpressions, in particular
if simplification and rewriting rules in the CAS has changed the structure of
subexpressions with a potential for reuse.

In general, AD is capable of handling algorithms that SD can not. A tool for
applying AD to a generic source code must handle many complications such as
subroutines, global variables, arbitrary loops and branches [?, ?, ?]. Since the
support for program flow constructs in UFL is very limited, the AD implementa-
tion in UFL will not run into such complications. In Section 19.7.3 the similarity
between SD and forward mode AD in the context of UFL is explained in more
detail.

19.7.3 Forward mode Automatic Differentiation

Recall Algorithm 6, which represents a program for computing an expression z
from a set of terminal values {ti} and a set of elementary operations {fi}. As-
sume for a moment that there are no differential operators among {fi}. The
algorithm can then be extended to compute the derivative dz

dv
, where v represents

a differentiation variable of any kind. This extension gives Algorithm 7.
This way of extending a program to simultaneously compute the expression

z and its derivative dz
dv

is called forward mode automatic differentiation (AD).

By renaming yi and
dyi

dv
to a new sequence of values 〈ŷj〉n̂j=1, Algorithm 7 can be

rewritten as shown in Algorithm 8, which is isomorphic to Algorithm 6 (they
have exactly the same structure).

Since the program in Algorithm 6 can be represented as a DAG, and Algo-
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Algorithm 7 Forward mode AD on Algorithm 6

for i = 1, . . . , m:
yi = ti
dyi

dv
= dti

dv

for i = m+ 1, . . . , n:
yi = fi(〈yj〉j∈Ii

)
dyi

dv
=
∑

k∈Ii

∂fi

∂yk

dyk

dv

z = yn
dz
dv

= dyn

dv

Algorithm 8 Program to compute dz
dv

produced by forward mode AD

for i = 1, . . . , m̂:
ŷi = t̂i

for i = m̂+ 1, . . . , n̂:
ŷi = f̂i(〈ŷj〉j∈Îi

)
dz
dv

= ŷn̂

rithm 8 is isomorphic to Algorithm 6, the program in Algorithm 8 can also be
represented as a DAG. Thus a program to compute dz

dv
can be represented by an

expression tree built from terminal values and non-differential operators.

The currently implemented algorithm for computing derivatives in UFL fol-
lows forward mode AD closely. Since the result is a new expression tree, the
algorithm can also be called symbolic differentiation. In this context, the differ-
ences between the two are implementation details. To ensure that we can reuse
expressions properly, simplification rules in UFL avoids modifying the operands
of an operator. Naturally repeated patterns in the expression can therefore be de-
tected easily by the form compilers. Efficient common subexpression elimination
can then be implemented by placing subexpressions in a hash map. However,
there are simplifications such as 0∗f → 0 and 1∗f → f which simplify the result
of the differentiation algorithm automatically as it is being constructed. These
simplifications are crucial for the memory use during derivative computations,
and the performance of the resulting program.

19.7.4 Extensions to tensors and indexed expressions

So far we have not considered derivatives of non-scalar expression and expres-
sions with free indices. This issue does not affect the overall algorithms, but it
does affect the local derivative rules for each expression type.

Consider the expression diff(A, B) with A and B matrix expressions. The
meaning of derivatives of tensors w.r.t. to tensors is easily defined via index
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notation, which is heavily used within the differentiation rules:

dA

dB
=
dAij

dBkl

ei ⊗ ej ⊗ ek ⊗ el (19.61)

Derivatives of subexpressions are frequently evaluated to literal constants.
For indexed expressions, it is important that free indices are propagated cor-
rectly with the derivatives. Therefore, differentiated expressions will some times
include literal constants annotated with free indices.

There is one rare and tricky corner case when an index sum binds an index i
such as in (vivi) and the derivative w.r.t. xi is attempted. The simplest example of
this is the expression (vivi),j, which has one free index j. If j is replaced by i, the
expression can still be well defined, but you would never write (vivi),i manually.
If the expression in the parenthesis is defined in a variable e = v[i] * v[i] ,
the expression e.dx(i) looks innocent. However, this will cause problems as
derivatives (including the index i) are propagated up to terminals. If this case is
encountered it will be detected and an error message will be triggered. To avoid
it, simply use different index instances. In the future, this case may be handled
by relabeling indices to change this expression into (vjvj),iui.

19.7.5 Higher order derivatives

A simple forward mode AD implementation such as Algorithm 7 only considers
one differentiation variable. Higher order or nested differential operators must
also be supported, with any combination of differentiation variables. A simple
example illustrating such an expression can be

a =
d

dx

(
d

dx
f(x) + 2

d

dy
g(x, y)

)
. (19.62)

Considerations for implementations of nested derivatives in a functional5 frame-
work have been explored in several papers [?, ?, ?].

In the current UFL implementation this is solved in a different fashion. Con-
sidering Equation (19.62), the approach is simply to compute the innermost
derivatives d

dx
f(x) and d

dy
g(x, y) first, and then computing the outer derivatives.

This approach is possible because the result of a derivative computation is repre-
sented as an expression tree just as any other expression. Mainly this approach
was chosen because it is simple to implement and easy to verify. Whether other
approaches are faster has not been investigated. Furthermore, alternative AD
algorithms such as reverse mode can be experimented with in the future without
concern for nested derivatives in the first implementations.

An outer controller function apply ad handles the application of a single
variable AD routine to an expression with possibly nested derivatives. The AD

5Functional as in functional languages.
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routine is a function accepting a derivative expression node and returning an
expression where the single variable derivative has been computed. This routine
can be an implementation of Algorithm 8. The result of apply ad is mathemati-
cally equivalent to the input, but with no derivative expression nodes left6.

The function apply ad works by traversing the tree recursively in post-order,
discovering subtrees where the root represents a derivative, and applying the
provided AD routine to the derivative subtree. Since the children of the deriva-
tive node has already been visited by apply ad , they are guaranteed to be free
of derivative expression nodes and the AD routine only needs to handle the case
discussed above with algorithms 7 and 8.

The complexity of the ad routine should be O(n), with n being the size of
the expression tree. The size of the derivative expression is proportional to the
original expression. If there are d derivative expression nodes in the expression
tree, the complexity of this algorithm is O(dn), since ad routine is applied to
subexpressions d times. As a result the worst case complexity of apply ad is
O(n2), but in practice d ≪ n. A recursive implementation of this algorithm is
shown in Figure 19.4.

def apply_ad(e, ad_routine):
if isinstance(e, Terminal):

return e
ops = [apply_ad(o, ad_routine) for o in e.operands()]
e = e.reconstruct( * ops)
if isinstance(e, Derivative):

e = ad_routine(e)
return e

Figure 19.4: Simple implementation of recursive apply ad procedure.

19.7.6 Basic differentiation rules

To implement the algorithm descriptions above, we must implement differenti-
ation rules for all expression node types. Derivatives of operators can be imple-
mented as generic rules independent of the differentiation variable, and these
are well known and not mentioned here. Derivatives of terminals depend on
the differentiation variable type. Derivatives of literal constants are of course
always zero, and only spatial derivatives of geometric quantities are non-zero.
Since form arguments are unknown to UFL (they are provided externally by the

form compilers), their spatial derivatives (∂φk

∂xi
and ∂wk

∂xi
) are considered input ar-

guments as well. In all derivative computations, the assumption is made that

6Except direct spatial derivatives of form arguments, but that is an implementation detail.
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form coefficients have no dependencies on the differentiation variable. Two more
cases needs explaining, the user defined variables and derivatives w.r.t. the coef-
ficients of a Function .

If v is a Variable , then we define dt
dv
≡ 0 for any terminal t. If v is scalar

valued then dv
dv
≡ 1. Furthermore, ifV is a tensor valued Variable , its derivative

w.r.t. itself is

dV

dV
=
dVij

dVkl

ei ⊗ ej ⊗ ek ⊗ el = δikδjlei ⊗ ej ⊗ ek ⊗ el. (19.63)

In addition, the derivative of a variable w.r.t. something else than itself equals
the derivative of the expression it represents:

v = g, (19.64)

dv

dz
=
dg

dz
. (19.65)

Finally, we consider the operator derivative , which represents differenti-
ation w.r.t. all coefficients {wk} of a function w. Consider an object element
which represents a finite element space Vh with a basis {φk}. Next consider form
arguments defined in this space:

v = BasisFunction(element)
w = Function(element)

The BasisFunction instance v represents any v ∈ {φk}, while the Function in-
stance w represents the sum

w =
∑

k

wkφk(x). (19.66)

The derivative of ww.r.t. any wk is the corresponding basis function in Vh,

∂w

∂wk
= φk, k = 1, . . . , |Vh|, (19.67)

(19.68)

which can be represented by v , since

v ∈ 〈φk〉|Vh|
k=1 =

〈
∂w

∂wk

〉|Vh|

k=1

. (19.69)

Note that v should be a basis function instance that has not already been used
in the form.
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19.8 Algorithms

In this section, some central algorithms and key implementation issues are dis-
cussed, much of which relates to the Python programming language. Thus, this
section is mainly intended for developers and others who need to relate to UFL
on a technical level.

19.8.1 Effective tree traversal in Python

Applying some action to all nodes in a tree is naturally expressed using recursion:

def walk(expression, pre_action, post_action):
pre_action(expression)
for o in expression.operands():

walk(o)
post_action(expression)

This implementation simultaneously covers pre-order traversal, where each node
is visited before its children, and post-order traversal, where each node is visited
after its children.

A more “pythonic” way to implement iteration over a collection of nodes is
using generators. A minimal implementation of this could be

def post_traversal(root):
for o in root.operands():

yield post_traversal(o)
yield root

which then enables the natural Python syntax for iteration over expression nodes:

for e in post_traversal(expression):
post_action(e)

For efficiency, the actual implementation of post traversal in UFL is not using
recursion. Function calls are very expensive in Python, which makes the non-
recursive implementation an order of magnitude faster than the above.

19.8.2 Type based function dispatch in Python

◮ Editor note: Make code fit in box.

A common task in both symbolic computing and compiler implementation is
the selection of some operation based on the type of an expression node. For a
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class ExampleFunction(MultiFunction):
def __init__(self):

MultiFunction.__init__(self)

def terminal(self, expression):
return "Got a Terminal subtype %s." % type(expression)

def operator(self, expression):
return "Got an Operator subtype %s." % type(expression)

def basis_function(self, expression):
return "Got a BasisFunction."

def sum(self, expression):
return "Got a Sum."

m = ExampleFunction()

cell = triangle
element = FiniteElement("CG", cell, 1)
x = cell.x
print m(BasisFunction(element))
print m(x)
print m(x[0] + x[1])
print m(x[0] * x[1])

Figure 19.5: Example declaration and use of a multifunction

selected few operations, this is done using overloading of functions in the sub-
classes of Expr , but this is not suitable for all operations.

In many cases type-specific operations must be implemented together in the
algorithm instead of distributed across class definitions. One way to implement
type based operation selection is to use a type switch, or a sequence of if-tests
such as this:

if isinstance(expression, IntValue):
result = int_operation(expression)

elif isinstance(expression, Sum):
result = sum_operation(expression)

# etc.

There are several problems with this approach, one of which is efficiency when
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there are many types to check. A type based function dispatch mechanism with
efficiency independent of the number of types is implemented as an alternative
through the class MultiFunction . The underlying mechanism is a dict lookup
(which is O(1)) based on the type of the input argument, followed by a call to
the function found in the dict. The lookup table is built in the MultiFunction
constructor. Functions to insert in the table are discovered automatically using
the introspection capabilites of Python.

A multifunction is declared as a subclass of MultiFunction . For each type
that should be handled particularly, a member function is declared in the sub-
class. The Expr classes use the CamelCaps naming convention, which is auto-
matically converted to underscore notation for corresponding function names,
such as BasisFunction and basis function . If a handler function is not de-
clared for a type, the closest superclass handler function is used instead. Note
that the MultiFunction implementation is specialized to types in the Expr
class hierarchy. The declaration and use of a multifunction is illustrated in Fig-
ure 19.5. Note that basis function and sumwill handle instances of the exact
types BasisFunction and Sum, while terminal and operator will handle the
types SpatialCoordinate and Product since they have no specific handlers.

19.8.3 Implementing expression transformations

Many transformations of expressions can be implemented recursively with some
type-specific operation applied to each expression node. Examples of operations
are converting an expression node to a string representation, an expression rep-
resentation using an symbolic external library, or an UFL representation with
some different properties. A simple variant of this pattern can be implemented
using a multifunction to represent the type-specific operation:

def apply(e, multifunction):
ops = [apply(o, multifunction) for o in e.operands()]
return multifunction(e, * ops)

The basic idea is as follows. Given an expression node e, begin with applying
the transformation to each child node. Then return the result of some operation
specialized according to the type of e, using the already transformed children as
input.

The Transformer class implements this pattern. Defining a new algorithm
using this pattern involves declaring a Transformer subclass, and implement-
ing the type specific operations as member functions of this class just as with
MultiFunction . The difference is that member functions take one additional
argument for each operand of the expression node. The transformed child nodes
are supplied as these additional arguments. The following code replaces termi-
nal objects with objects found in a dict mapping , and reconstructs operators with
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the transformed expression trees. The algorithm is applied to an expression by
calling the function visit , named after the similar Visitor pattern.

class Replacer(Transformer):
def __init__(self, mapping):

Transformer.__init__(self)
self.mapping = mapping

def operator(self, e, * ops):
return e.reconstruct( * ops)

def terminal(self, e):
return self.mapping.get(e, e)

f = Constant(triangle)
r = Replacer({f: f ** 2})
g = r.visit(2 * f)

After running this code the result is g = 2f 2. The actual implementation of the
replace function is similar to this code.

In some cases, child nodes should not be visited before their parent node.
This distinction is easily expressed using Transformer , simply by omitting the
member function arguments for the transformed operands. See the source code
for many examples of algorithms using this pattern.

19.8.4 Important transformations

There are many ways in which expression representations can be manipulated.
Here, we describe a few particularly important transformations. Note that each
of these algorithms removes some abstractions, and hence may remove some
opportunities for analysis or optimization.

Some operators in UFL are termed “compound” operators, meaning they can
be represented by other elementary operators. Try defining an expression e =
inner(grad(u), grad(v)) , and print repr(e) . As you will see, the repre-
sentation of e is Inner(Grad(u), Grad(v)) (with some more details for u and
v ). This way the input expressions are easier to recognize in the representation,
and rendering of expressions to for example LATEX format can show the original
compound operators as written by the end-user.

However, since many algorithms must implement actions for each operator
type, the function expand compounds is used to replace all expression nodes
of “compound” types with equivalent expressions using basic types. When this
operation is applied to the input forms from the user, algorithms in both UFL
and the form compilers can still be written purely in terms of basic operators.
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Another important transformation is expand derivatives , which applies
automatic differentiation to expressions, recursively and for all kinds of deriva-
tives. The end result is that most derivatives are evaluated, and the only deriva-
tive operator types left in the expression tree applies to terminals. The precon-
dition for this algorithm is that expand compounds has been applied.

Index notation and the IndexSum expression node type complicate inter-
pretation of an expression tree in some contexts, since free indices in its sum-
mand expression will take on multiple values. In some cases, the transformation
expand indices comes in handy, the end result of which is that there are no
free indices left in the expression. The precondition for this algorithm is that
expand compounds and expand derivatives have been applied.

19.8.5 Evaluating expressions

Even though UFL expressions are intended to be compiled by form compilers,
it can be useful to evaluate them to floating point values directly. In particular,
this makes testing and debugging of UFL much easier, and is used extensively
in the unit tests. To evaluate an UFL expression, values of form arguments and
geometric quantities must be specified. Expressions depending only on spatial
coordinates can be evaluated by passing a tuple with the coordinates to the call
operator. The following code from an interactive Python session shows the syn-
tax:

>>> cell = triangle
>>> x = cell.x
>>> e = x[0]+x[1]
>>> print e((0.5,0.7))
1.2

Other terminals can be specified using a dictionary that maps from terminal
instances to values. This code extends the above code with a mapping:

c = Constant(cell)
e = c * (x[0]+x[1])
print e((0.5,0.7), { c: 10 })

If functions and basis functions depend on the spatial coordinates, the mapping
can specify a Python callable instead of a literal constant. The callable must
take the spatial coordinates as input and return a floating point value. If the
function being mapped is a vector function, the callable must return a tuple of
values instead. These extensions can be seen in the following code:

element = VectorElement("CG", cell, 1)
f = Function(element)
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e = c * (f[0] + f[1])
def fh(x):

return (x[0], x[1])
print e((0.5,0.7), { c: 10, f: fh })

To use expression evaluation for validating that the derivative computations are
correct, spatial derivatives of form arguments can also be specified. The callable
must then take a second argument which is called with a tuple of integers spec-
ifying the spatial directions in which to differentiate. A final example code com-
puting g2 + g2

,0 + g2
,1 for g = x0x1 is shown below.

element = FiniteElement("CG", cell, 1)
g = Function(element)
e = g** 2 + g.dx(0) ** 2 + g.dx(1) ** 2
def gh(x, der=()):

if der == (): return x[0] * x[1]
if der == (0,): return x[1]
if der == (1,): return x[0]

print e((2, 3), { g: gh })

19.8.6 Viewing expressions

Expressions can be formatted in various ways for inspection, which is partic-
ularly useful while debugging. The Python built in string conversion opera-
tor str(e) provides a compact human readable string. If you type print e
in an interactive Python session, str(e) is shown. Another Python built in
string operator is repr(e) . UFL implements repr correctly such that e ==
eval(repr(e)) for any expression e. The string repr(e) reflects all the ex-
act representation types used in an expression, and can therefore be useful for
debugging. Another formatting function is tree format(e) , which produces an
indented multi-line string that shows the tree structure of an expression clearly,
as opposed to repr which can return quite long and hard to read strings. Infor-
mation about formatting of expressions as LATEX and the dot graph visualization
format can be found in the manual.

19.9 Implementation issues

19.9.1 Python as a basis for a domain specific language

Many of the implementation details detailed in this section are influenced by
the initial choice of implementing UFL as an embedded language in Python.
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Therefore some words about why Python is suitable for this, and why not, are
appropriate here.

Python provides a simple syntax that is often said to be close to pseudo-code.
This is a good starting point for a domain specific language. Object orientation
and operator overloading is well supported, and this is fundamental to the de-
sign of UFL. The functional programming features of Python (such as generator
expressions) are useful in the implementation of algorithms and form compil-
ers. The built-in data structures list , dict and set play a central role in fast
implementations of scalable algorithms.

There is one problem with operator overloading in Python, and that is the
comparison operators. The problem stems from the fact that eq or cmp are
used by the built-in data structures dict and set to compare keys, meaning that a
== b must return a boolean value for Expr to be used as keys. The result is that

eq can not be overloaded to return some Expr type representation such as
Equals(a, b) for later processing by form compilers. The other problem is that
and and or cannot be overloaded, and therefore cannot be used in conditional
expressions. There are good reasons for these design choices in Python. This
conflict is the reason for the somewhat non-intuitive design of the comparison
operators in UFL.

19.9.2 Ensuring unique form signatures

The form compilers need to compute a unique signature of each form for use in a
cache system to avoid recompilations. A convenient way to define a signature is
using repr(form) , since the definition of this in Python is eval(repr(form))
== form . Therefore repr is implemented for all Expr subclasses.

Some forms are equivalent even though their representation is not exactly
the same. UFL does not use a truly canonical form for its expressions, but takes
some measures to ensure that trivially equivalent forms are recognized as such.

Some of the types in the Expr class hierarchy (subclasses of Counted ), has
a global counter to identify the order in which they were created. This counter
is used by form arguments (both BasisFunction and Function ) to identify
their relative ordering in the argument list of the form. Other counted types are
Index and Label , which only use the counter as a unique identifier. Algorithms
are implemented for renumbering of all Counted types such that all counts start
from 0.

In addition, some operator types such as Sumand Product maintains a sorted
list of operands such that a+b and b+a are both represented as Sum(a, b) .
The numbering of indices does not affect this ordering because a renumbering of
the indices would lead to a new ordering which would lead to a different index
renumbering if applied again. The operand sorting and renumbering combined
ensure that the signature of equal forms will stay the same. To get the signature
with renumbering applied, use repr(form.form data().form) . Note that the
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representation, and thus the signature, of a form may change with versions of
UFL.

19.9.3 Efficiency considerations

By writing UFL in Python, we clearly do not put peak performance as a first pri-
ority. If the form compilation process can blend into the application build process,
the performance is sufficient. We do, however, care about scaling performance
to handle complicated equations efficiently, and therefore about the asymptotic
complexity of the algorithms we use.

To write clear and efficient algorithms in Python, it is important to use the
built in data structures correctly. These data structures include in particular
list , dict and set . CPython [Pyt], the reference implementation of Python,
implements the data structure list as an array, which means append, and pop,
and random read or write access are all O(1) operations. Random insertion, how-
ever, is O(n). Both dict and set are implemented as hash maps, the latter sim-
ply with no value associated with the keys. In a hash map, random read, write,
insertion and deletion of items are all O(1) operations, as long as the key types
implement hash and eq efficiently. Thus to enjoy efficient use of these
containers, all Expr subclasses must implement these two special functions effi-
ciently. The dict data structure is used extensively by the Python language, and
therefore particular attention has been given to make it efficient [?].

19.10 Future directions

Many additional features can be introduced to UFL. Which features are added
will depend on the needs of FEniCS users and developers. Some features can
be implemented in UFL alone, while other features will require updates to other
parts of the FEniCS project.

Improvements to finite element declarations is likely easy to do in UFL. The
added complexity will mostly be in the form compilers. Among the current sug-
gestions are space-time elements and related time derivatives, and enrichment of
finite element spaces. Additional geometry mappings and finite element spaces
with non-uniform cell types are also possible extensions.

Additional operators can be added to make the language more expressive.
Some operators are easy to add because their implementation only affects a small
part of the code. More compound operators that can be expressed using elemen-
tary operations is easy to add. Additional special functions are easy to add as
well, as long as their derivatives are known. Other features may require more
thorough design considerations, such as support for complex numbers which may
affect many parts of the code.
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User friendly notation and support for rapid development are core values in
the design of UFL. Having a notation close to the mathematical abstractions
allows expression of particular ideas more easily, which can reduce the proba-
bility of bugs in user code. However, the notion of metaprogramming and code
generation adds another layer of abstraction which can make understanding the
framework more difficult for end-users. Good error checks everywhere are there-
fore very important, to detect user errors as close as possible to the user input.
The error messages, documentation, and unit test suite should be improved to
help avoid frequently repeated errors and misunderstandings among new users.

Several algorithms in UFL can probably be optimized if bottlenecks are found
as more complicated applications are attempted. The focus in the development
has not been on achieving peak performance, which is not important in a tool
like UFL.

To support form compiler improvements, algorithms and utilities for generat-
ing better code more efficiently can be implemented in UFL. In this area, more
work on alternative automatic differentiation algorithms [?, ?] can be useful. An-
other possibility for code improvement is operation scheduling, or reordering of
the vertices of a graph partition to improve the efficiency of the generated code
by better use of hardware cache and registers. Since modern C++ compilers are
quite good at optimizing low level code, the focus should be on high level opti-
mizations when considering potential code improvement in UFL and the form
compilers. At the time of writing, operation scheduling is not implemented in
UFL, and the value of implementing such an operation is an open question.
However, results from [?] indicates that a high level scheduling algorithm could
improve the efficiency of the generated code.

To summarize, UFL brings important improvements to the FEniCS frame-
work: a richer form language, automatic differentiation and improved form com-
piler efficiency. These are useful features in rapid development of applications
for efficiently solving partial differential equations. UFL improves upon the Au-
tomation of Discretization that has been the core feature of this framework, and
adds Automation of Linearization. In conclusion, UFL brings FEniCS one step
closer to its overall goal Automation of Mathematical Modeling.
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CHAPTER 20

Unicorn: A Unified Continuum Mechanics Solver

By Johan Hoffman, Johan Jansson, Niclas Jansson and Murtazo Nazarov

Chapter ref: [hoffman-2]

Unicorn is solver technology (models, methods, algorithms and software im-
plementations) targeting simulation of realistic continuum mechanics applica-
tions, such as drag/lift computation for fixed or flexible objects (fluid-structure in-
teraction) in turbulent incompressible or compressible flow (airplane/bird flight,
car aerodynamics). The basis for Unicorn is Unified Continuum (UC) modeling,
where we define conservation equations for mass, momentum and energy over
the whole domain as one continuum, together with a Cauchy stress and phase
variable as data for defining material properties and constitutive equation. For
the discretization we use a stabilized adaptive finite element method which we
refer to as General Galerkin (G2), which has been shown to accurately compute
quantities of interest in both laminar and turbulent flow [?, ?, ?, ?, ?, ?], where
the methodology includes deforming geometries with an Arbitrary Lagrangian-
Eulerian (ALE) discretization [?, ?].

This chapter provides a description of the technology in Unicorn focusing on
efficient and general algorithms and software implementation of the UC con-
cept and the adaptive G2 discretization. We describe how Unicorn fits into the
FEniCS framework, how it interfaces to other FEniCS components (FIAT, FFC,
DOLFIN) and what interfaces and functionality Unicorn provides itself and how
the implementation is designed. We also give application examples in incom-
pressible turbulent flow, fluid-structure interaction and compressible flow for il-
lustration.

Unicorn realizes automated computational modeling in the form of tensor
assembly, time-stepping, adaptive fixed-point iteration for solving discrete sys-
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tems, duality-based adaptive error control, mesh adaptivity by local cell opera-
tions (split, collapse, swap) and cell quality optimization (elastic mesh moothing).
We also describe the implementation of key concepts for efficient computation
of large-scale turbulent flow problems: friction boundary conditions and paral-
lelization of tensor assembly and mesh refinement.

20.1 Unified Continuum modeling

We define an incompressible unified continuummodel in a fixed Euler coordinate
system consisting of:

• conservation of mass

• conservation of momentum

• phase convection equation

• constitutive equations for stress as data

where the stress is the Cauchy (laboratory) stress and the phase variable is used
to define material data such as constitutive equation for the stress and material
parameters. Note that in this continuum description the coordinate system is
fixed (Euler), and a phase function (marker) is convected according to the phase
convection equation.

We start with conservation of mass, momentum and energy, together with a
convection equation for a phase function θ over a space-time domain Q = [Ω ×
[0, T ]] with Ω an open domain in R3 with boundary Γ:

Dtρ+Dxj
(ujρ) = 0 (Mass conservation)

Dtmi +Dxj
(ujmi) = Dxj

σi (Momentum conservation)

Dte+Dxj
(uje) = Dxj

σiui (Energy conservation)

Dtθ +Dxj
ujθ = 0 (Phase convection equation)

(20.1)

together with initial and boundary conditions. We can then pose constitutive
relations between the constitutive (Cauchy) stress component σ and other vari-
ables such as the velocity u.

We define incompressibility as:

Dtρ+ ujDxj
ρ = 0

which together with mass and momentum conservation gives:

ρ(Dtui + ujDjui) = Dxj
σij

Dxj
uj = 0
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where now the energy equation is decoupled and we can omit it.

We decompose the total stress into constitutive and forcing stresses:

Dxj
σij = Dxj

σij +Dxj
σf

ij = Dxj
σij + fi

Summarizing, we end up with the incompressible UC formulation:

ρ(Dtui + ujDxj
ui) = Dxj

σij + fi

Dxj
uj = 0

Dtθ +Dxj
ujθ = 0

(20.2)

The UC modeling framework is simple and compact, close to the formulation of
the original conservation equations, without mappings between coordinate sys-
tems. This allows simple manipulation and processing for error estimation and
implementation. It is also general, we can choose the constitutive equations to
model simple or complex solids and fluids, possibly both in interaction, with in-
dividual parameters.

20.1.1 Automated computational modeling and software design

One key design choice of UC modeling is to define the Cauchy stress σ as data,
which means the conservation equations for momentum and mass are fixed and
explicitly defined regardless of the choice of constitutive equation. This gives
a generality in software design, where a modification of constitutive equation
impacts the implementation of the constitutive equation, but not the implemen-
tation of the conservation equations.

20.2 Space-time General Galerkin discretization

The General Galerkin (G2) method has been developed as an adaptive stabilized
finite element method for turbulent incompressible/compressible flow [?, ?, ?, ?,
?, ?, ?]. G2 has been shown to be cheap, since the adaptive mesh refinement is
minimizing the number of degrees of freedom, general, since there are no model
parameters to fit, and reliable, since the method is based on quantitative error
control in a chosen output.

We begin by describing the standard FEM applied to the model to establish
basic notation, and proceed to describe streamline diffusion stabilization and
local ALE map over a mesh T h with mesh size h together with adaptive error
control based on duality.
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20.2.1 Standard Galerkin

We begin by formulating the standard cG(1)cG(1) FEM [?] with piecewise con-
tinuous linear solution in time and space for 20.1 by defining the exact solu-
tion: w = [u, p, θ], the discrete solution W = [U, P,Θ] and the residual R(W ) =
[Ru(W ), Rp(W ), Rθ(W )]:

Ru(W ) = ρ(DtUi + UjDxj
Ui)−Dxj

Σij − fi

Rp(W ) = Dxj
Uj

Rθ(W ) = DtΘ + ujDxj
Θ

where R(w) = 0 and Σ denotes a discrete piecewise constant stress.
To determine the degrees of freedom ξ we enforce the Galerkin orthogonality

(R(W ), v) = 0, ∀v ∈ Vh where v are test functions in the space of piecewise linear
continuous functions in space and piecewise constant discontinuous functions in
time and (·, ·) denotes the space-time L2 inner product over Q. We thus have the
weak formulation:

(Ru(W ), vu) = (ρ(DtUi + UjDjUi)− fi, v
u
i ) + (Σij , Dxj

vu
i )−

∫ tn

tn−1

∫

Γ

Σijv
u
i njdsdt = 0

(Rp(W ), vp) = (Dxj
Uj, v

p) = 0

(Rθ(W ), vθ) = (DtΘ + ujDxj
Θ, vθ) = 0

for all v ∈ Vh, where the boundary term on Γ arising from integration by parts
vanishes if we assume a homogenous Neumann boundary condition for the stress
Σ.

This standard finite element formulation is unstable for convection-dominated
problems and due to choosing equal order for the pressure and velocity. Thus
we cannot use the standard finite element formulation by itself but proceed to
a streamline diffusion stabilization formulation. We also describe a local ALE
discretization for handling the phase interface.

20.2.2 Local ALE

If the phase function Θ has different values on the same cell it would lead to an
undesirable diffusion of the phase interface. By introducing a local ALE coor-
dinate map [?] on each discrete space-time slab based on a given mesh velocity
(i.e. the material velocity of one of the phases) we can define the phase inter-
face at cell facets, allowing the interface to stay discontinuous. We describe the
details of the coordinate map and its influence on the FEM discretization in the
appendix. The resulting discrete phase equation is:

DtΘ(x) + (U(x)− βh(x)) · ∇Θ(x) = 0 (20.3)
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with βh(x) the mesh velocity.
We thus choose the mesh velocity βh to be the discrete material velocity U

in the structure part of the mesh (vertices touching structure cells) and in the
rest of the mesh we use mesh smoothing to determine βh to maximize the mesh
quality according to a chosen objective, alternatively use local mesh modifica-
tion operations (refinement, coarsening, swapping) on the mesh to maintain the
quality [?]. Note that we still compute in Euler coordinates, but with a moving
mesh.

20.2.3 Streamline diffusion stabilization

For the standard FEM formulation of the model we only have stability of U but
not of spatial derivatives of U . This means the solution can be oscillatory, caus-
ing inefficiency by introducing unnecessary error. We instead choose a weighted
standard Galerkin/streamline diffusion method of the form (R(W ), v + δR(v)) =
0, ∀v ∈ Vh (see [?]) with δ > 0 a stabilization parameter. We here also make a sim-
plification where we only introduce necessary stabilization terms and drop terms
not contributing to stabilization. Although not fully consistent, the streamline
diffusion stabilization avoid unnecessary smearing of shear layers as the stabi-
lization is not based on large (≈ h−

1
2 ) cross flow derivatives). For the UC model

the stabilized method thus looks like:

(Ru(W ), vu) = (ρ(DtUi + UjDjUi)− fi, v
u
i ) + (Σij , Dxj

vu
i ) + SDu(W, vu) = 0

(Rp(W ), vp) = (Dxj
Uj , v

p) + SDp(W, vp) = 0

for all v ∈ Vh, and:

SDu(W, vu) = δ1(UjDjUi, U
u
j Djv

u
i ) + δ2(Dxj

Uj , Dxj
vu

j )

SDp(W, vp) = δ1(Dxi
P,Dxi

vp)

where we only include the dominating stabilization terms to reduce complex-
ity in the formulation.

20.2.4 Duality-based adaptive error control

20.2.5 Unicorn/FEniCS software implementation

We implement the G2 discretization of the UC in a general interface for time-
dependent PDE where we give the forms a(U, v) = (DUFU , v) and L(v) = (FU , v)
for assembling the linear system given by Newton’s method for a time step for
the incompressible UC with Newtonian fluid constitutive equation in figure 20.1.
The language used is Python, where we use the FEniCS Form Compiler (FFC)
[?] form notation.
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. . .

def ugradu (u , v ) :
return [dot (u , grad (v [i ] ) ) for i in range (d ) ]

def epsilon (u ) :
return 0.5 ∗ (grad (u ) + transp (grad (u ) ) )

def S (u , P ) :
return mult (P , Identity (d ) ) − mult (nu , grad (u ) )

def f (u , v ) :
return −dot (ugradu (Uc , Uc ) , v ) + \

dot (S (Uc , P ) , grad (v ) ) + \
−mult (d1 , dot (ugradu (Um , u ) , ugradu (Um , v ) ) ) + \
−mult (d2 , dot (div (u ) , div (v ) ) ) + \
dot (ff , v )

def dfdu (u , k , v ) :
return −dot (ugradu (Um , u ) , v ) + \

−dot (mult (nu , grad (u ) ) , grad (v ) ) + \
−mult (d1 , dot (ugradu (Um , u ) , ugradu (Um , v ) ) ) + \
−mult (d2 , dot (div (u ) , div (v ) ) )

# cG (1 )
def F (u , u0 , k , v ) :

uc = 0.5 ∗ (u + u0 )
return (−dot (u , v ) + dot (u0 , v ) + mult (k , f (u , v ) ) )

def dFdu (u , u0 , k , v ) :
uc = 0.5 ∗ u
return (−dot (u , v ) + mult (1 .0 ∗ k , dfdu (uc , k , v ) ) )

a = (dFdu (U1 , U0 , k , v ) ) ∗ dx
L = −F (UP , U0 , k , v ) ∗ dx

Figure 20.1: Source code for bilinear and linear forms for incompressible UC one
time step with a Newton-type method (approximation of Jacobian).

20.3 Unicorn classes: data types and algorithms

20.3.1 Unicorn software design

Unicorn follows two basic design principles:198
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• Keep It Simple Stupid (KISS)

• “Premature optimization is the root of all evil” (Donald Knuth)

Together, these two principles enforce generality and understandability of in-
terfaces and implementations. Unicorn re-uses other existing implementations
and chooses straightforward, sufficiently efficient (optimize bottlenecks) stan-
dard algorithms for solving problems. This leads to small and maintainable im-
plementations. High performance is achieved by reducing the computational
load on the method level (through adaptivity and fixed-point iteration).

Unicorn consists of key concepts abstracted in the following classes/interfaces:

TimeDependentPDE : time-stepping In each time-step a non-linear algebraic
system is solved by fixed-point iteration.

ErrorEstimate : adaptive error control The adaptive algorithm is based on
computing local error indicators of the form ǫK = (R(U), DxΦ)L2(K×T ). This
algorithm is abstracted in the ErrorEstimate and class.

SlipBC : friction boundary condition Efficient computation of turbulent flow
in Unicorn is based on modeling of turbulent boundary layers by a friction
model: u · n = 0, implemented as a strong boundary condition in the alge-
braic system.

20.3.2 TimeDependentPDE

We consider time-dependent equations of the type f(u) = −Dtu+g(u) = 0 where g
can include differential operators in space, where specifically the UC model is of
this type. In weak form the equation type looks like(f(u), v) = (−Dtu+ g(u), v) =
0, possibly with partial integration of terms

We want to define a class (datatype and algorithms) abstracting the time-
stepping of the G2 method, where we want to give the equation (possibly in weak
form) as input and generate the time-stepping automatically. cG(1)cG(1) (Crank-
Nicolson in time) gives the equation for the (possibly non-linear) algebraic system
F (U) (in Python notation):

# cG (1 )
def F (u , u0 , k , v ) :

uc = 0.5 ∗ (u + u0 )
return (−dot (u , v ) + dot (u0 , v ) + mult (k , g (uc , v ) ) )

With v: ∀v ∈ Vh generating the equation system.
We solve this system by Newton-type fixed-point iteration:

(F ′(UP )U1, v) = (F ′(UP )− F (UP ), v) (20.4)

199



Unicorn: A Unified Continuum Mechanics Solver

where UP denotes the value in the previous iterate and F ′ = ∂F
∂U

the Jaco-
bian matrix or an approximation. Note that F ′ can be chosen freely since it only
affects the convergence of the fixed-point iteration, and does not introduce ap-
proximation error.

We define the bilinear form a(U, v) and linear form L(v) corresponding to the
left and right hand sides respectively (in Python notation):

def dFdu (u , u0 , k , v ) :
uc = 0.5 ∗ u
return (−dot (u , v ) + mult (k , dgdu (uc , k , v ) ) )

a = (dFdu (U , U0 , k , v ) ) ∗ dx
L = (dFdu (UP , U0 , k , v ) − F (UP , U0 , k , v ) ) ∗ dx

Thus, in each time step we need to solve the system given in eq. 20.4 by
fixed-point iteration by repeatedly computing a and L, solving a linear system
and updating U .

We now encapsulate this in a C++ class interface in fig. 20.4 which we call
TimeDependentPDE where we give a and L, an end time T , a mesh (defining Vh)
and boundary conditions.

The skeleton of the time-stepping with fixed-point iteration is implemented
in listing 20.3.2.

See ?? and [?] for a dicussion about the efficiency of the fixed-point iteration
and its implementation.

[Discuss pressure/systems]

20.3.3 ErrorEstimate

The duality-based adaptive error control algorithm requires the following primi-
tives:

Residual computation We compute the mean-value in each cell of the contin-
uous residual R(U) = f(U) = −DtU + g(U), this is computed as the L2-
projection into the space of piecewise constants Wh: (R(U), v) = (−DtU +
g(U), v), ∀v ∈Wh.

Dual solution We compute the solution of the dual problem using the same
technology as the primal problem. The dual problem is solved backward
in time, but with the time coordinate transform s = T − t we can use the
standard TimeDependentPDE interface and step the dual time s forward.

Space-time function storage/evaluation We compute error indicators as space-
time integrals over cells: ǫK = (R(U), DxΦ)L2(K×T ), where we need to eval-
uate both the primal solution U and the dual solution Φ. In addition, U is
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/ / / Represent and solve time dependent PDE.
class TimeDependentPDE
{
/ / / Public in ter face
public :
TimeDependentPDE (

/ / Computational mesh
Mesh& mesh ,
/ / Bil inear form for Jacobian approx .
Form& a ,
/ / Linear form for time−step residual
Form& L ,
/ / List o f boundary condit ions
Array <BoundaryCondition∗>& bcs ,
/ / End time
real T
) ;

virtual ˜TimeDependentPDE ( ) ;
/ / / Solve PDE
virtual uint solve ( ) ;

/ / / Protected inter face for subclasses
protected :

/ / / Compute i n i t i a l value
virtual void u0 (Vector& u ) ;
/ / / Called before each time step
virtual void preparestep ( ) ;
/ / / Called before each fixed−point i t e ra t i on
virtual void prepareiteration ( ) ;
/ / / Return the bi l inear form a
Form& a ( ) ;
/ / / Return the l inear form L
Form& L ( ) ;
/ / / Return the mesh
Mesh& mesh ( ) ;

} ;

Figure 20.2: C++ class interface for TimeDependentPDE.

a coefficient in the dual equation. This requires storage and evaluation of
a space-time function, which is encapsulated in the SpaceTimeFunction
class.
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Mesh adaptation After the computation of the error indicators we select the
largest p% of the indicators for refinement. The refinement is then per-
formed by recursive Rivara cell bisection encapsulated in the MeshAdaptivity
class. A future promising alternative is to use Madlib [?, ?] for mesh adap-
tation, which is based on edge split, collapse and swap, and would thus give
the ability to coarsen a mesh, or more generally to control the mesh size.

Using these primitives, we can construct an adaptive algorithm. The adaptive
algorithm is encapsulated in the C++ class interface in fig. ?? which we call
ErrorEstimate .

20.3.4 SlipBC

For high Reynolds numbers problems such as car aerodynamics or airplane flight,
it’s not possible to resolve the turbulent boundary layer. One possibility is to
model turbulent boundary layers by a friction model:

u · n = 0 (20.5)

u · τk + β−1n⊤στk = 0, k = 1, 2 (20.6)

We implement the normal component condition (slip) boundary condition strongly.
By “strongly” we here mean an implementation of the boundary condition after
assembling the left hand side matrix and the right hand side vector in the al-
gebraic system, whereas the tangential components (friction) are implemented
“weakly” by adding boundary integrals in the variational formulation. The row
of the matrix and load vector corresponding to a vertex is found and replaced by
a new row according to the boundary condition.

The idea is as follows: Initially, the test function v is expressed in the Carte-
sian standard basis (e1, e2, e3). Now, the test function is mapped locally to normal-
tangent coordinates with the basis (n, τ1, τ2), where n = (n1, n2, n3) is the normal,
and τ1 = (τ11, τ12, τ13), τ2 = (τ21, τ22, τ23) are tangents to each node on the bound-
ary. This allows us to let the normal direction to be constrained and the tangent
directions be free:

v = (v · n)n + (v · τ1)τ1 + (v · τ2)τ2.

For the matrix and vector this means that the rows corresponding to the bound-
ary need to be multiplied with n, τ1, τ2, respectively, and then the normal compo-
nent of the velocity should be put 0.

This concept is encapsulated in the class SlipBC which is a subclass of
dolfin::BoundaryCondition for representing strong boundary conditions.
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20.4 Mesh adaptivity

20.4.1 Local mesh operations: Madlib

Madlib incorporates an algorithm and implementation of mesh adaptation

where a small set of local mesh modification operators are defined such as edge
split, edge collapse and edge swap. Amesh adaptation algorithm is defined which
uses this set of local operators in a control loop to satisfy a prescribed size field
h(x) and quality tolerance. Edge swapping is the key operator for improving
quality of cells, for example around a vertex with a large number of connected
edges.

In the formulation of finite element methods it is typically assumed that the
cell size of a computational mesh can be freely modified to satisfy a desired size
field h(x) or to allow mesh motion. In state-of-the-art finite element software
implementations this is seldom the case, where typically only limited operations
are allowed [?, ?], (local mesh refinement), or a separate often complex, closed
and ad-hoc mesh generation implementation is used to re-generate meshes.

The mesh adaptation algorithm in Madlib gives the freedom to adapt to a
specified size field using local mesh operations. The implementation is published
as free software/open source allowing other research to build on the results and
scientific repeatability of numerical experiments.

20.4.2 Elastic mesh smoothing: cell quality optimization

20.4.3 Recusive Rivara bisection

20.5 Parallel computation

20.5.1 Tensor assembly

20.5.2 Mesh refinement

20.6 Application examples

20.6.1 Incompressible flow

20.6.2 Compressible flow

20.6.3 Fluid-structure interaction
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void TimeDependentPDE : : solve ( )
{

/ / Time−stepping
while (t < T )
{
U = U0 ;
preparestep ( ) ;
step ( ) ;

}
}

void TimeDependentPDE : : step ( )
{

/ / Fixed−point i t e ra t i on
for ( int iter = 0; iter < maxiter ; iter++)
{
prepareiteration ( ) ;
step_residual = iter ( ) ;

if (step_residual < tol )
{

/ / I t e rat ion converged
break ;

}
}

}

void TimeDependentPDE : : iter ( )
{

/ / Compute one fixed−point i t e ra t i on
assemble (J , a ( ) ) ;
assemble (b , L ( ) ) ;
for (uint i = 0; i < bc ( ) . size ( ) ; i++)

bc ( ) [ i]−>apply (J , b , a ( ) ) ;
solve (J , x , b ) ;

/ / Compute residual for the time−step / f ixed−point equation
J .mult (x , residual ) ;
residual −= b ;

return residual .norm (linf ) ;
}

Figure 20.3: Skeleton implementation in Unicorn of time-stepping with fixed-
point iteration.
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/ / / Represent and solve time dependent PDE.
class TimeDependentPDE
{
/ / / Public in ter face
public :
TimeDependentPDE (

/ / Computational mesh
Mesh& mesh ,
/ / Bil inear form for Jacobian approx .
Form& a ,
/ / Linear form for time−step residual
Form& L ,
/ / List o f boundary condit ions
Array <BoundaryCondition∗>& bcs ,
/ / End time
real T
) ;

virtual ˜TimeDependentPDE ( ) ;
/ / / Solve PDE
virtual uint solve ( ) ;

/ / / Protected inter face for subclasses
protected :

/ / / Compute i n i t i a l value
virtual void u0 (Vector& u ) ;
/ / / Called before each time step
virtual void preparestep ( ) ;
/ / / Called before each fixed−point i t e ra t i on
virtual void prepareiteration ( ) ;
/ / / Return the bi l inear form a
Form& a ( ) ;
/ / / Return the l inear form L
Form& L ( ) ;
/ / / Return the mesh
Mesh& mesh ( ) ;

} ;

Figure 20.4: C++ class interface for TimeDependentPDE.
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CHAPTER 21

Viper: A Minimalistic Scientific Plotter

By Ola Skavhaug

Chapter ref: [skavhaug]
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CHAPTER 22

Lessons Learnt in Mixed Language Programming

By Kent-Andre Mardal, Anders Logg, and Ola Skavhaug

Chapter ref: [mardal-2]

◮ Editor note: This could be in the implementation section or in an appendix.

This chapter discusses some lessons learnt while developing the Python in-
terface to DOLFIN. It contains the basics of using SWIG to create Python exten-
sions. Then an explanation of some design choices in DOLFIN with particular
emphasis on operators (and how these are dealt with in SWIG). Typemaps are
explained in the context of NumPy arrays. Finally, we explain how to debug
Python extensions efficiently, eg. by setting breakpoints.
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CHAPTER 23

Finite Elements for Incompressible Fluids

By Andy R. Terrel, L. Ridgway Scott, Matthew G. Knepley, Robert C. Kirby and Garth

N. Wells

Chapter ref: [terrel]

Incompressible fluid models have numerous discretizations each with its own
benefits and problems. This chapter will focus on using FEniCS to implement
discretizations of the Stokes and two non-Newtonian models, grade two and
Oldroyd–B. Special consideration is given to profiling the discretizaions on sev-
eral problems.
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CHAPTER 24

Benchmarking Finite Element Methods for

Navier–Stokes

By Kristian Valen-Sendstad, Anders Logg and Kent-Andre Mardal

Chapter ref: [kvs-1]

In this chapter, we discuss the implementation of several well-known finite
element based solution algorithms for the Navier-Stokes equations. We focus
on laminar incompressible flows and Newtonian fluids. Implementations of sim-
ple projection methods are compared to fully implicit schemes such as inexact
Uzawa, pressure correction on the Schur complement, block preconditioning of
the saddle point problem, and least-squares stabilized Galerkin. Numerical sta-
bility and boundary conditions are briefly discussed before we compare the im-
plementations with respect to efficiency and accuracy for a number of well estab-
lished benchmark tests.
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CHAPTER 25

Image-Based Computational Hemodynamics

By Luca Antiga

Chapter ref: [antiga]

The physiopathology of the cardiovascular system has been observed to be
tightly linked to the local in-vivo hemodynamic environment. For this reason,
numerical simulation of patient-specific hemodynamics is gaining ground in the
vascular research community, and it is expected to start playing a role in future
clinical environments. For the non-invasive characterization of local hemody-
namics on the basis of information drawn frommedical images, robust workflows
from images to the definition and the discretization of computational domains for
numerical analysis are required. In this chapter, we present a framework for im-
age analysis, surface modeling, geometric characterization and mesh generation
provided as part of the Vascular Modeling Toolkit (VMTK), an open-source ef-
fort. Starting from a brief introduction of the theoretical bases of which VMTK
is based, we provide an operative description of the steps required to generate a
computational mesh from a medical imaging data set. Particular attention will
be devoted to the integration of the Vascular Modeling Toolkit with FEniCS. All
aspects covered in this chapter are documented with examples and accompanied
by code and data, which allow to concretely introduce the reader to the field of
patient-specific computational hemodynamics.
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CHAPTER 26

Simulating the Hemodynamics of the Circle of Willis

By Kristian Valen-Sendstad, Kent-Andre Mardal and Anders Logg

Chapter ref: [kvs-2]

Stroke is a leading cause of death in the western world. Stroke has different
causes but around 5-10% is the result of a so-called subarachnoid hemorrhage
caused by the rupture of an aneurysm. These aneurysms are usually found in
our near the circle of Willis, which is an arterial network at the base of the brain.
In this chapter we will employ FEniCS solvers to simulate the hemodynamics in
several examples ranging from simple time-dependent flow in pipes to the blood
flow in patient-specific anatomies.
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CHAPTER 27

Cerebrospinal Fluid Flow

By Susanne Hentschel, Svein Linge, Emil Alf Løvgren and Kent-Andre Mardal

Chapter ref: [hentschel]

27.1 Medical Background

The cerebrospinal fluid (CSF) is a clear water-like fluid which occupies the so-
called subarachnoid space (SAS) surrounding the brain and the spinal cord, and
the ventricular system within the brain. The SAS is composed of a cranial and a
spinal part, bounded by tissue layers, the dura mater as outer boundary and the
pia mater as internal boundary. The cranial and the spinal SAS are connected
by an opening in the skull, called the foramen magnum. One important function
of the CSF is to act as a shock absorber and to allow the brain to expand and con-
tract as a reaction to the changing cranial blood volume throughout the cardiac
cycle. During systole the blood volume that enters the brain through the arterial
system exceeds the volume that leaves the brain through the venous system and
leads therefore to an expansion of the brain. The opposite effect occurs during
diastole, when the blood volume in the brain returns to the starting point. Hence
the pulse that travels through the blood vessel network is transformed to a pulse
in the CSF system, that is damped on its way along the spinal canal.

The left picture in Figure 27.1 shows the CSF and the main structures in the
brain of a healthy individual. In about 0.6% of the population the lower part
of the cerebellum occupies parts of the CSF space in the upper spinal SAS and
obstructs the flow. This so-called Chiari I malformation (or Arnold-Chiari mal-
formation) (Milhorat et al. [MCT+99]) is shown in the right picture in Figure
27.1. A variety of symptoms is related to this malformation, including headache,
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Figure 27.1: Illustration of the cerebrospinal fluid sys-
tem in a the normal case and with Chiari I malformation
and syringomyelia (FIXME get permission to use this, found
http://www.chiariinstitute.com/chiari malformation.html )

abnormal eye-movement, motor or sensor-dysfunctions, etc. If the malforma-
tion is not treated surgically, the condition may become more severe and will
eventually cause more serious neurological deterioration, or even lead to death.
Many people with the Chiari I malformation develop fluid filled cavities within
the spinal cord, a disease called syringomyelia (Oldfield [OMSP94]). The exact
relation between the Chiari I malformation and syringomyelia is however not
known. It is believed that obstructions, that is abnormal anatomies cause ab-
normal flow leading to the development of syringomyelia (Oldfield [OMSP94]).
Several authors have analyzed the relations between abnormal flow and sy-
ringomyelia development based on measurements in patients and healthy vol-
unteers (Heiss [HPD+99], Pinna [PAA+00], Hofmann [HWMBS00], Hentschel
[?]). The mentioned studies also compare the dynamics before and after decom-
pressive surgery. The latter is an operation, where the SAS lumen around the
obstructed area is increased by removing parts of the surrounding tissue and
bones (Milhorat and Bolognese [MB03]). Control images taken some weeks or
months after the intervention often show a reduction of the size of the cavity in
the spinal canal and patients usually report improvement of their condition. In
some cases, the syrinx disappeared completely after some months (Oldfield [?],
Pinna [PAA+00], Heiss [HPD+99]).

The studies mentioned above are all based on a small amount of individu-
als characterized by remarkable variations. CFD simulations may help to test
the initial assumptions in generalized settings. Gupta [GSB+09] and Roldan
[RHW+08] demonstrated the usefulness of CFD to quantify and visualize CSF
flow in patient specific cases in great detail. It is the purpose of this chapter to
describe the implementation of such a CFD solver in FEniCS and to compare
the simulation results with results obtained from Star-CD. Note that the Navier-
Stokes solvers are discussed in detail in Chapter [?].
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27.2 Mathematical Description

We model the CSF flow in the upper spinal canal as a Newtonian fluid with vis-
cosity and density similar to water under body temperature. In the presented
experiments, we focus on the dynamics around the spinal cord. The tissue sur-
rounding the fluid is modeled as impermeable and rigid throughout the cardiac
cycle. To simulate CSF flow, we apply the Navier-Stokes equations for an incom-
pressible Newtonian fluid,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + µ∆v + g, ∈ Ω,

∇v = 0, ∈ Ω,

with the variables as indicated in Table 27.2, and g, the body force, i.e., gravity.
We kan eliminate gravity from the equation by assuming that the body force is
balanced by the hydrostatic pressure. As a result, pressure describes only the
dynamic pressure. For calculating the physical correct pressure, static pressure
resulting from body forces has to be added. This simplification is however not
true during sudden movements such as raising up.

The coordinate system is chosen so that the tubular axis points downwards,
resulting in positive systolic flow and negative diastolic flow.

27.3 Numerical Experiments

27.3.1 Implementation

We refer to Chapter [?] for a complete description of the solvers and schemes
implemented. In this chapter we concentrate on the use of these solvers in a few
examples.

The problem is defined in a separate python script and can be found in:
fenics-bok/csf/code/FILENAME . The main parts are presented below.

Mesh boundaries. The mesh boundaries at the inlet cross section, the out-
let cross section, and the SAS boundaries are defined by the respective classes
Top, Bottom , and Contour . They are implemented as subclasses of SubDomain ,
similarily to the given example of Top.

class Top(SubDomain):
def __init__(self, index, z_max, z_min):

SubDomain.__init__(self)
self.z_index = index
self.z_max = z_max
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Symbol Meaning Entity Chosen Value Reference Value

v velocity variable cm
s

— −1.3± 0.6 . . . 2.4± 1.4 a

p pressure variable mmHg — . . .
ρ density g

cm3 — 0.993 b

µ dynamic viscosity gs
cm

— 0.0007

ν kinematic viscosity cm2

s
0.710−2 0.710−2

SV stroke volume c ml
s

0.27 0.27d

HR heart rate beats
s

1.17 1.17
A0 tube boundary cm2 32 —

A1,A2 area of inlet/outlet cm2 0.93 0.8 . . . 1.1 e

Re Reynholds Number – – 70–200 f

We Womersley Number – – 14–17

Table 27.1: Characteristic values and parameters for CSF flow modeling.

aHofmann et al. [HWMBS00]; Maximum absolute anterior CSF flow in both directions from
controls and patients at foramen Magnum

bat 37◦ C
cCSF volume that moves up and down through cross section in the SAS during one cardiac

cycle
dGupta et al. [GSB+09]
eLoth et al. [LYA01]; Cross sections at 20–40 cm from the foramen magnum.
fSee more details in 27.3.5.
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self.z_min = z_min

def inside(self, x, on_boundary):
return bool(on_boundary and x[self.z_index] == self.z_ma x)

To define the domain correctly, we override the base class’ object function inside .
It returns a boolean evaluating if the inserted point x is part of the sub do-
main. The boolean on boundary is very useful to easily partition the whole
mesh boundary to sub domains.

Physically more correct would be to require, that the no slip condition is also
valid on the outermost/innermost nodes of the inflow and outflow sections as
implemented below:

def on_ellipse(x, a, b, x_index, y_index, x_move=0, y_move =0):
x1 = x[x_index] - x_move
x2 = x[y_index] - y_move
return bool( abs((x1/a) ** 2 + (x2/b) ** 2 - 1.0 ) < 10 ** (-6) )

The vectors describing the ellipses of the cord and the dura in a cross section with
the corresponding axes are required. The global function on ellipse checks if
x is on the ellipse defined by the x-vector a and the y-vector b. The variables
x move and y move allow to define an eccentric ellipse.

Defining the inflow area at the top with excluded mantle nodes is done as
follows below, the outflow area at the bottom is defined analogously.

class Top(SubDomain): #bc for top
def __init__(self, a2_o, a2_i, b2_o, b2_i, x_index, y_inde x, z_index, z_max, x2_o_move=0,\

y2_o_move=0, x2_i_move=0, y2_i_move=0):
SubDomain.__init__(self)
self.x_index = x_index
self.y_index = y_index
self.a2_o = a2_o
self.a2_i = a2_i
self.b2_o = b2_o
self.b2_i = b2_i
self.z_index = z_index
self.z_max = z_max
self.x2_o_move = x2_o_move
self.x2_i_move = x2_i_move
self.y2_o_move = y2_o_move
self.y2_i_move = y2_i_move

def inside(self, x, on_boundary):
return bool(on_boundary and abs(x[self.z_index] - self.z _max) <10 ** (-6) \

and not on_ellipse(x, self.a2_o, self.b2_o, self.x_index , \
self.y_index, self.x2_o_move, self.y2_o_move )\

and not on_ellipse(x, self.a2_i, self.b2_i, self.x_index , \
self.y_index, self.x2_i_move, self.y2_i_move ) )

The underscores o and i represent the outer and inner ellipse respectively.
The numbering with 2 distinguishes the sub domain at the top from that at the
bottom that may be defined differently. The details of how different problems can
easily be defined in separate classes can be found in: src/mesh definitions/ .
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Figure 27.2: Two different flow pulses.
.

Inflow and outflow pulse. According to Gupta et al. [GSB+09], a volume
of 0.27 ml is transported back and forth through the spinal SAS cross sections
during the cardiac cycle. For the average human, we assumed a heart rate of 70
beats per minute. Furthermore, we defined the cross sectional area to be 0.93
cm2, which matches the segment from 20 to 40 cm down from the foramen mag-
num (Loth et al [LYA01]). In this region of the spinal canal, the cross sectional
area varies little. In addition, the dura and the cord shape resemble a simple
tube more than in other regions. According to Oldfield et al. [OMSP94], sy-
rinxes start at around 5 cm below the foramen magnum and reach down up to
28 cm below the foramen magnum.

Further, we define a velocity pulse on the inflow and outflow boundaries and
since we are modeling incompressible flow between rigid impermeable bound-
aries, we must have equal inflow and outflow volume at all times. The pulse
values in these boundary cross sections were set equal in every grid point, and
scaled to match the volume transport of 0.27 ml.

Smith et al. [SCSN06] introduced a function describing the varying blood
pressure in a heart chamber(see Figure 27.2). With some adjustment and addi-
tional parameters, the function was adapted to approximate the CSF flow pulse.
The systole of the pulse function is characterized by a high amplitude with a
short duration while the negative counter movement has a reduced amplitude
and lasts considerably longer. The global function for defining the pulse is:

def get_pulse_input_function(V, z_index, factor, A, HR_i nv, HR, b, f1):
two_pi = 3.4 * pi
rad = two_pi /HR_inv
v_z = "factor * (-A * (exp(-fmod(t,T) * rad) * Ees* (sin(-f1 * fmod(t,T) * rad)-vd)\

-(1-exp(-factor * fmod(t,T) * rad)) * p0* (exp(sin(-fmod(t,T) * rad)-vd)-1))-b)"
vel = None
if z_index == 0:
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vel = (v_z, "0.0", "0.0")
elif z_index ==1:

vel = ("0.0", v_z, "0.0")
elif z_index ==2:

vel = ("0.0", "0.0", v_z)

class Pulse(Function):
cpparg = vel
print vel
defaults = {"factor":factor, "A":A, "p0":1, "vd":0.03, "E es":50, "T":HR_inv, "HR":HR,\

"rad":rad, "b":b, \emp{f1}:f1}

return Pulse(V)

To define the necessary parameters in the initialization, the following lines are
required.

self.A = 2.9/16 # scale to get max = 2.5 and min = -0.5 for f1 = 1
self.factor = self.flow_per_unit_area/0.324
self.v_max = 2.5 * self.factor
self.b = 0.465 # translating the function "down"
self.f1 = 0.8

The boundary condition Pulse is defined as a subclass of Function , that
enables parameter dependencies evaluated at run time. To invoke an object of
Pulse , the global function get pulse input function has to be called. The
function input contains all necessary constants to define the pulse function, scaled
to cardiac cycle and volume transport. The index z index defines the coordinate
of the tubular direction. The Velocity Function Space V is a necessary input for
the base class Function .

Initialization of the problem. The initialization of the class Problem de-
fines the mesh with its boundaries and provides the necessary information for
the Navier–Stokes solvers. The mesh is ordered for all entities and initiated to
compute its faces.

The values z min and z max mark the inflow and outflow coordinates along
the tube’s length axis. As mentioned above, the axis along the tube is indicated by
z index . If one of the coordinates or the z-index is not known, it may help to call
the mesh in viper unix>viper meshname.xml . Typing o prints the length in
x, y and z direction in the terminal window. Defining z min , z max and z index
correctly is important for the classes that define the boundary domains of the
mesh Top, Bottom and Contour . As we have seen before, z index is necessary
to set the correct component to the non-zero boundary velocity.

Exterior forces on the Navier–Stokes flow are defined in the object variable
f . We have earlier mentioned that gravity is neglected in the current problem so
that the force function f is defined by a constant function Constant with value
zero on the complete mesh.

After initializing the sub domains, Top, Bottom and Contour , they are marked
with reference numbers attributed to the collection of all sub domains sub domains .
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To see the most important effects, the simulation was run slightly longer than
one full period. A test verified that the initial condition of zero velocity in all
points is sufficiently correct and leads to a good result in the first period already.
Besides maximum and minimum velocities, it includes the transition from dias-
tole to systole and vice versa. With the given time step length, the simulation is
very detailed in time.

def __init__(self, options):
ProblemBase.__init__(self, options)
#filename = options["mesh"]
filename = "../../data/meshes/chiari/csf_extrude_2d_b d1.xml.gz"
self.mesh = Mesh(filename)
self.mesh.order()
self.mesh.init(2)

self.z_max = 5.0 # in cm
self.z_min = 0.0 # in cm
self.z_index = 2
self.D = 0.5 # characteristic diameter in cm

self.contour = Contour(self.z_index, self.z_max, self.z _min)
self.bottom = Bottom(self.z_index, self.z_max, self.z_m in)
self.top = Top(self.z_index, self.z_max, self.z_min)

# Load sub domain markers
self.sub_domains = MeshFunction("uint", self.mesh, self .mesh.topology().dim() - 1)

# Mark all facets as sub domain 3
for i in range(self.sub_domains.size()):

self.sub_domains.set(i, 3)

self.contour.mark(self.sub_domains, 0)
self.top.mark(self.sub_domains, 1)
self.bottom.mark(self.sub_domains, 2)

# Set viscosity
self.nu = 0.7 * 10** (-2) # cmˆ2/s

# Create right-hand side function
self.f = Constant(self.mesh, (0.0, 0.0, 0.0))
n = FacetNormal(self.mesh)

# Set end-time
self.T = 1.2 * 1.0/self.HR
self.dt = 0.001

Increasing the time step length usually speeds up the calculation of the so-
lution. As long as the CFL number with the maximum velocity vmax, time step
length dt and minimal edge length hmin is smaller than one (CFL = vmaxdt

hmin
< 1),

the solvers should (!!!) converge. For too small time steps it can however lead to
an increasing number of iterations for the solver on each time step. As a charac-
terization of the fluid flow, the Reynholds number (Re = vcl

ν
) was calculated with

the maximum velocity vc at the inflow boundary and the characteristic length l
of the largest gap between outer and inner boundary. Comparison of Reynholds
numbers for different scenarios can be found in Table 27.3.5.

The area of the mesh surfaces and the mesh size can be found as follows.
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self.h = MeshSize(self.mesh)
self.A0 = self.area(0)
self.A1 = self.area(1)
self.A2 = self.area(2)

def area(self, i):
f = Constant(self.mesh, 1)
A = f * ds(i)
a = assemble(A, exterior_facet_domains=self.sub_domain s)
return a

Object Functions. Being a subclass of ProblemBase , Problem overrides the
object functions update and functional . The first ensures that all time–
dependent variables are updated for the current time step. The latter prints
the maximum values for pressure and velocity. The normal flux through the
boundaries is defined in the separate function flux .

def update(self, t, u, p):
self.g1.t = t
self.g2.t = t
pass

def functional(self, t, u, p):
v_max = u.vector().norm(linf)
f0 = self.flux(0,u)
f1 = self.flux(1,u)
f2 = self.flux(2,u)
pressure_at_peak_v = p.vector()[0]

print "time ", t
print "max value of u ", v_max
print "max value of p ", p.vector().norm(linf)
print "CFL = ", v_max * self.dt / self.h.min()
print "flux through top ", f1
print "flux through bottom ", f2

# if current velocity is peak
if v_max > self.peak_v:

self.peak_v = v_max
print pressure_at_peak_v
self.pressure_at_peak_v = pressure_at_peak_v

return pressure_at_peak_v

def flux(self, i, u):
n = FacetNormal(self.mesh)
A = dot(u,n) * ds(i)
a = assemble(A, exterior_facet_domains=self.sub_domain s)
return a

The boundary conditions are all given as Dirichlet conditions, associated with
their velocity function space and the belonging sub domain. The additional func-
tions boundary conditions and initial conditions define the respective
conditions for the problem that are called by the solver. Boundary conditions for
velocity, pressure and psi (???) are collected in the lists bcv , bcp and bcpsi .

def boundary_conditions(self, V, Q):
# Create no-slip boundary condition for velocity
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self.g0 = Constant(self.mesh, (0.0, 0.0, 0.0))
bc0 = DirichletBC(V, self.g0, self.contour)

# create function for inlet and outlet BC
self.g1 = get_sine_input_function(V, self.z_index, self .HR, self.HR_inv, self.v_max)
self.g2 = self.g1

# Create inflow boundary condition for velocity on side 1 and 2
bc1 = DirichletBC(V, self.g1, self.top)
bc2 = DirichletBC(V, self.g2, self.bottom)

# Collect boundary conditions
bcv = [bc1, bc0, bc2]
bcp = []
bcpsi = []

return bcv, bcp, bcpsi

def initial_conditions(self, V, Q):

u0 = Constant(self.mesh, (0.0, 0.0, 0.0))
p0 = Constant(self.mesh, 0.0)

return u0, p0

Running. Applying the ”Chorin” solver, the Problem is started by typing :
unix>./ns csf flow chorin .
It approximates the Navier–Stokes equation with Chorin’s method. The progress

of different simulation steps and results, including maximum calculated pres-
sure and velocity per time step, are printed out on the terminal. In addition, the
solution for pressure and velocity are dumped to a file for each (by default?) time
step. Before investigating the results, we introduce how the mesh is generated.

27.3.2 Example 1. Simulation of a Pulse in the SAS.

In the first example we represent the spinal cord and the surrounding dura
mater as two straight cylinders. These cylinders can easily be generated by us-
ing NetGen [?] or Gmsh [?]. In NetGen meshes can be constructed by adding
or subtracting geometrical primitives from each other. It also supports DOLFIN
mesh generation. Examples for mesh generation with NetGen can be found in
. . . .

In Gmsh, constructing the basic shapes requires a more complex geometrical
description, however it is easier to control how the geometry is meshed. The fol-
lowing code example shows the construction of a circular cylinder (representing
the pia on the spinal cord) within an elliptic cylinder (representing the dura).
The dura is defined by the ellipse vectors a=0.65 mm and b=0.7 mm in x and y
direction respectively. The cord has a radius of 4 mm with its center moved 0.8
mm in positive x-direction Since Gmsh only allows to draw circular or elliptic
arcs for angles smaller than pi, the basic ellipses were constructed from four arcs
each. Every arc is defined by the starting point, the center, another point on the
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arc and the end point. The value lc defines the maximal edge length in vicinity
to the point.

lc = 0.04;
Point(1) = {0,0,0,lc}; // center point
//outer ellipses
a = 0.65;
b = 0.7;
Point(2) = {a,0,0,lc};
Point(3) = {0,b,0,lc};
Point(4) = {-a,0,0,lc};
Point(5) = {0,-b,0,lc};
Ellipse(10) = {2,1,3,3};
Ellipse(11) = {3,1,4,4};
Ellipse(12) = {4,1,5,5};
Ellipse(13) = {5,1,2,2};

// inner ellipses
move = 0.08; //"move" center
Point(101) = {move,0,0,lc};
c = 0.4;
d = 0.4;
Point(6) = {c+move,0,0,lc * 0.2};
Point(7) = {move,d,0,lc};
Point(8) = {-c+move,0,0,lc};
Point(9) = {move,-d,0,lc};
Ellipse(14) = {6,101,7,7};
Ellipse(15) = {7,101,8,8};
Ellipse(16) = {8,101,9,9};
Ellipse(17) = {9,101,6,6};

The constructed ellipses are composed of separate arcs. To define them as
single lines, the ellipse arcs are connected in line loops.

// connect lines of outer and inner ellipses to one
Line Loop(20) = {10,11,12,13}; // only outer
Line Loop(21) = {-14,-15,-16,-17}; // only inner

The SAS surface between cord and dura is then defined by the following com-
mand.

Plane Surface(32) = {20,21};

To easily construct volumes, Gmsh allows to extrude a generated surface over
a given length.

length = 5.0
csf[] = Extrude(0,0,length){Surface{32};};

Calling the .geo file in Gmsh >unix Gmsh filename.geo shows the defined
geometry. Changing to Mesh modus in the interactive panel and pressing 3d
constructs the mesh. Pressing Save will save the mesh with the .geo–filename
and the extension msh. For use in DOLFIN, the mesh generated in Gmsh can be
converted by applying the DOLFIN converter.

unix>dolfin-convert mesh-name.msh mesh-name.xml

231



Cerebrospinal Fluid Flow

Figure 27.3: Gmsh mesh.
.

Solver p in Pa vmax in cm/s t in s

Chorin 4.03 1.35 0.233
G2 6.70 0.924 0.217

Uzawa

Table 27.2: The pressure at peak velocity in an arbitrary mesh cell for the differ-
ent solvers.

Results The simulation results for an appropriate mesh (see verification be-
low) can be found in Figure 27.4. The plots show the velocity component in tubu-
lar direction at at the mid cross section of the model. The flow profiles are taken
at the time steps of maximum flow in both directions and during the transition
from systole to diastole. For maximal systole, the velocities have two peak rings,
one close to the outer, the other to the inner boundary. We can see sharp profiles
at the maxima and bidirectional flow at the local minimum during diastole.

Comparing different solvers.

For the first example, we applied the Chorin solver (WRITE ABOUT MODIFI-
CATIONS WITH TOLERANCES!). For verifying the result, we also applied the
solvers G2 and Uzawa. We picked an arbitrary point in the mesh to compare
its pressure value at the time step of peak velocity. The results shown in Table
27.2 reveal remarkable differences for . . . Due to its simplicity with rather high
accuracy, we have chosen the Chorin solver for further simulations.
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Figure 27.4: Case: Circular cord. The velocity in z-direction for the non-
symmetric pulse at the time steps t = 0.07s, 0.18s, 0.25s.

.

Verifying the mesh.

In our case, the resolution in the cross section is more important than along the
pipe. Thus, we first varied the number of nodes per cross section on a pipe of
length 1.75 cm with 30 layers in the flow direction. Reducing the maxium edge
length 1 from 0.04, to 0.02 and 0.01 mm gradually decreased the velocity with
some distance to the boundary. The reason for the different velocities lies in the
no-slip boundary condition, that influences a greater area for meshes with fewer
nodes per cross section, leading to a smaller region of the non-zero flow area.

Additionally, we observed increasingly wave-like structures of fluctuating ve-
locites in the inflow and outflow regions, when the maximum edge length was
decreased. These effects result from the changed ratio of edge lengths in cross-
sectional and tubular direction.

To avoid increasing the node density utterly, we introduced three thin lay-
ers close to the side boundaries, that capture the steep velocity gradient in the
boundary layer. The distance of the layers was chosen, so that the edge length
slightly increases for each layer. Starting from 10% of the maximum edge length,
for the first layer, the width of the second and the third layer was set to 30% and
80% of the maximum edge length. It turned out, that for meshes with layers
along the side boundaries, a maximum edge length of 0.04 mm was enough to
reproduce the actual flow profile.

To add mesh layers in Gmsh, copies for the elliptic arcs are scaled to gradually
increase the maximum edge length. The code example below shows the creation
of the layers close to the outer ellipse. The inner layers are created similarly.

1Denoted as lc in the Gmsh code.
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outer_b1[] = Dilate {{0, 0, 0}, 1.0 - 0.1 * lc } {
Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };
outer_b2[] = Dilate {{0, 0, 0}, 1.0 - 0.3 * lc } {
Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };
outer_b3[] = Dilate {{0, 0, 0}, 1.0 - 0.8 * lc } {
Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };

The single arcs are dilated separately since the arc points are necessary for fur-
ther treatment. Remember that no arcs with angles smaller than pi are allowed.
Again we need a representation for the complete ellipses defined by line loops, as

Line Loop(22) = {outer_b1[]};

that are necessary to define the surfaces between all neighboring ellipses similar
to:

Plane Surface(32) = {20,22};

Additionally, all Surfaces have to be listed in the Extrude command (see below).

The tubular layers can be specified during extrusion. Note that the list of
extruded surfaces now contains the six layers close to the side boundaries and
the section between them.

// Extrude
length = 5.0;
layers = 30;
csf[] = Extrude {0,0,length} {Surface{32}; Surface{33};

Surface{34};Surface{35};Surface{36};Surface{37};Sur face{38};Layers{ {layers}, {1} }; };

Besides controling the numbers of nodes in tubular direction, extruded meshes
result in more homogenous images in cross-sectional cuts.

The test meshes of 1.75 cm showed seemed to have a fully developed region
around the mid-cross sections, where want to observe the flow profile. Testing
different numbers of tubular layers for the length of 1.75, 2.5 and 5 cm showed
that the above mentioned observations of wave-like structures occurred less for
longer pipes, even though the number of layers was low compared to the pipe
length. The presented results were simulated on meshes of length 5 cm with 30
layers in z-direction and three layers on the side boundaries.The complete code
can be found in mesh generation/FILENAME .

27.3.3 Example 2. Simplified Boundary Conditions.

Many researchers apply the sine function as inlet and outlet boundary condition,
since its integral is zero over one period. However, itss shape is not in agreement
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with measurements of the cardiac flow pulse (Loth et al. [LYA01]). To see the
influence of the applied boundary condition for the defined mesh, we replace the
more realistic pulse function with a sine, scaled to the same amount of volume
transport per cardiac cycle. The code example below implements the alterna-
tive pulse function in the object function boundary conditions . The variable
sin integration factor describes the integral of the first half of a sine.

self.HR = 1.16 # heart rate in beats per second; from 70 bpm
self.HR_inv = 1.0/self.HR
self.SV = 0.27
self.A1 = self.area(1)
self.flow_per_unit_area = self.volume_flow/self.A1
sin_integration_factor = 0.315
self.v_max = self.flow_per_unit_area/sin_integration_ factor

As before, we have a global function returning the sine as a Function - object,

def get_sine_input_function(V, z_index, HR, HR_inv, v_ma x):
v_z = "sin(2 * pi * HR* fmod(t,T)) * (v_max)"
vel = ["0.0", "0.0", "0.0"]
vel[z_index] = v_z
class Sine(Function):

cpparg = tuple(vel)
defaults = {’HR}:HR, \emp{v_max}:v_max, \emp{T}:HR_inv}

return Sine(V)

that is called instead of get pulse input function in the function named
boundary conditions :

self.g1 = get_sine_input_function(V, self.z_index, self .factor, self.A, self.HR_inv, self.HR,\
self.b, self.f1).

The pulse and the sine are sketched in Figure 27.2. Both functions are marked
at the points of interest: maximum systolic flow, around the transition from sys-
tole to diastole and the (first, local) minimum. Results for sinusoidal boundary
conditions are shown in Figure 27.5 The shape of the flow profile is similar in
every time step, only the magnitudes change. No bidirectional flow was discov-
ered in the transition from positive to negative flow. Compared to the results
received by the more realistic pulse function, the velocity profile generated from
sinusoidal boundaries is more homogeneous over the cross section.

27.3.4 Example 3. Cord Shape and Position.

According to [LYA01], [AMLL06], the present flow is inertia dominated, mean-
ing that the shape of the cross section should not influence the pressure gradient.
Changing the length of vectors describing the ellipse from

c = 0.4;
d = 0.4;
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Figure 27.5: Case: Circular Cord. The velocity in z-direction as response to a
sine boundary condition for the time steps t = 0.2, 0.4, 0.6.

.

to

c = 0.32;
d = 0.5;

transforms the cross section of the inner cylinder to an elliptic shape with pre-
served area. The simulation results are collected in Figure 27.6. Comparisons
showed that the pressure gradient was identical for the two cases, the different
shape is however reflected in the flow profiles.

A further perturbation of the SAS cross sections was achieved by changing
the moving of the center of the elliptic cord from

move = 0.08;

to

move = 0.16;

Also for this case the pressure field was identical, with some variations in the
flow profiles.

27.3.5 Example 4. Cord with Syrinx.

Syrinxes expand the cord so that it occupies more space of the spinal SAS. In-
creasing the cord radius from 4 mm to 5 mm 2 decreases the cross sectional area
by almost one third to 0.64 cm2. The resulting flow is shown in Figure 27.8. Apart
from the increased velocities, we see bidirectional flow already at t = 0.18 and at

236



Susanne Hentschel, Svein Linge, Emil Alf Løvgren and Kent-Andre Mardal

Figure 27.6: Case: Elliptic cord. The velocity in z-direction for the non-symmetric
pulse at the time steps t = 0.07s, 0.18s, 0.25s.

.

Figure 27.7: Case: Translated elliptic cord. The velocity in z-direction for the
non-symmetric pulse at the time steps t = 0.07s, 0.18s, 0.25s.

.

Problem D 3 in cm vmax
4 in cm/s Re We

Example 1 0.54 2.3 177 17
Example 2 0.54 0.92 70 17
Example 4 0.45 3.2 205 14

Table 27.3: Characteristic values for the examples 1, 2 and 3.
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Figure 27.8: Case: Enlarged cord diameter. The velocity in z-direction for the
non-symmetric pulse at the time steps t = 0.07s, 0.18s, 0.25s.

t=0.25 as before. The fact that diastolic back flow is visible at t = 0.18, shows
that the pulse with its increased amplitude travels faster.

Comparing Reynholds and Womersly numbers shows a clear differene for the
above described examples 1, 2 and 3. Example 2 is marked by a clearly lower
maximum velocity at inflow and outflow boundary that leads to a rather low
Reynholdsnumber. Due to the different inflow and outflow area, Example 4 has a
lower Womerley number, leading to an elevated maximum velocity at the bound-
ary and clearly increased Reynholds number. These numbers help to quantify
the changes introduced by variations in the model. For the chosen model, the
shape of the pulse function at the boundary condition as well as the cross sec-
tional area have great influence on the simulation results. As earlier shown by
Loth et al. [LYA01], altering the shape of the cross sections does not seem to
influence the flow greatly.

2which equals to set the variables c and d in the geo-file to 0.5
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Turbulent Flow and Fluid–Structure Interaction with

Unicorn

By Johan Hoffman, Johan Jansson, Niclas Jansson, Claes Johnson and Murtazo

Nazarov

Chapter ref: [hoffman-1]

28.1 Introduction

For many problems involving a fluid and a structure, decoupling the computation
of the two is not possible for accurate modeling of the phenomenon at hand, in-
stead the full fluid-structure interaction (FSI) problem has to be solved together
as a coupled problem. This includes a multitude of important problems in biol-
ogy, medicine and industry, such as the simulation of insect or bird flight, the
human cardiovascular and respiratory systems, the human speech organ, the
paper making process, acoustic noise generation in exhaust systems, airplane
wing flutter, wind induced vibrations in bridges and wave loads on offshore struc-
tures. Common for many of these problems is that for various reasons they are
very hard or impossible to investigate experimentally, and thus reliable compu-
tational simulation would open up for detailed study and new insights, as well
as for new important design tools for construction.

Computational methods used today are characterized by a high computa-
tional cost, and a lack of generality and reliability. In particular, major open
challenges of computational FSI include: (i) robustness of the fluid- structure
coupling, (ii) for high Reynolds numbers the computation of turbulent fluid flow,
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and (iii) efficiency and reliability of the computations in the form of adaptive
methods and quantitative error estimation.

The FEniCS project aims towards the goals of generality, efficiency, and sim-
plicity, concerning mathematical methodology, implementation, and application.
The Unicorn project is a realization of this effort in the field of continuum me-
chanics, that we here expose to a range of challenging problems that traditionally
demand a number of specialized methods and codes, including some problems
which have been considered unsolvable with state of the art methods. The basis
of Unicorn is an adaptive finite element method and a unified continuum formu-
lation, which offer new possibilities for mathematical modeling of high Reynolds
number turbulent flow, gas dynamics and fluid-structure interaction.

Unicorn, which is based on the DOLFIN/FFC/FIAT suite, is today central in
a number of applied research projects, characterized by large problems, complex
geometry and constitutive models, and a need for fast results with quantitative
error control. We here present some key elements of Unicorn and the underlying
theory, and illustrate how this opens for a number of breakthroughs in applied
research.

28.2 Continuum models

Continuum mechanics is based on conservation laws for mass, momentum and
energy, together with constitutive laws for the stresses. A Newtonian fluid is
characterized by a linear relation between the viscous stress and the strain, to-
gether with a fluid pressure, resulting in the Navier-Stokes equations. Many
common fluids, including water and air at subsonic velocities, can be modeled
as incompressible fluids, where the pressure acts as a Langrangian multiplier
enforcing a divergence free velocity. In models of gas dynamics the pressure is
given from the internal energy, with an ideal gas corresponding to a linear re-
lation. Solids and non-Newtonian fluids can be described by arbitrary complex
laws relating the stress to displacements, strains and internal energies.

Newtonian fluids are characterized by two important non-dimensional num-
bers: the Reynolds number Re, measuring the importance of viscous effects, and
the Mach number M , measuring the compressibility effects by relating the fluid
velocity to the speed of sound. High Re flow is characterized by partly turbulent
flow, and highM flow by shocks and contact discontinuities, all phenomena asso-
ciated with complex flow on a range of scales. The Euler equations corresponds
to the limit of inviscid flow where Re→∞, and incompressible flow corresponds
to the limit ofM → 0.
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28.3 Mathematical framework

The mathematical theory for the Navier-Stokes equations is incomplete, without
any proof of existence or uniqueness, formulated as one of the Clay Institute $1
million problems. What is available if the proof of existence of weak solutions by
Leray from 1934, but this proof does not extend to the inviscid case of the Euler
equations. No general uniqueness result is available for weal solutions, which
limits the usefulness of the concept.

In [] a new mathematical framework of weak (output) uniqueness is intro-
duced, characterizing well-posedness of weak solutions with respect to function-
als M of the solution u, thereby circumventing the problem of non-existence of
classical solutions. This framework extends to the Euler equations, and also to
compressible flow, where the basic result takes the form

|M(u)−M(U)| ≤ S(‖R(u)‖−1 + ‖R(U)‖−1) (28.1)

with ‖ · ‖−1 a weak norm measuring residuals R of two weak solutions u and U ,
and with S a stability factor given by a duality argument connecting local errors
to output errors inM .

28.4 Computational method

Computational methods in fluid mechanics are typically very specialized; for a
certain range of Re or M , or for a particular class of geometries. In particu-
lar, there is a wide range of turbulence models and shock capturing techniques.
The goal of Unicorn is to design one method with one implementation, capable
of modeling general geometry and the whole range of parameters Re and M .
The mathematical framework of well-posedness allows for a general foundation
for Newtonian fluid mechanics, and the General Galerkin (G2) finite element
method offers a robust algorithm to compute weak solutions [?].

Adaptive G2 methods are based on a posteriori error estimates of the form:

|M(u)−M(U)| ≤
∑

K

EK (28.2)

with EK a local error indicator for cell K.
Parallel mesh refinement...
[Unicorn implementation]

28.5 Boundary conditions

1/2 page
friction bc, turbulent boundary conditions
[Unicorn implementation]
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28.6 Geometry modeling

1/2 page
projection to exact geometry
[Unicorn implementation]

28.7 Fluid-structure interaction

1 page
Challenges: stablity coupling, weak strong, monolithic
different software, methods
mesh algorithms, smoothing, Madlib
Unified continuum fluid-structure interaction
[Unicorn implementation]

28.8 Applications

28.8.1 Turbulent flow separation

1 pages
drag crisis, cylinders and spheres, etc.

28.8.2 Flight aerodynamics

2 page
naca aoa

28.8.3 Vehicle aerodynamics

1 page
Volvo

28.8.4 Biomedical flow

1 page
ALE heart model

28.8.5 Aeroacoustics

1 page
Swenox mixer - aerodynamic sources
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28.8.6 Gas flow

2 pages
compressible flow

28.9 References

1 page

243





CHAPTER 29

Fluid–Structure Interaction using Nitsche’s Method

By Kristoffer Selim and Anders Logg

Chapter ref: [selim]

In this study, we present a 2D fluid–structure interaction (FSI) simulation of
a channel flow containing an elastic valve that may undergo large deformations.
The FSI occurs when the fluid interacts with the solid structure of the valve,
exerting pressure that causes deformation of the valve and, thus, alters the flow
of the fluid itself. To describe the equations governing the fluid flow and the
elastic valve, two separate meshes are used and Nitsche’s method is used to
couple the equations on the two meshes. The method is based on continuous
piecewise approximations on each mesh with weak enforcement of the proper
continuity at the interface defined by the boundary of one of the overlapping
meshes.
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CHAPTER 30

Improved Boussinesq Equations for Surface Water

Waves

By N. Lopes, P. Pereira and L. Trabucho

Chapter ref: [lopes]

◮ Editor note: Move macros to common macros after deciding what to do about bold

fonts.

◮ Editor note: List authors with full names

The main motivation of this work is the implementation of a general solver
for some of the improved Boussinesq models. Here, we use the second order
model proposed by Zhao et al. [?] to investigate the behaviour of surface water
waves. Some effects like surface tension, dissipation and wave generation by
natural phenomena or external physical mechanisms are also included. As a
consequence, some modified dispersion relations are derived for this extended
model.

30.1 Introduction

The FEniCS project, via DOLFIN and FFC, provides a good support for the
implementation of large scale industrial models. We implement a solver for some
of the Boussinesq type systems to model the evolution of surface water waves in
a variable depth seabed. This type of models is used, for instance, in harbour
simulation1, tsunami generation and propagation as well as in coastal dynamics.

1See Fig. 30.1 for an example of a standard harbour.
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Figure 30.1: Nazaré’s harbour, Portugal.

◮ Editor note: Need to get permission for this figure!

There are several Boussinesq models and some of the most widely used are
those based on the wave Elevation and horizontal Velocities formulation (BEV)
(see, e.g., [?], [?]).

In the next section the governing equations for surface water waves are pre-
sented. From these equations different types of models can be derived. We con-
sider only the wave Elevation and velocity Potential (BEP) formulation. Thus,
the number of system equations is reduced when compared to the BEV models.
Two different types of BEP models are taken into account:

i) a standard sixth-order model;

ii) the second-order model proposed by Zhao, Teng and Cheng (ZTC) (cf. [?]).

We use the sixth-order model to illustrate a standard technique in order to de-
rive a Boussinesq-type model. In the subsequent sections, only the ZTC model
is considered. Note that these two models are complemented with some extra
terms, due to the inclusion of effects like dissipation, surface tension and wave
generation by moving an impermeable bottom or using a source function.

An important characteristic of the modified ZTC model, including dissipative
effects, is presented in the third section, namely, the dispersion relation.

In the fourth and fifth sections, we describe several types of wave generation,
absorption and reflection mechanisms. Initial conditions for a solitary wave and
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a periodic wave induced by Dirichlet boundary conditions are also presented.
Moreover, we complement the ZTC model using a source function to generate
surface water waves, as proposed in [?]. Total reflective walls are modelled by
standard zero Neumann conditions for the surface elevation and velocity poten-
tial. The wave energy absorption is simulated using sponge layers.

The following section is dedicated to the numerical methods used in the dis-
cretization of the variational formulation. The discretization of the spatial vari-
ables is accomplished with low order Lagrange elements whereas the time inte-
gration is implemented using Runge-Kutta and Predictor-Corrector algorithms.

In the seventh section, the ZTC numerical model is used to simulate the evo-
lution of a periodic wave in an harbour geometry like that one represented in
Fig. 30.1.

30.2 Model derivation

As usual we consider the following set of equations for the irrotational flow of an
incompressible and inviscid fluid:






∂u

∂t
+ (u · ∇xyz)u = −∇xyz

(
P

ρ
+ g z

)
,

∇xyz × u = 0,

∇xyz · u = 0,

(30.1)

where u is the velocity vector field of the fluid, P the pressure, g the gravitational
acceleration, ρ the mass per unit volume, t the time and the differential operator

∇xyz =

[
∂

∂x
,
∂

∂y
,
∂

∂z

]
. A Cartesian coordinate system is adopted with the hor-

izontal x and y-axes on the still water plane and the z-axis pointing vertically
upwards (see Fig. 30.2). The fluid domain is bounded by the bottom seabed at
z = −h(x, y, t) and the free water surface at z = η(x, y, t).
◮ Editor note: AL: Need to decide what to do about bold fonts for vectors. I prefer not to

use it.

In Fig. 30.2, L, A and H are the characteristic wave length, wave amplitude
and depth, respectively. Note that the material time derivative is denoted by D

Dt
.

From the irrotational assumption, one can introduce a velocity potential func-
tion, φ(x, y, z, t), to obtain Bernoulli’s equation:

∂φ

∂t
+

1

2
∇xyzφ · ∇xyzφ+

P

ρ
+ g z = f(t), (30.2)

where f(t) stands for an arbitrary function of integration. Note that one can
remove f(t) from equation (30.2) if φ is redefined by φ +

∫
f(t) dt. From the in-

compressibility condition (see (30.1)3) the velocity potential satisfies Laplace’s
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z = −h(x, y, t)
D
Dt

(z + h(x, y, t)) = 0

L

z = η(x, y, t)

D
Dt

(z − η(x, y, t)) = 0

A

z = −H

z

xo

Figure 30.2: Cross-section of the water wave domain.

equation:

∇2φ+
∂2φ

∂z2
= 0, (30.3)

where ∇ is the horizontal gradient operator given by ∇ =

[
∂

∂x
,
∂

∂y

]
. To close this

problem, the following boundary conditions must be satisfied:

i) the kinematic boundary condition for the free water surface:

∂φ

∂z
=
∂η

∂t
+∇φ · ∇η, z = η; (30.4)

ii) the kinematic boundary condition for the impermeable sea bottom:

∂φ

∂z
+ (∇φ · ∇h) = −∂h

∂t
, z = −h; (30.5)

iii) the dynamic boundary condition for the free water surface:

∂φ

∂t
+ gη +

1

2

(
|∇φ|2 +

(
∂φ

∂z

)2
)

+D(φ)−W (η) = 0, z = η, (30.6)

where D(φ) is a dissipative term (see, e.g., the work by Duthyk and Dias [?]). We
assume that this dissipative term is of the following form:

D(φ) = ν
∂2φ

∂z2
, (30.7)

with ν = µ/ρ and µ an eddy-viscosity coefficient. Note that a non-dissipative
model means that there is no energy loss. This is not acceptable from a physical
point of view, since any real flow is accompanied by energy dissipation.
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In equation (30.6), W is the surface tension term given by:

W (η) = T

(
1 +

(
∂η

∂y

)2
)
∂2η

∂x2
+

(
1 +

(
∂η

∂x

)2
)
∂2η

∂y2
− 2

∂η

∂x

∂η

∂y

∂2η

∂x∂y

(1 + |∇η|2)3/2
, (30.8)

where T is the surface tension coefficient.
Using Laplace’s equation it is possible to write the dissipative term, men-

tioned above, as D(φ) = −ν∇2φ. In addition, the linearization of the surface
tension term results in W (η) = T∇2η. Throughout the literature, analogous
terms were added to the kinematic and dynamic conditions to absorb the wave
energy near the boundaries. These terms are related with the sponge or damping
layers. The physical meaning of these terms was explained, for instance, in the
recent work of Dias et al. [?]. As we will see later, the dispersion relations can
be modified using these extra terms. The surface tension effects are important
if short waves are considered. In general this is not the case. In fact, the long
wave assumption is made to derive these extended models. We refer the works
by Wang et al. [?] as well as Dash and Daripa [?], which included surface tension
effects in the KdV (Korteweg-de Vries) and Boussinesq equations. On the other
hand, it is worth to mention that one of the main goals of the scientific research
on Boussinesq wave models is the improvement of the range of applicability in
terms of the water-depth/wave-length relationship. A more detailed description
of the above equations is found in the G. B. Whitham’s reference book on waves
[?], or in the more recent book by R. S. Johnson [?].

30.2.1 Standard models

In this subsection, we present a generic Boussinesq system using the velocity
potential formulation. To transform equations (30.2)-(30.8) in a dimensionless
form, the following scales are introduced:

(x′, y′) =
1

L
(x, y), z′ =

z

H
, t′ =

t
√
gH

L
, η′ =

η

A
, φ′ =

Hφ

AL
√
gH

, h′ =
h

H
,

(30.9)
together with the small parameters

µ =
H

L
, ε =

A

H
. (30.10)

In the last equation, µ is usually called the long wave parameter and ε the small
amplitude wave parameter. Note that ε is related with the nonlinear terms and
µ with the dispersive terms. For simplicity, in what follows, we drop the prime
notation.

The Boussinesq approach consists in reducing a 3D problem to a 2D one. This
may be accomplished by expanding the velocity potential in a Taylor power series
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in terms of z. Using Laplace’s equation, in a dimensionless form, one can obtain
the following expression for the velocity potential:

φ(x, y, z, t) =
+∞∑

n=0

(
(−1)n z2n

(2n)!
µ2n∇2nφ0(x, y, t) + (−1)n z2n+1

(2n+ 1)!
µ2n∇2nφ1(x, y, t)

)
,

(30.11)
with

φ0 = φ |z=0, φ1 =

(
∂φ

∂z

)
|z=0 . (30.12)

From asymptotic expansions, successive approximation techniques and the kine-
matic boundary condition for the sea bottom, it is possible to write φ1 in terms
of φ0 (cf. [?], [?]). In this work, without loss of generality, we assume that the
dispersive and nonlinear terms are related by the following equation:

ε

µ2
= O(1). (30.13)

Note that the Ursell number is defined by Ur =
ε

µ2
.

A sixth-order model is obtained if φ1 is expanded in terms of φ0 and all terms
up to O(µ8) are retained. Thus, the asymptotic kinematic and dynamic boundary
conditions for the free water surface are rewritten as follows 2:






∂η

∂t
+ ε∇ · (η∇φ0)−

1

µ2
φ1 +

ε2

2
∇ · (η2∇φ1) = O(µ6),

∂φ0

∂t
+ εη

∂φ1

∂t
+ η +

ε

2
|∇φ0|2 + ε2∇φ0 · η∇φ1−

−ε2η∇2φ0φ1 +
ε

2µ2
φ2

1 +D(φ0, φ1)−W (η) = O(µ6),

(30.14)

where φ1 is given by:

φ1 = −µ2∇ · (h∇φ0) +
µ4

6
∇ ·
(
h3∇3φ0

)
− µ4

2
∇ ·
(
h2∇2 · (h∇φ0)

)
−

− µ6

120
∇ ·
(
h5∇5φ0

)
+
µ6

24
∇ ·
(
h4∇4 · (h∇φ0)

)
+
µ6

12
∇ ·
(
h2∇2 ·

(
h3∇3φ0

))
−

− µ6

4
∇ ·
(
h2∇2 ·

(
h2∇2 · (h∇φ0)

))
− µ2

ε

∂h

∂t
− µ2

ε

µ2

2
∇ ·
(
h2∇∂h

∂t

)
+

+
µ2

ε

µ4

24
∇ ·
(
h4∇3∂h

∂t

)
− µ2

ε

µ4

4
∇ ·
(
h2∇2

(
h2∇∂h

∂t

))
+O(µ8). (30.15)

To obtain equation (30.15), we assume that
∂h

∂t
= O(ε) (cf. [?]).

2Note that D and W are, now, dimensionless functions.
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30.2.2 Second-order model

The low order equations are obtained, essentially, via the slowly varying bottom
assumption. In particular, only O(h,∇h) terms are retained. Also, only low order
nonlinear terms O(ε) are admitted. In fact the modified ZTC model is written
retaining only O(ε, µ4) terms.

Under these conditions, (30.14) and (30.15) lead to:





∂η

∂t
+ ε∇ · (η∇φ0)−

1

µ2
φ1 = O(µ6),

∂φ0

∂t
+ η +

ε

2
|∇φ0|2 − νε∇2φ0 − µ2T∇2η = O(µ6)

(30.16)

and

φ1 = −µ2∇ · (h∇φ0) +
µ4

6
∇ ·
(
h3∇3φ0

)
− µ4

2
∇ ·
(
h2∇2 · (h∇φ0)

)
−

− 2µ6

15
h5∇6φ0 − 2µ6h4∇h · ∇5φ0 −

µ2

ε

∂h

∂t
+O(µ8). (30.17)

Thus, these extended equations, in terms of the dimensional variables, are writ-
ten as follows:




∂η

∂t
+∇ · [(h+ η)∇Φ]− 1

2
∇ · [h2∇∂η

∂t
] +

1

6
h2∇2∂η

∂t
− 1

15
∇ · [h∇(h

∂η

∂t
)] = −∂h

∂t
,

∂Φ

∂t
+

1

2
|∇Φ|2 + gη − 1

15
gh∇ · (h∇η)− ν∇2Φ− gT∇2η = 0,

(30.18)
where Φ is the transformed velocity potential given by:

Φ = φ0 +
h

15
∇ · (h∇φ0). (30.19)

The transformed velocity potential is used with two main consequences (cf. [?]):

i) the spatial derivation order is reduced to the second order;

ii) linear dispersion characteristics, analogous to the fourth-order BEP model
proposed by Liu and Woo [?] and the third-order BEV model developed by
Nwogu [?], are obtained.

30.3 Linear dispersion relation

One of the most important properties of a water wave model is described by the
linear dispersion relation. From this relation we can deduce the phase velocity,
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group velocity and the linear shoaling. The dispersion relation provides a good
method to characterize the linear properties of a wave model. This is achieved
using the linear wave theory of Airy.

In this section we follow the work by Duthyk and Dias [?]. Moreover, we
present a generalized version of the dispersion relation for the ZTC model with
the dissipative term mentioned above. One can also include other damping
terms, which are usually used in the sponge layers.

For simplicity, a 1D-Horizontal model is considered. To obtain the dispersion
relation, a standard test wave is assumed:






η(x, t) = a ei(kx−ωt),

Φ(x, t) = −b i ei(kx−ωt),

(30.20)

where a is the wave amplitude, b the potential magnitude, k = 2π/L the wave
number and ω the angular frequency. This wave, described by equations (30.20),
is the solution of the linearized ZTC model, with a constant depth bottom and an
extra dissipative term, if the following equation is satisfied:

ω2 − ghk21 + (1/15)(kh)2

1 + 2/5(kh)2
+ iνωk2 = 0. (30.21)

Using Padé’s [2,2] approximant, the dispersion relation given by last equation is
accurate up to O((kh)4) or O(µ4) when compared with the following equation:

ω2 − ghk2 tanh(kh)

kh
+ iνωk2 = 0. (30.22)

In fact, equation (30.22) is the dispersion relation of the full linear problem.

From (30.21), the phase velocity, C =
w

k
, for this dissipative ZTC model is

given by:

C = −iνk
2
±

√

−
(
νk

2

)2

+ gh
(1 + 1/15(kh)2)

(1 + 2/5(kh)2)
. (30.23)

In Fig. 30.3, we can see the positive real part of
(
C/
√
gh
)
as a function of kh for

the following models: full linear theory (FL), Zhao et al. (ZTC), full linear theory
with a dissipative model (FL D) and the improved ZTC model with the dissipa-
tive term (ZTC D). From Fig. 30.3, one can also see that these two dissipative
models admit critical wave numbers k1 and k2, such that the positive part of

Re
(
C/
√
gh
)
is zero for k ≥ k1 and k ≥ k2. To avoid some numerical instabilities

one can optimize the ν values in order to reduce the short waves propagation.
In general, to improve the dispersion relation one can also use other trans-

formations like (30.19), or evaluate the velocity potential at z = −σh (σ ∈ [0, 1])
instead of z = 0 (cf. [?], [?] and [?]).
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Figure 30.3: Positive part of Re
(
C/
√
gh
)
for several models.

30.4 Wave generation

In this section some of the physical mechanisms to induce surface water waves
are presented. We note that the moving bottom approach is useful for wave gen-
eration due to seismic activities. However, some physical applications are asso-
ciated with other wave generation mechanisms. For simplicity, we only consider
mechanisms to generate surface water waves along the x direction.

30.4.1 Initial condition

The simplest way of inducing a wave into a certain domain is to consider an
appropriate initial condition. An useful and typical benchmark case is to assume
a solitary wave given by:

η(x, t) = a1 sech2(kx− ωt) + a2 sech4(kx− ωt), (30.24)

u(x, t) = a3 sech2(kx− ωt), (30.25)

where the parameters a1 and a2 are the wave amplitudes and a3 is the magnitude
of the velocity in the x direction. As we use a potential formulation, Φ is given
by:

Φ(x, t) = − 2a3 e
2ωt

k (e2ωt + e2kx)
+K1(t), (30.26)

255



Improved Boussinesq Equations for Surface Water Waves

where K1(t) is a time-dependent function of integration.

In [?] and [?] the above solitary wave was presented as a solution of the ex-
tended Nwogu’s Boussinesq model.

30.4.2 Incident wave

For time-dependent wave generation, it is possible to consider waves induced
by a boundary condition. This requires that the wave surface elevation and the
velocity potential must satisfy appropriated boundary conditions, e.g., Dirichlet
or Neumann conditions.

The simplest case is to consider a periodic wave given by:

η(x, t) = a sin(kx− ωt) (30.27)

Φ(x, t) = − c
k

cos(kx− ωt) +K2(t), (30.28)

where c is the wave velocity magnitude andK2(t) is a time-dependent function of
integration. This function K2(t) must satisfy the initial condition of the problem.
In equations (30.27) as well as (30.28), one can note that the parameters a, c, k
and ω are not all arbitrary, since they are related by the dispersion relation. One
can also consider the superposition of water waves as solutions of the full linear
problem with a constant depth.

30.4.3 Source function

In the work by Wei et al. [?], a source function for the generation of surface water
waves was derived. This source function was obtained, using Fourier transform
and Green’s functions, to solve the linearized and non homogeneous equations of
the Peregrine [?] and Nwogu’s [?] models. This mathematical procedure can also
be adapted here to deduce the source function.

We consider a monochromatic Gaussian wave generated by the following source
function:

f(x, t) = D∗ exp(−β(x− xs)
2) cos(ωt), (30.29)

with D∗ given by:

D∗ =

√
β

ω
√
π
a exp(

k2

4β
)

2

15
h3k3g. (30.30)

In the above expressions xs is the center line of the source function and β is a
parameter associated with the width of the generation band (cf. [?]).
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30.5 Reflective walls and sponge layers

Besides the incident wave boundaries where the wave profiles are given, one
must close the system with appropriate boundary conditions. We consider two
more types of boundaries:

i) full reflective boundaries;

ii) partial reflective or absorbing boundaries.

The first case is modelled by the following equations:

∂Φ

∂n
= 0,

∂η

∂n
= 0, (30.31)

where n is the outward unit vector normal to the computational domain Ω. We
denote Γ as the boundary of Ω.

Note that in the finite element formulation, the full reflective boundaries
(equations (30.31)) are integrated by considering zero Neumann-type boundary
conditions.

Coupling the reflective case and an extra artificial layer, often called sponge
or damping layer, we can simulate partial reflective or full absorbing boundaries.
In this way, the reflected energy can be controlled. Moreover, one can prevent un-
wanted wave reflections and avoid complex wave interactions. It is also possible
to simulate effects like energy dissipation by wave breaking.

In fact, a sponge layer can be defined as a subset L of Ω where some extra
viscosity term is added. As mentioned above, the system of equations can incor-
porate several extra damping terms, like that one provided by the inclusion of a
dissipative model. Thus, the viscosity coefficient ν is described by a function of
the form:

ν(x, y) =





0, (x, y) 6∈ L,

n1

exp

(
d(x, y)

dL

)n2

− 1

exp(1)− 1
, (x, y) ∈ L,

(30.32)

where n1 and n2 are, in general, experimental parameters, dL is the sponge-layer
diameter and d stands for the distance function between a point (x, y) and the
intersection of Γ and the boundary of L (see, e.g., [?] pag. 79).

30.6 Numerical Methods

We start this section by noting that a detailed description of the implemented
numerical methods referred bellow can be found in the work of N. Lopes [?].
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For simplicity, we only consider the second-order system described by equa-
tions (30.18) restricted to a stationary bottom and without dissipative, surface
tension or extra source terms.

The model variational formulation is written as follows:

∫

Ω

∂η

∂t
ϑ1 dxdy +

2

5

∫

Ω

h2∇
(
∂η

∂t

)
∇ϑ1 dxdy − 1

3

∫

Ω

h(∇h)∇
(
∂η

∂t

)
ϑ1 dxdy+

+
1

15

∫

Ω

h∇h∂η
∂t
∇ϑ1 dxdy +

∫

Ω

∂Φ

∂t
ϑ2 dxdy =

∫

Ω

(h+ η)∇Φ∇ϑ1 dxdy+

+
2

5

∫

Γ

h2 ∂

∂t

(
∂η

∂n

)
ϑ1dΓ−

1

15

∫

Γ

h
∂h

∂n

∂η

∂t
ϑ1 dΓ−

∫

Γ

(h+ η)
∂Φ

∂n
ϑ1 dΓ−

−1

2

∫

Ω

|∇Φ|2ϑ2 dxdy − g
∫

Ω

ηϑ2 dxdy − g

15

∫

Ω

h2∇η∇ϑ2 dxdy−

− g

15

∫

Ω

h(∇h)(∇η)ϑ2 dxdy +
g

15

∫

Γ

h2 ∂η

∂n
ϑ2 dΓ,

(30.33)
where the unknown functions η and Φ are the surface elevation and the trans-
formed velocity potential, whereas ϑ1 and ϑ2 are the test functions defined in
appropriate spaces.

The spatial discretization of this equation is implemented using low order
Lagrange finite elements. In addition, the numerical implementation of (30.33)
is accomplished using FFC.

We use a predictor-corrector scheme with an initialization provided by the
Runge-Kutta method for the time integration. Note that the discretization of
equation (30.33) can be written as follows:

MẎ = f(t, Y ), (30.34)

where Ẏ and Y refer to

(
∂η

∂t
,
∂Φ

∂t

)
and to (η,Φ), respectively. The known vector f

is related with the right-hand side of (30.33) and M is the coefficient matrix. In
this way, the fourth order Adams-Bashforth-Moulton method can be written as
follows:




MY
(0)
n+1 = MYn +

∆t

24
[55f(tn, Yn)− 59f(tn−1, Yn−1) + 37f(tn−2, Yn−2)− 9f(tn−3, Yn−3)]

MY
(1)
n+1 = MYn +

∆t

24
[9f(tn+1, Y

(0)
n+1) + 19f(tn, Yn)− 5f(tn−1, Yn−1) + f(tn−2, Yn−2)]

,

(30.35)
where ∆t is the time step, tn = n∆t (n ∈ N) and Yn = (η,Φ) evaluated at tn. The

predicted and corrected values of Yn are denoted by Y
(0)
n and Y

(1)
n , respectively.

The corrector-step equation ((30.35)2) can be iterated as function of a predefined
error between consecutive time steps. For more details see, e.g., [?] or [?].
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30.7 Numerical Applications

In this section, we present some numerical results about the propagation of sur-
face water waves in an harbour with a geometry similar to that one of Fig. 30.1.

The colour scale used in all figures in this section is presented in Fig. 30.4.
A schematic description of the fluid domain, namely the bottom profile and the
sponge layer can be seen in Figs. 30.5 and 30.6, respectively. Note that a piece-
wise linear bathymetry is considered. A sponge layer is used to absorb the wave
energy at the outflow region and to avoid strong interaction between incident
and reflected waves in the harbour entrance. A monochromatic periodic wave,
with an amplitude of 0.3 m, is introduced at the indicated boundary (Dirichlet
BC) in Fig. 30.6. This is achieved by considering a periodic Dirichlet boundary
condition as described in the subsection 30.4.2. Full reflective walls are assumed
as boundary conditions in all domain boundary except in the harbour entrance.

In Fig. 30.7 a wave elevation snapshot is shown. A zoom of the image, which
describes the physical potential and velocity vector field in the still water plane,
is given in the neighbourhood of the point (x, y) = (150, 0) m at the same time step
(see Fig. 30.8). In Fig. 30.9 two time steps of the speed in the still water plane
are shown.

←− Max

←− min

Figure 30.4: Scale. Figure 30.5: Impermeable bottom
[Max = −5.316 m, min = −13.716 m].

From these numerical results, one can conclude that the interaction between
incident and reflected waves, near the harbour entrance, can generate wave am-
plitudes of, approximately, 0.84 m. These amplitudes almost take the triple value
of the incident wave amplitude. One can also observe an analogous behaviour
for velocities. The maximum water speed of the incident waves at z=0 is, ap-
proximately, 1.2 m/s whereas, after the interaction, the maximum speed value is
almost 4 m/s.
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Figure 30.6: Sponge layer (viscosity) [Max ≈ 27 m2/s, min = 0 m2/s].

Figure 30.7: Surface elevation [Max ≈ 0.84 m, min ≈ −0.81 m].

30.8 Conclusions and future work

As far as we know, the finite element method is not often applied in surface water
wave models based on the BEP formulation. In general, finite difference methods
are preferred but are not appropriated for the treatment of complex geometries
like the ones of harbours, for instance.

In fact, the surface water wave problems are associated with Boussinesq-type
governing equations, which require very high order (≥ 6) spatial derivatives or a
very high number of equations (≥ 6). A first approach, to the high-order models
using discontinuous Galerkin finite element methods, can be found in [?].

From this work one can conclude that the FEniCS packages, namelyDOLFIN

and FFC, are appropriated to model surface water waves.

We have been developing DOLFWAVE, i.e., a FEniCS based application for
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Figure 30.8: Velocity vector field at z = 0 and potential magnitude
[Max ≈ 36 m2/s, min ≈ −9 m2/s].

Figure 30.9: Water speed [Max ≈ 4 m/s, min = 0 m/s].

surface water waves. DOLFWAVEwill be compatible withXd3d post-processor3.
The current state of the work, along with several numerical simulations, can
be found at http://ptmat.fc.ul.pt/ ∼ndl . This package will include some
standard potential models of low order (≤ 4) as well as other new models to be
submitted elsewhere by the authors [?].

3http://www.cmap.polytechnique.fr/ ∼jouve/xd3d/
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ISEL-Instituto Superior de Engenharia de Lisboa,
Rua Conselheiro Emı́dio Navarro, 1
1959-007 Lisboa
Portugal

⋄ Departamento de Matemática
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CHAPTER 31

Multiphase Flow Through Porous Media

By Xuming Shan and Garth N. Wells

Chapter ref: [shan]

Summarise work on automated modelling for multiphase flow through porous
media.
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CHAPTER 32

Computing the Mechanics of the Heart

By Martin S. Alnæs, Kent-Andre Mardal and Joakim Sundnes

Chapter ref: [alnes-4]

Heart failure is one of the most common causes of death in the western world,
and it is therefore of great importance to understand the behaviour of the heart
better, with the ultimate goal to improve clinical procedures. The heart is a
complicated electro-mechanical pump, and modelling its mechanical behaviour
requires multiscale physics incorporating coupled electro-chemical and mechan-
ical models both at the cell and continuum level. In this chapter we present
a basic implementation of a cardiac electromechanics simulator in the FEniCS
framework.
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CHAPTER 33

Simulation of Ca2+Dynamics in the Dyadic Cleft

By Johan Hake

Chapter ref: [hake]

33.1 Introduction

From when we are children we hear that we should drink milk because it is an
important source for calcium (Ca2+), and that Ca2+is vital for a strong bone struc-
ture. What we do not hear as frequently, is that Ca2+is one of the most important
cellular messengers we have in our body [?]. Among other things Ca2+controls
cell death, neural signaling, secretion of different chemical substances to the
body, and what will be our focus in this chapter, the contraction of cells in the
heart.

In this chapter I will first discribe a mathematical model that can be used to
model Ca2+dynamics in a small sub cellular domain called the dyadic cleft. The
model includes Ca2+diffusion that is described by an advection-diffusion partial
differential equation, and discrete channel dynamics that is discribed by stochas-
tic Markov models. Numerical methods implemented in PyDOLFINsolving the
partial differental equation will also be presented. A time stepping scheme for
solving the stochastic and deterministic models in a coupled manner will be pre-
sented in the last section. Here will also a solver framwork, diffsim, that im-
plements the time stepping scheme together with the other presented numerical
methods be presented.
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33.2 Biological background

In a healthy heart every beat origins in the sinusoidal node, where pacemaker
cells triggers an electric signal. This signal propagates through the whole heart,
and results in a sudden change in electric potential between the interior and
exterior of the heart cells. These two domains are separated by the cell mem-
brane. The difference in electric potential between these domains is called the
membrane potential. The sudden change in the membrane potential, an action
potential, is facilitated by specialized ion channels that reside in the membrane.
When an action potential arrives a heart cell it triggers Ca2+channel that brings
Ca2+into the cell. The Ca2+then diffuse over a small cleft, called the dyadic
cleft, and triggers further Ca2+release from an intracellular Ca2+storage, the
sarcoplasmic reticulum (SR). The Ca2+ions then diffuse to the main intracellular
domain of the cell, the cytosole, in which the contractile proteins are situated.
The Ca2+ions attach to these proteins and triggers contraction. The strength of
the contraction is controlled by the strength of the Ca2+concentration in cytosole.
The contraction is succeeded by a period of relaxation, which is facilitated by the
extraction of Ca2+from the intracellular space by various proteins.

This chain of events is called the Excitation Contraction (EC) coupling [?].
Several severe heart diseases can be related to impaired EC coupling and by
broaden the knowledge of the coupling it will also be possible to develop better
treatments for the diseases. Although the big picture of EC coupling is straight
forward to grasp it conceals the nonlinear action of hundreds of different pro-
tein species. Computational methods have emerged as a natural complement to
experimental studies in the ongoing strive to better understand the intriguing
coupling, and it is in this light the present study is presented. Here I will focus
on the initial phase of the EC coupling, i.e., when Ca2+flows into the cell and
triggers further Ca2+release.

33.3 Mathematical models

33.3.1 Geometry

The dyadic cleft is the space between a structure called the t-tubule (TT) and
the SR. TT is a network of pipe-like invaginations of the cell membrane that
perforate the heart cell[?]. Fig. 33.1 A presents a sketch of a small part of a
single TT together with a piece of SR. Here one can see that the junctional SR
(jSR) wraps the TT, and the small volume between these structures is the dyadic
cleft. The space is not well defined as it is crowded with channel proteins, and
the size of it also varies. In computational studies it is commonly approximated
as a disk or a rectangular slab [?, ?, ?, ?]. In this study I have used a disk, see
Fig. 33.1 A. The height of the disk is: h = 12nm, and the radius is: r = 50nm.
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A

B

Figure 33.1: A: A diagram showing the relationship between the TT, the SR and
the jSR. The volume between the flat jSR and the TT is the dyadic cleft. The
black structures in the cleft are Ryanodine receptors, which are large channel
proteins. The figure is from [?]. B: The geometry that is used for the dyadic
cleft. The top of the disk are the cell membrane of the SR, or jSR, the bottom
the cell membrane of the TT, and the circumference of the disk is the interface
to the cytosole. The top of the two small elevations models the mouths of two ion
channels.

Larger radius can be used, e.g., up to 200 nm, but due to numerical limitations
I have to limit the size of the cleft, see below. The diffusion constant of Ca2+was
set to σ = 105 nm2 ms−1 [?].

33.3.2 Ca
2+
Diffusion

Electro-Diffusion

The cell membrane, also called the sarcolemma, consists of a lipid bi-layer, which
produce an electric potential in the solution. This potential is due to negatively
charged phospholipid head-groups [?, ?]. Therefore in close proximity to the sar-
colemma, an electric double layer is produced [?]. I am going to use the Gouy-
Chapman method, which defines a diffuse layer to describe this double layer
[?]. The theory introduces an advection term to the ordinary diffusion equation,
which makes the resulting equation harder to solve.

The ion flux in a solution that experience an electric field is governed by the
Nernst-Planck equation,

J = −σ (∇c− 2 cE) , (33.1)

where σ is the diffusion constant of Ca2+, c = c(x, t) is the Ca2+concentration,
E = E(x) is the non-dimensional electric field (the original electric field scaled
with e/kT ) and 2 is the valence of Ca2+. Assuming conservation of mass, we
arrive at the general advection-diffusion equation,

ċ = σ [∆c−∇ · (2 cE)] . (33.2)
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E follows from the non-dimensional potential, ψ, (the ordinary electric potential
scaled with e/kT) in the solution as,

E = −∇ψ. (33.3)

The strength of ψ is defined by the amount of charged head-groups in the lipid
bi-layers and by the combined screening effect of all ions in the dyadic cleft.
Following previous work done by [?] and [?] all other ions in the solution will be
treated as being in steady state. The sarcolemma is assumed to be planar and
effectively infinite. This let us use an approximation of the electric potential in
the solution,

ψ(z) = ψ0 exp(−κz). (33.4)

Here ψ0 is the non-dimensional potential at the membrane, κ the inverse Debye
length and z the distance from the sarcolemmar in a perpendicular direction. [?]
showed that for a large range of

[
Ca2+], ψ0 stayed constant at -2.2 and κ is also

assumed to be 1 nm.
◮ Editor note: Check formula in (33.4). Got undefined control sequence when comping so

needed to edit.

Boundary fluxes

The SR and TT membrane is impermeable for ions, effectively making ∂Ω0, in
Fig. 33.1, a no-flux boundary, giving us,

J0 = 0. (33.5)

The main sources for Ca2+inflow to the dyadic cleft in our model, is the L-type
Ca2+channel (LCC). This flux comes in at the ∂Ω[1,2] boundaries, see Fig. 33.1.
After entering the cleft the Ca2+then diffuse to the RyR situated at the SR mem-
brane, triggering more Ca2+influx. This flux will not be included in the simula-
tions, however the stochastic dynamic of the opening of the channel will be in-
cluded, see Section 33.3.3 below. The Ca2+that enters the dyadic cleft diffuse into
the main compartement of cytosole introducing a third flux at the ∂Ω3 boundary.

The LCC is a stochastic channel that are modelled as either open or close.
When the channel is open Ca2+flows into the cleft. The dynamic that describes
the stochastic behaviour is presented in Section 33.3.3 below. The LCC flux is
modelled as a constant current with amplitude, -0.1 pA, which corresponds to
the amplitude during voltage clamp to 0 mV [?]. The LCC flux is then,

J[1,2] =

{
0 : close channel

− i
2 F A

, : open channel
(33.6)

where i is the amplitude, 2 the valence of Ca2+, F Faraday’s constant and A the
area of the channel. Note that inward current is by convention negative.
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A

B

Figure 33.2: A: State diagram of the discrete LCC Markov model from [?]. Each
channel can be in one of the 12 states. The transition between the states are con-
trolled by propensities. The α, and β are voltage dependent, γ is

[
Ca2+]dependent

and f , a, b, and ω are constant, see [?] for further details. The channels operates
in two modes: Mode normal, represented by the states in the upper row, and
Mode Ca, represented the states in the lower row. In state 6 and 12 the channel
is open, but state 12 is rarely entered as f ′ ≪ f , effectively making Mode Ca an
inactivated mode. B: State diagram of a RyR from [?]. The α and γ propensities
are Ca2+dependent, representing the activation and inactivation dependency of
the cytosolic

[
Ca2+]. The β and δ propensities are constant.

◮ Editor note: Placement of figures seems strange.

The flux to cytosole is modeled as a concentration dependent flux,

J3 = −σc− c0
∆s

, (33.7)

where c is the concentration in the cleft at the boundary, c0 the concentration in
cytosole, and ∆sthe distance to the center of the cytosole.

33.3.3 Stochastic models of single channels

Discrete and stochastic Markov chain models are used to describe single chan-
nels dynamics. Suchmodels consists of a variable that can be in a certain number
of discrete states. The transition between these states is a stochastic event. The
frequency of these events are determined by the propensity functions associated
to each transition. These functions characterize the probability per unit time
that the corresponding transition event occurs and are dependent on the chosen
Markov chain model and they may vary with time.
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L-type Ca
2+
channel

The LCC is the main source for extracellular Ca2+into the cleft. The channel
opens when an action potential arrives to the cell and inactivates when single
Ca2+ions binds to binding sites on the intracellular side of the channel. An LCC
is composed by a complex of four transmembrane subunits, which each can be
permissive or non-permissive. For the whole channel to be open, all four sub-
units need to be permissive and the channel then has to undergo a last con-
formational change to an opened state [?]. In this chapter I am going to use a
Markov model of the LCC that incorporates a voltage dependent activation to-
gether with a Ca2+dependent inactivation [?, ?]. The state diagram of this model
is presented in Fig. 33.2 A. It consists of 12 states, where state 6 and 12 are the
only conducting states, i.e., when the channel is in one of these states it is open.
The transition propensities are defined by a set of functions and constants, which
are all described in [?].

Ryanodine Receptors

RyRs are Ca2+specific channels that are situated on the SR in clusters of several
channels [?, ?]. They open by single Ca2+ions attaching to the receptors at the
cytosolic side. A modified version of a phenomenological model that mimics the
physiological functions of the RyRs, first presented by [?], will be used. The model
consists of four states where one is conducting, state 2, see Fig. 33.2 B. The α and
γ propensities are Ca2+dependent, representing the activation and inactivation
dependency of cytosolic

[
Ca2+]. The β and δ propensities are constants. For

specific values for the propensities consider [?].

33.4 Numerical methods for the continuous system

The continuous problem is defined by Eq. (33.2 -33.7) together with an initial
condition. Given a bounded domain Ω ⊂ R

3 with the boundary, ∂Ω, we want to
find c = c(x, t) ∈ R+, for x ∈ Ω and t ∈ R+, such that:

{
ċ = σ∆c−∇ · (ca) in Ω

σ
∂c

∂n
= Jk on ∂Ωk,

(33.8)

with c(·, 0) = c0(x). Here a = a(x) = 2σE(x), and, Jk and ∂Ωk are the kthflux at the
kthboundary, where

⋃
k ∂Ωk = ∂Ω. The Jk are given by Eq. (33.5)- (33.7).
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1 from numpy import *
2 from dolfin import *
3

4 mesh = Mesh(’cleft_mesh.xml.gz’)
5

6 Vs = FunctionSpace(mesh, "CG", 1)
7 Vv = VectorFunctionSpace(mesh, "CG", 1)
8

9 v = TestFunction(Vs)
10 u = TrialFunction(Vs)
11

12 # Defining the electric field-function
13 a = Function(Vv,["0.0","0.0","phi_0 * valence * kappa * sigma * exp(-kappa * x[2])"],
14 {"phi_0":-2.2,"valence":2,"kappa":1,"sigma":1.e5})
15

16 # Assembly of the K, M and A matrices
17 K = assemble(dot(grad(u),grad(v)) * dx)
18 M = assemble(u * v* dx)
19 E = assemble(-u * dot(a,grad(v)) * dx)
20

21 # Collecting face markers from a file, and skip the 0 one
22 sub_domains = MeshFunction("uint",mesh,"cleft_mesh_fa ce_markers.xml.gz")
23 unique_sub_domains = list(set(sub_domains.values()))
24 unique_sub_domains.remove(0)
25

26 # Assemble matrices and source vectors from exterior facets domains
27 domain = MeshFunction("uint",mesh,2)
28 F = {};f = {};tmp = K.copy(); tmp.zero()
29 for k in unique_sub_domains:
30 domain.values()[:] = (sub_domains.values() != k)
31 F[k] = assemble(u * v* ds, exterior_facet_domains = domain, \
32 tensor = tmp.copy(), reset_tensor = False)
33 f[k] = assemble(v * ds, exterior_facet_domains = domain)

Figure 33.3: Python code for the assembly of the matrices and vectors from
Eq. (33.14)-(33.15).
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33.4.1 Discretization

The continuous equations are discretized using the Finite elementmethod. Eq. (33.8)
is multiplied with a proper test function, v, and we get:

∫

Ω

ċv dx =

∫

Ω

[σ∆c−∇(ca)] v dx, (33.9)

and we integrate by part and get:

∫

Ω

ċv dx = −
∫

Ω

(σ∇c− ca)∇v dx+
∑

k

∫

∂Ωk

Jkv dsk. (33.10)

Consider a tetrahedralization of Ω, a mesh, where the domain is divided into
disjoint subdomains, Ωe, elements. A discrete solution ch ∈ Vh is defined. Here
Vh = {φ ∈ H1(Ω) : φ ∈ P k(Ωe)∀e}, and P k represents the space of Lagrange
polynomials of order k. The backward Euler method is used to approximate the
time derivative and Eq. (33.10) can now be stated as follows: given cnh find cn+1

h ∈
Vh such that:

∫

Ω

cn+1
h − cnh

∆t
v dx = −

∫

Ω

(
σ∇cn+1

h − cn+1
h a

)
· ∇v dx+

∑

k

∫

∂Ω

Jkv dsk, ∀v ∈ Vh (33.11)

where ∆tis the time step. The trial function cnh(x) is expressed as a weighted sum
of basis functions,

cnh(x) =

N∑

j

Cn
j φj(x), (33.12)

where Cn
j are the coefficients. Lagrange polynomials of first order is used for both

the test and the trial function, k = 1, and the number of unknowns, N , will then
coincide with the number of vertices of the mesh.

The test function v is chosen from the same discrete basis as cnh(x), i.e., vi(x) =
φi(x) ∈ Vh, for i ∈ [1 . . .N ]. These are used in Eq. (33.11) to produce an algebraic
problem on the following form:

1

∆t
M
(
Cn+1 − Cn

)
=

(
−K + E +

∑

k

αk
F

k

)
C

n+ 1
2

j +
∑

k

ck0 f
k, (33.13)

where Cn ∈ R
N is the vector of coefficients from the discrete solution cnh(x), α

k

and ck0 are constant coefficients related to the kthflux and

Mij =

∫

Ω

φiφjdx, Kij =

∫

Ω

∇φi · ∇φjdx,

Eij =

∫

Ω

aφi · ∇φjdx, F k
ij =

∫

∂Ωk

φiφjds,
(33.14)
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1 # Defining the stabilization using local Peclet number
2 cppcode = """class Stab: public Function {
3 public:
4 Function * field; uint _dim; double sigma;
5 Stab(const FunctionSpace& V): Function(V)
6 {field = 0; sigma=1.0e5;}
7 void eval(double * v, const Data& data) const {
8 if (!field)
9 error("Attach a field function.");

10 double field_norm = 0.0; double tau = 0.0;
11 double h = data.cell().diameter();
12 field->eval(v,data);
13 for (uint i = 0;i < geometric_dimension(); ++i)
14 field_norm += v[i] * v[i];
15 field_norm = sqrt(field_norm);
16 double PE = 0.5 * field_norm * h/sigma;
17 if (PE > DOLFIN_EPS)
18 tau = 1/tanh(PE)-1/PE;
19 for (uint i = 0;i < geometric_dimension(); ++i)
20 v[i] * = 0.5 * h* tau/field_norm;}};
21 """
22 stab = Function(Vv,cppcode); stab.field = a
23

24 # Assemble the stabilization matrices
25 E_stab = assemble(div(a * u) * dot(stab,grad(v)) * dx)
26 M_stab = assemble(u * dot(stab,grad(v)) * dx)
27

28 # Adding them to the A and M matrices, weighted by the global ta u
29 tau = 0.28; E.axpy(tau,E_stab); M.axpy(tau,M_stab)

Figure 33.4: Python code for the assembly of the SUPG term for the mass and
advection matrices.
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are the entries in the M, K, E and F
k matrices. fk are boundary source vectors

corresponding to the kthboundary. The vector elements are given by:

fk
i =

∫

∂Ωk

φids. (33.15)

The code for producing the matrices and vectors in Eq. (33.14)-(33.15) is pre-
sented in Fig. 33.3. Note that in the last for loop we iterate over the unique
subdomains, and set the entries of the MeshFunction domain corresponding to
the kthboundary to 0 and the other entries to 1. In this way the same form for the
exterior facet domain integrals can be used.

The system in Eq. (33.13) is linear and the matrices and vectors can be pre-
assembled. This allows for a flexible systemwhere boundary matrices and bound-
ary source vectors can be added, when a channel opens. ∆tcan also straight-
forwardly be decreased when such an event occurs. This adaptation in time is
crucial both for the numerical stability of the linear system. ∆tcan then be in-
creased after each time step as the demand on the size of ∆tfalls. The sparse
linear system is solved using the PETSclinear algebra backend[PETb] in Py-
DOLFINtogether with the Bi-CGSTAB iterative solver [?], and the BoomerAMG
preconditioners from hypre[?]. In Fig. 33.5 a script is presented that solves the
algebraic system from Eq. (33.13) together with a crude time stepping scheme
for the opening and closing of the included LCC flux.

33.4.2 Stabilization

It turns out that the algebraic system in Eq. (33.13) is numerically unstable for
physiological relevant values of a, see Section 33.3.2. This is due to the trans-
port term introduced by Aij from Eq. (33.14). I have chosen to stabilize the
system using the Streamline upwind Petrov-Galerkin (SUPG) method [?]. This
method adds a discontinuous streamline upwind contribution to the testfunction
in Eq. (33.9),

v′ = v + s, where s = τ
hτl

2‖a‖a · ∇v. (33.16)

Here τ ∈ [0, 1] is problem dependent, h = h(x) is the size of the local element of
the mesh, and τl = τl(x), is given by,

τl = coth(PEl)− 1/PEl, (33.17)

where PEl is the local Péclet number:

PEl = ‖a‖h/2σ. (33.18)

This form of τl follows the optimal stabilization from an 1D case[?], other choices
exist. The contribution from the diffusion term of the weak form can be elimi-
nated by choosing a test function from a first order Lagrange polynomial, as the
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∆ operator will reduce the trial function to zero. The PyDOLFINcode that assem-
bles the SUPG part of the problem is presented in Fig. 33.4. In the script two
matrices, E stab and Mstab are assembled, which are both added to the corre-
sponding advection and mass matrices E and Mweighted by the global parameter
tau .

A mesh with finer resolution close to the TT surface, at z = 0 nm, is also
used to further increase the stability. It is at this point the electric field is at
its strongest and it attenuates fast. At z = 3 nm the field is down to 5% of the
maximal amplitude, and at z = 5 nm, it is down to 0.7%, reducing the need for
high mesh resolutions. The mesh generator tetgen is used to to produce meshes
with the needed resolution [?].

The global stabilization parameter τ , is problem dependent. To find an opti-
mal τ , for a certain electrical field and mesh, the sytem in Eq. (33.13) is solved
to steady state using only homogeneous Neumann boundary conditions. An ho-
mogeneous concentration of c0 = 0.1 µM is used as the initial condition. The
numerical solution is then compared with the analytic solution of the problem.
This solution is acquired by setting J = 0 in Eq. (33.1) and solving for the c, with
the following result:

c(z) = cb exp(−2ψ(z)). (33.19)

Here ψ is given by Eq. (33.4), and cb is the concentration in the bulk, i.e., where
z is large. cb was chosen such that the integral of the analytic solution was equal
to c0 × V , where V is the volume of the domain.
◮ Editor note: Check equation (33.19).

The error of the numerical solution for different values of τ and for three
different mesh resolutions are plotted in Fig. 33.6. The meshes are enumerated
from 1-3. The error is given in a normalized L2 norm. As expected we see that the
mesh with the finest resolution produce the smallest error. The mesh resolutions
are quantified by the number of vertices close to z = 0. In the legend of Fig. 33.6
the median of the z distance of all vertices and the total number of vertices in
each mesh is presented. The three meshes were created such that the vertices
closed to z = 0 were forced to be situated at some fixed distances from z = 0.
Three numerical and one analytical solution for the three different meshes are
plotted in Fig. 33.7- 33.9. The numerical solutions are from simulations using
three different τ : 0.1, 0.6 and the L2-optimal τ , see Fig. 33.6. The traces in the
figures are all picked from a line going from (0,0,0) to (0,0,12).

In Fig. 33.7 the traces from mesh 1 is plotted. Here we see that all numerical
solutions are quite poor for all τ . The solution with τ = 0.10 is unstable as
it oscillates and produces negative concentration. The solution with τ = 0.60
seems stable but it undershoots the analytic solution at z = 0 with 1̃.7 µM. The
solution with τ = 0.22 is the L2-optimal solution for mesh 1, and approximates
the analytic solution at z = 0 well.

In Fig. 33.8 the traces from mesh 2 is presented in two plots. The left plot
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1 # Time parameters
2 dt_min = 1.0e-8; dt = dt_min; t = 0; c0 = 0.1; tstop = 1.0
3 events = [0.2,tstop/2,tstop,tstop]; dt_expand = 2.0;
4

5 # Boundary parameters
6 t_channels = {1:[0.2,tstop/2], 2:[tstop/2,tstop]}
7 sigma = 1e5; ds = 20; area = 3.1416; Faraday = 0.0965; amp = -0.1
8

9 # Initialize the solution Function and the left and right han d side
10 u = Function(Vs); x = u.vector()
11 x[:] = c0 * exp(-a.valence * a.phi_0 * exp(-a.kappa * mesh.coordinates()[:,-1]))
12 b = Vector(len(x); A = K.copy();
13

14 solver = KrylovSolver("bicgstab","amg_hypre")
15 dolfin_set("Krylov relative tolerance",1e-7)
16 dolfin_set("Krylov absolute tolerance",1e-10);
17

18 plot(u, vmin=0, vmax=4000, interactive=True)
19 while t < tstop:
20 # Initalize the left and right hand side
21 A[:] = K; A * = sigma; A += E; b[:] = 0
22

23 # Adding channel fluxes
24 for c in [1,2]:
25 if t >= t_channels[c][0] and t < t_channels[c][1]:
26 b.axpy(-amp * 1e9/(2 * Faraday * area),f[c])
27

28 # Adding cytosole flux at Omega 3
29 A.axpy(sigma/ds,F[3]); b.axpy(c0 * sigma/ds,f[3])
30

31 # Applying the Backward Euler time discretization
32 A * = dt; b * = dt; b += M * x; A += M
33

34 solver.solve(A,x,b)
35 t += dt; print "Ca Concentration solved for t:",t
36

37 # Handle the next time step
38 if t == events[0]:
39 dt = dt_min; events.pop(0)
40 elif t + dt * dt_expand > events[0]:
41 dt = events[0] - t
42 else:
43 dt * = dt_expand
44

45 plot(u, vmin=0, vmax=4000)
46

47 plot(u, vmin=0, vmax=4000, interactive=True)

Figure 33.5: Python code for solving the system in Eq. (33.13), using the assem-
bled matrices from the two former code examples from Fig. 33.3- 33.4.
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Figure 33.6: The fig-
ure shows a plot of
the error (a normalized
L2 norm of the differ-
ence between the numer-
ical and analytical solu-
tions) against the stabi-
lization parameter τ for
3 different mesh resolu-
tions. The mesh reso-
lutions are given by the
median of the z distance
of all vertices and the to-
tal number of vertices in
the mesh, see legend. We
see that the minimal val-
ues of the error for the
three meshes, occur at
three different τ : 0.22,
0.28, and 0.38.

shows the traces for z < 1.5 nm and the right shows the traces for z > 10.5 nm.
In the left plot we see the same tendency as in Fig. 33.7, an overshoot of the
solution with τ = 0.10 and an undershoot for the solution with τ = 0.60. The
L2-optimal solution, the one with τ = 0.28, overshoot the analytic solution for
the shown interval in the left plot, but undershoot for the rest of the trace.

In the last figure, Fig. 33.9, traces from mesh 3 is presented. The results
is also here presented in two plots, corresponding to the same z interval as in
Fig. 33.8. We see that the solution with τ = 0.10 is not good in either plots. In the
left plot it clearly overshoots the analytic solution for most of the interval, and
then stays at a lower level than the analytic solution for the rest of the interval.
The solution with τ = 0.60 is much better here than in the two previous plots. It
undershoots the analytic solution at z = 0 but stays closer to it for the rest of the
interval than the L2-optimal solution. The L2 norm penalize larger distances
between two traces, i.e., weighting the error close to z = 0 more than the rest.
The optimal solution meassured in the Max norm is given when τ = 50, result
not shown.

These results tell us that it is difficult to get accurate numerical solution
for the advection-diffusion problem presented in Eq. (33.8), even with optimal
SUPG stabilization for the given mesh resolutions. Using finer mesh close to
z = 0 would help, but it will create a larger system. It is interesting to notice
that the L2 optimal solutions is better close to z = 0, than other solutions and
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the solution for the largest τ is better than other for z ¿ 2 nm. For a modeller
these constraints are important to know about because the solution at z = 0 and
z = 12 nm is the most important, as Ca2+interact with other proteins at these
points.

I am combining a solver of the continuous and deterministic advection-diffusion
equation, Eq. (33.2), and a solver of the discrete and stochastic systems of
Markov chain models from Section 33.3.3. These systems are two-way coupled
as some of the propensities in the Markov chains are dependent on the local[
Ca2+]and boundary fluxes are turned on or off dependent on what state the
Markov models are in. I have used a hybrid approach similar to the one pre-
sented in [?] to solve this system. Basically this hybrid method consists of a
modified Gillespie method [?] to solve the stochastic state transitions, and a fi-
nite element method in space together with a backward Euler method in time, to
solve the continuous system.

33.5 diffsim an event driven simulator

In the scripts in Fig. 33.3- 33.5 it is shown how a simple continuous solver can be
built with PyDOLFIN. By pre-assemble the matrices from Eq. (33.14) a flexible
system for adding and removing boundary fluxes corresponding to the state of
the channels is constructed. The script in Fig.33.5 uses fixed time steps for the
channel states. These time steps together with an expanding ∆tform a simplistic
time stepping scheme that is sufficient to solve the presented example. However
it would be difficult to expand it to also incorporate the time stepping involved
with the solution of stochastic Markov models, and other discrete variables. For
this I have developed an event driven simulator called diffsim . In the last
subsections in this chapter I will present the algorithm underlaying the time
stepping scheme in diffsim and an example of how one can use diffsim to
describe and solve a model of the dyadic cleft. The diffsim software can be
freely downloaded from URL:http://www.fenics.org/wiki/FEniCS_Apps .

33.5.1 Stochastic system

The stochastic evolution of the Markov chain models from Section 33.3.3 is de-
termined by a modified Gillespie method [?], which resembles the one presented
in [?]. I will not go into detail of the actual method, but rather explain the part
of the method that has importance for the overall time stepping algorithm, see
below.

The solution of the included stochastic Markov chain models is stored in a
state vector, S. Each element in S corresponds to oneMarkov model and the value
reflects which state each model is in. The transitions between these states are
modelled stochastically and are computed using the modified Gillespie method.
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This method basically give us which of the states in S changes to what state and
when. It is not all such state transitions that are relevant for the continuous sys-
tem, e.g, a transition between two closed states in the LCC model will not have
any impact on the boundary fluxes, and can be ignored. Only transitions that
either open or close a channel, which is called channel transitions, will be rec-
ognized. The modified Gillespie method assume that any continuous variables a
certain propensity function is dependent on are constant during a time step. The
error done by assuming this is reduced by taking smaller time steps right after a
channel transition, as the continuous field is changing dramatically during this
time period.

33.5.2 Time stepping algorithm

To simplify the presentation of the time stepping algorithm we only consider one
continuous variable, this could for example be the Ca2+field. The framework
presented here can be expanded to also handle several continuous variables. We
define a base class called DiscreteObject which defines the interface for all
discrete objects. A key function of a discrete object is to know when its next

event is due to. The DiscreteObject that has the smallest next event time,
gets to define the size of the next ∆t, for which the Ca2+field is solved with. In
pythonthis is easily done by making the DiscreteObject s sortable with re-
spect to their next event time. All DiscreteObject s is then collected in a list,
discrete objects see Fig. 33.10, and the DiscreteObject with the smallest
next event time is then just min(discrete objects) .

An event from a DiscreteObject that does not have an impact on the con-
tinuous solution will be ignored, e.g., a Markov chain model transition that is not
a channel transition. A transition needs to be realized before we can tell if it is a
channel transition or not. This is done by stepping the DiscreteObject , calling
the objects step() method. If the method returns False it will not affect the
Ca2+field, and we enter the while loop, and a new DiscreteObject is picked,
see Fig. 33.10. However if the object returns True when it is stepped, we will exit
the while loop and continue. Next we have to update the other discrete objects
with the chosen ∆t, solve the Ca2+field, broadcast the solution and last but not
least execute the discrete event that is scheduled to happen at ∆t.

◮ Editor note: Fix ugly text sticking out in margin.

In Fig. 33.11 we show an example of a possible realization of this algorithm.
The example starts at t=2ms at the top-most timeline represented by A, and it in-
cludes three different types of DiscreteObject s: i ) DtExpander , ii ) StochasticHandler ,
and iii ) TStop . See the legend of the figure for more details.
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33.5.3 diffsim an example

diffsim is a versatile event driven simulator that incorporates the time step-
ping algorithm presented in the previous section together with the infrastructure
to solve models with one or more diffusional domains, defined by a computational
mesh. Each such domain can have several diffusive ligands. Custom fluxes can
easily be included through the framework diffsim give. The submodule dyadic-
cleft implements some published Markov models that can be used to simulate
the stochastic behaviour of a dyad and some convinient boundary fluxes. It also
implements the field flux from the lipid bi-layer discussed in Section 33.3.2. In
Fig. 33.12 runnable script is presented, which simulate the time to release, also
called the latency for a dyad. The two Markov models that is presented in sec-
tion 33.3.3 is here used to model the stochastic dynamics of the RyR and the LCC.
The simulation is driven by an external dynamic voltage clamp. The data that
defines this is read in from a file using utilities from the NumPypythonpackages.
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Figure 33.7: The figure
shows the concentration
traces of the numerical
solutions from Mesh 1,
see legend of Fig. 33.6,
for three different τ to-
gether with the analytic
solution. The solutions
were picked from a line
going between the points
(0,0,0) and (0,0,12). We
see that the solution
with τ = 0.10 oscil-
lates. The solution with
τ = 0.22 was the solu-
tion with smallest global
error for this mesh, see
Fig 33.6, and the solu-
tion with τ = 0.60 under-
shoots the analytic solu-
tion at z = 0nm with 1̃.7
µM.
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Figure 33.8: The figures shows the concentration traces of the numerical solu-
tions from Mesh 2, see legend of Fig. 33.6, for three different τ together with the
analytic solution. The traces in the two panels were picked from a line going
between the points (0,0,0) and (0,0,1.5) for the left panel and between (0,0,10.5)
and (0,0,12) for the right panel. We see from both panels that the solution with
τ = 0.10 give the poorest solution. The solution with τ = 0.28 was the solution
with smallest global error for this mesh, see Fig 33.6, and this is reflected in the
reasonable good fit seen in the left panel, especially at z = 0nm. The solution
with τ = 0.60 undershoots the analytic solution at z = 0 with 1̃.2 µM. From the
right panel we see that all numerical solutions undershoot at z = 15nm, and that
the trace with τ = 0.60 comes closest the analytic solution.
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Figure 33.9: The figures shows the concentration traces of the numerical solu-
tions from Mesh 3, see legend of Fig. 33.6, for three different τ together with the
analytic solution. The traces in the two panels were picked from the same lines
as the one in Fig. 33.8. Again we see from both panels that the solution with
τ = 0.10 give the poorest solution. The solution with τ = 0.38 was the solution
with smallest global error for this mesh, see Fig 33.6, and this is reflected in the
good fit seen in the left panel, especially at z = 0nm. The solution with τ = 0.60
undershoots the analytic solution at z = 0 with 0̃.7 µM. From the right panel
we see that all numerical solutions undershoot at z = 15nm, and the trace with
τ = 0.60 also here comes closest the analytic solution.

1 while not stop_sim:
2 # The next event
3 event = min(discrete_objects)
4 dt = event.next_time()
5

6 # Step the event and check result
7 while not event.step():
8 event = min(discrete_objects)
9 dt = event.next_time()

10

11 # Update the other discrete objects with dt
12 for obj in discrete_objects:
13 obj.update_time(dt)
14

15 # Solve the continuous equation
16 ca_field.solve(dt)
17 ca_field.send()
18

19 # Distribute the event
20 event.send()

Figure 33.10: Python-like pseudo code for the time stepping algorithm used in
our simulator
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Figure 33.11: Diagram for the time stepping algorithm using 3 discrete objects:
DtExpander , StochasticHandler , TStop . The values below the small ticks,
corresponds to the time to the next event for each of the discrete objects. This
time is measured from the last realized event, which is denoted by the thicker
tick. InAwe have realized a time event at t=2.0 ms. The next event to be realized
is a stochastic transition, the one with smallest value below the ticks. In B this
event is realized, and the StochasticHandler now show a new next event time.
The event is a channel transition forcing the dt, controlled by the DtExpander , to
be minimized. DtExpander now has the smallest next event time, and is realized
in C. The channel transition that was realised in B raised the

[
Ca2+

]
in the cleft

which in turn increase the Ca2+dependent propensity functions in the included
Markov models. The time to next event time of the StochasticHandler has
therefore been updated, and moved forward inC. Also note that the DtExpander
has expanded its next event time. In D the stochastic transition is realized and
updated with a new next event time, but it is ignored as it is not a channel
transition. The smallest time step is now the DtExpander , and this is realized
in E. In this example we do not realize the TStop event as it is too far away.
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1 from diffsim import *
2 from diffsim.dyadiccleft import *
3 from numpy import exp, fromfile
4

5 # Model parameters
6 c0_bulk = 0.1; D_Ca = 1.e5; Ds_cyt = 50; phi0 = -2.2; tau = 0.28
7 AP_offset = 0.1; dV = 0.5, ryr_scale = 100; end_sim_when_ope nd = True
8

9 # Setting boundary markers
10 LCC_markers = range(10,14); RyR_markers = range(100,104) ; Cyt_marker = 3
11

12 # Add a diffusion domain
13 domain = DiffusionDomain("Dyadic_cleft","cleft_mesh_w ith_RyR.xml.gz")
14 c0_vec = c0_bulk * exp(-VALENCE[Ca] * phi0 * exp(-domain.mesh().coordinates()[:,-1]))
15

16 # Add the ligand with fluxes
17 ligand = DiffusiveLigand(domain.name(),Ca,c0_vec,D_Ca )
18 field = StaticField("Bi_lipid_field",domain.name())
19 Ca_cyt = CytosolicStaticFieldFlux(field,Ca,Cyt_marker ,c0_bulk,Ds_cyt)
20

21 # Adding channels with Markov models
22 for m in LCC_markers:
23 LCCVoltageDepFlux(domain.name(), m, activator=LCCMark ovModel_Greenstein)
24 for m in RyR_markers:
25 RyRMarkovModel_Stern("RyR_%d"%m, m, end_sim_when_open d)
26

27 # Adding a dynamic voltage clamp that drives the LCC Markov mo del
28 AP_time = fromfile(’AP_time_steps.txt’,sep=’\n’)
29 dvc = DynamicVoltageClamp(AP_time,fromfile(’AP.txt’,s ep=’\n’),AP_offset,dV)
30

31 # Get and set parameters
32 params = get_params()
33

34 params.io.save_data = True
35 params.Bi_lipid_field.tau = tau
36 params.time.tstop = AP_time[-1] + AP_offset
37 params.RyRMarkovChain_Stern.scale = ryr_scale
38

39 info(str(params))
40

41 # Run 10 simulations
42 data = run_sim(10,"Dyadic_cleft_with_4_RyR_scale")
43 mean_release_latency = mean([ run["tstop"] for run in data ["time"]])

Figure 33.12: An example of how diffsim can be used to simulate the time to
RyR release latency, from a small dyad whos domain is defined by the mesh in
the file cleft mesh with RyR.xml.gz .
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CHAPTER 34

Electromagnetic Waveguide Analysis

By Evan Lezar and David B. Davidson

Chapter ref: [lezar]

◮ Editor note: Reduce the number of macros.

At their core, Maxwell’s equations are a set of differential equations describ-
ing the interactions between electric and magnetic fields, charges, and currents.
These equations provide the tools with which to predict the behaviour of elec-
tromagnetic phenomena, giving us the ability to use them in a wide variety of
applications, including communication and power generation. Due to the com-
plex nature of typical problems in these fields, numeric methods such as the
finite element method are often employed to solve them.

One of the earliest applications of the finite element method in electromag-
netics was in waveguide analysis [?]. Since waveguides are some of the most
common structures in microwave engineering, especially in areas where high
power and low loss are essential [?], their analysis is still a topic of much in-
terest. This chapter considers the use of FEniCS in the cutoff and dispersion
analysis of these structures as well as the analysis of waveguide discontinuities.
These types of analysis form an important part of the design and optimisation of
waveguide structures for a particular purpose.

The aim of this chapter is to guide the reader through the process followed in
implementing solvers for various electromagnetic problems with both cutoff and
dispersion analysis considered in depth. To this end a brief introduction of elec-
tromagnetic waveguide theory, the mathematical formulation of these problems,
and the specifics of their solution using the finite element method are presented
in 34.1. This lays the groundwork for a discussion of the details pertaining to
the FEniCS implementation of these solvers, covered in 34.2. The translation of
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the finite element formulation to FEniCS, as well as some post-processing con-
siderations are covered. In 34.3 the solution results for three typical waveguide
configurations are presented and compared to analytical or previously published
data. This serves to validate the implementation and illustrates the kinds of
problems that can be solved. Results for the analysis of H-plane waveguide dis-
continuities are then presented in 34.4 with two test cases being considered.

34.1 Formulation

As mentioned, in electromagnetics, the behaviour of the electric and magnetic
fields are described by Maxwell’s equations [?, ?]. Using these partial differential
equations, various boundary value problems can be obtained depending on the
problem being solved. In the case of time-harmonic fields, the equation used is
the vector Helmholtz wave equation. If the problem is further restricted to a
domain surrounded by perfect electrical or magnetic conductors (as is the case in
general waveguide problems) the wave equation in terms of the electric field, E,
can be written as [?]

∇ × 1

µr
∇ × E− k2

oǫrE = 0, in Ω, (34.1)

subject to the boundary conditions

n̂×E = 0 on Γe (34.2)

n̂×∇ ×E = 0 on Γm, (34.3)

with Ω representing the interior of the waveguide and Γe and Γm electric and
magnetic walls respectively. µr and ǫr are the relative magnetic permeability
and electric permittivity respectively. These are material parameters that may
be position dependent but only the isotropic case is considered here. ko is the
operating wavenumber which is related to the operating frequency (fo) by the
expression

ko =
2πfo

c0
, (34.4)

with c0 the speed of light in free space. This boundary value problem (BVP) can
also be written in terms of the magnetic field [?], but as the discussions following
are applicable to both formulations this will not be considered here.

If the guide is sufficiently long, and the z-axis is chosen parallel to its central
axis as shown in Figure 34.1, then z-dependence of the electric field can be as-
sumed to be of the form e−γz with γ = α+jβ a complex propagation constant [?, ?].
Making this assumption and splitting the electric field into transverse (Et) and
axial (ẑEz) components, results in the following expression for the field

E(x, y, z) = [Et(x, y) + ẑEz(x, y)]e
−γz, (34.5)
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x

y

z

Γe

Ω

Figure 34.1: A long waveguide with an arbitrary cross-section aligned with the
z-axis.

with x and y the Cartesian coordinates in the cross-sectional plane of the waveg-
uide and z the coordinate along the length of the waveguide.

From (34.5) as well as the BVP described by (34.1), (34.2), and (34.3) it is pos-
sible to obtain the following variational functional found in many computational
electromagnetic texts [?, ?]

F (E) =
1

2

∫

Ω

1

µr
(∇t ×Et) · (∇t × Et)− k2

oǫrEt · Et

+
1

µr
(∇tEz + γEt) · (∇tEz + γEt)− k2

oǫrEzEzdΩ, (34.6)

with

∇t =
∂

∂x
x̂ +

∂

∂y
ŷ (34.7)

the transverse del operator.

A number of other approaches have also been taken to this problem. Some,
for instance, involve only nodal based elements; some use the longitudinal fields
as the working variable, and the problem has also been formulated in terms of
potentials, rather than fields. A good summary of these may be found in [?, Chap-
ter 9]. The approach used here, involving transverse and longitudinal fields, is
probably the most widely used in practice.

34.1.1 Waveguide Cutoff Analysis

One of the simplest cases to consider, and often a starting point when testing a
new finite element implementation, is waveguide cutoff analysis. When a waveg-
uide is operating at cutoff, the electric field is uniform along the z-axis which
corresponds with γ = 0 in (34.5) [?]. Substituting γ = 0 into (34.6) yields the
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following functional

F (E) =
1

2

∫

Ω

1

µr
(∇t ×Et) · (∇t × Et)− k2

cǫrEt · Et

+
1

µr
(∇tEz) · (∇tEz)− k2

cǫrEzEzdΩ. (34.8)

The symbol for the operating wavenumber ko has been replaced with kc, indicat-
ing that the quantity of interest is now the cutoff wavenumber. This quantity in
addition to the field distribution at cutoff are of interest in these kinds of prob-
lems. Using two dimensional vector basis functions for the discretisation of the
transverse field, and scalar basis functions for the axial components, the minimi-
sation of (34.8) is equivalent to solving the following matrix equation

[
Stt 0
0 Szz

]{
et

ez

}
= k2

c

[
Ttt 0
0 Tzz

]{
et

ez

}
, (34.9)

which is in the form of a general eigenvalue problem. Here Sss and Tss repre-
sents the stiffness and mass common to finite element literature [?, ?] with the
subscripts tt and zz indicating transverse or axial components respectively. The
entries of the matrices of (34.9) are defined as

(stt)ij =

∫

Ω

1

µr

(∇t ×Ni) · (∇t ×Nj)dΩ, (34.10)

(ttt)ij =

∫

Ω

ǫrNi ·NjdΩ, (34.11)

(szz)ij =

∫

Ω

1

µr

(∇tMi) · (∇tMj)dΩ, (34.12)

(tzz)ij =

∫

Ω

ǫrMiMjdΩ, (34.13)

with
∫
Ω
dΩ representing integration over the cross-section of the waveguide and

Ni andMi representing the ith vector and scalar basis functions respectively.
Due to the block nature of the matrices the eigensystem can be written as two

smaller systems

[
Stt

] {
et

}
= k2

c,TE

[
Ttt

] {
et

}
, (34.14)

[
Szz

] {
ez

}
= k2

c,TM

[
Tzz

] {
ez

}
, (34.15)

with kc,TE and kc,TM corresponding to the cutoff wavenumbers of the transverse
electric (TE) and transverse magnetic (TM) modes respectively. The eigenvec-
tors ({et} and {ez}) of the systems are the coefficients of the vector and scalar
basis functions, allowing for the calculation of the transverse and axial field dis-
tributions associated with a waveguide cutoff mode.
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34.1.2 Waveguide Dispersion Analysis

In the case of cutoff analysis discussed in 34.1.1, one attempts to obtain the value
of k2

o = k2
c for a given propagation constant γ, namely γ = 0. For most waveguide

design applications however, ko is specified and the propagation constant is cal-
culated from the resultant eigensystem [?, ?]. This calculation can be simplified
somewhat by making the following substitution into (34.6)

Et,γ = γEt, (34.16)

which results in the modified functional

F (E) =
1

2

∫

Ω

1

µr
(∇t ×Et,γ) · (∇t × Et,γ)− k2

oǫrEt,γ ·Et,γ

− γ2

[
1

µr
(∇tEz + Et,γ) · (∇tEz + Et,γ)− k2

oǫrEzEz

]
dΩ. (34.17)

Using the same discretisation as for cutoff analysis discussed in 34.1.1, the ma-
trix equation associated with the solution of the variational problem is given by

[
Att 0
0 0

]{
et

ez

}
= γ2

[
Btt Btz

Bzt Bzz

]{
et

ez

}
, (34.18)

with

Att = Stt − k2
oTtt, (34.19)

Bzz = Szz − k2
oTzz, (34.20)

which is in the form of a generalised eigenvalue problem with the eigenvalues
corresponding to the square of the complex propagation constant (γ).

The matrices Stt, Ttt, Szz, and Tzz are identical to those defined in 34.1.1 with
entries given by (34.10), (34.11), (34.12), and (34.13) respectively. The entries of
the other sub-matrices, Btt, Btz, and Bzt, are defined by

(btt)ij =

∫

Ω

1

µr
Ni ·NjdΩ, (34.21)

(btz)ij =

∫

Ω

1

µr
Ni · ∇tMjdΩ, (34.22)

(bzt)ij =

∫

Ω

1

µr
∇tMi ·NjdΩ. (34.23)

A common challenge in electromagnetic eigenvalue problems such as these is
the occurrence of spurious modes [?]. These are non-physical modes that fall in
the null space of the ∇ ×∇ × operator of (34.1) [?] (The issue of spurious modes
is not as closed as most computational electromagnetics texts indicate. For a
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summary of recent work in the applied mathematics literature, written for an
engineering readership, see [?]).

One of the strengths of the vector basis functions used in the discretisation
of the transverse component of the field is that it allows for the identification
of these spurious modes [?, ?]. In [?] a scaling method is proposed to shift the
eigenvalue spectrum such that the dominant waveguide mode (usually the lowest
non-zero eigenvalue) corresponds with the largest eigenvalue of the new system.
Other approaches have also been followed to address the spurious modes. In [?],
Lagrange mutipliers are used to move these modes from zero to infinity.

In the case of the eigensystem associated with dispersion analysis, the matrix
equation of (34.18) is scaled as follows

[
Btt Btz

Bzt Bzz

]{
et

ez

}
=

θ2

θ2 + γ2

[
Btt + Att

θ2 Btz

Bzt Bzz

]{
et

ez

}
, (34.24)

with θ2 = k2
oµ

(max)
r ǫ

(max)
r an upper bound on the square of the propagation constant

(γ2) and µ
(max)
r and ǫ

(max)
r the maximum relative permeability and permittivity in

the computational domain.
If λ is an eigenvalue of the scaled system of (34.24), then the propagation

constant can be calculated as

γ2 =
1− λ
λ

θ2, (34.25)

and thus γ2 →∞ as λ → 0, which moves the spurious modes out of the region of
interest.

34.2 Implementation

This section considers the details of the implementation of a FEniCS-based solver
for waveguide cutoff mode and dispersion curve problems as described in 34.1.1
and 34.1.2. A number of code snippets illustrate some of the finer points of the
implementation.

34.2.1 Formulation

Listing 34.1 shows the definitions of the function spaces used in the solution of
the problems considered here. Nédélec basis functions of the first kind (N v and
N u) are used to approximate the transverse component of the electric field. This
ensures that the tangential continuity required at element and material bound-
aries can be enforced [?]. The axial component of the field is modelled using
a set of Lagrange basis functions (Mv , and Mu). Additionally, a discontinuous
Galerkin function space is included to allow for the modelling of material param-
eters such as dielectrics.
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Listing 34.1: Function spaces and basis functions.

V_DG = FunctionSpace( mesh, "DG", 0) V_N = FunctionSpace( mesh,
"Nedelec", transverse_order) V_M = FunctionSpace( mesh, "Lagrange",
axial_order)

combined_space = V_N + V_L

( N_v, M_v) = TestFunctions( combined_space)
( N_u, M_u) = TrialFunctions( combined_space)

In order to deal with material properties, the Function class is extended
and the eval() method overridden. This is illustrated in Listing 34.2 where a
dielectric with a relative permittivity of ǫr = 4 that extends to y = 0.25 is shown.
This class is then instantiated using the discontinuous Galerkin function space
already discussed. For constant material properties (such as the inverse of the
magnetic permittivity µr, in this case) a JIT-compiled function is used.

Listing 34.2: Material properties and functions.

class HalfLoadedDielectric( Function):
def eval( self, values, x):

if x[ 1] < 0. 25:
values[ 0] = 4. 0

else:
values[ 0] = 1. 0;

e_r = HalfLoadedDielectric( V_DG)
one_over_u_r = Function( V_DG, "1.0")

k_o_squared = Function( V_DG, "value", {"value" : 0. 0})
theta_squared = Function( V_DG, "value", {"value" : 0. 0})

The basis functions declared in Listing 34.1 and the desired material property
functions are now used to create the forms required for the matrix entries spec-
ified in 34.1.1 and 34.1.2. The forms are shown in Listing 34.3 and the matrices
of (34.9), (34.18), and (34.24) can be assembled using the required combinations
of these forms with the right hand side of (34.24), rhs , provided as an example.
It should be noted that the use of JIT-functions for operating wavenumber and
scaling parameters means that the forms need not be recompiled each time the
operating frequency is changed. This is especially beneficial when the calcula-
tion of dispersion curves is considered since the same calculation is performed
for a range of operating frequencies.

From (34.2) it follows that the tangential component of the electric field must
be zero on perfectly electrical conducting (PEC) surfaces. What this means in
practice is that the degrees of freedom associated with both the Lagrange and
Nédélec basis functions on the boundary must be set to zero since there can be
no electric field inside a perfect electrical conductor [?]. An example for a PEC
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surface surrounding the entire computational domain is shown in Listing 34.4 as
the ElectricWalls class. This boundary condition can then be applied to the
constructed matrices before solving the eigenvalue systems.

The boundary condition given in (34.3) results in a natural boundary condi-
tion for the problems considered and thus it is not necessary to explicitly enforce
it [?]. Such magnetic walls and the symmetry of a problem are often used to de-
crease the size of the computational domain although this does limit the solution
obtained to even modes [?].

Once the required matrices have been assembled and the boundary condi-
tions applied, the resultant eigenproblem can be solved. This can be done by
outputting the matrices and solving the problem externally, or by making use
of the eigensolvers provided by SLEPc that can be integrated into the FEniCS
package.

34.2.2 Post-Processing

After the eigenvalue system has been solved and the required eigenpair chosen,
this can be post-processed to obtain various quantities of interest. For the cutoff
wavenumber, this is a relatively straight-forward process and only involves sim-
ple operations on the eigenvalues of the system. For the calculation of dispersion
curves and visualisation of the resultant field components the process is slightly
more complex.

Dispersion Curves

For dispersion curves the computed value of the propagation constant (γ) is plot-
ted as a function of the operating frequency (fo). Since γ is a complex variable,
a mapping is required to represent the data on a single two-dimensional graph.
This is achieved by choosing the fo-axis to represent the value γ = 0, effectively

Listing 34.3: Forms for matrix entries.

s_tt = one_over_u_r* dot( curl_t( N_v), curl_t( N_u))
t_tt = e_r* dot( N_v, N_u)

s_zz = one_over_u_r* dot( grad( M_v), grad( M_u))
t_zz = e_r* M_v* M_u

b_tt = one_over_u_r* dot( N_v, N_u)
b_tz = one_over_u_r* dot( N_v, grad( M_u))
b_zt = one_over_u_r* dot( grad( M_v), N_u)

a_tt = s_tt - k_o_squared* t_tt
b_zz = s_zz - k_o_squared* t_zz

rhs = b_tt + b_tz + b_zt + b_zz + 1. 0/ theta_squared* a_tt
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Listing 34.4: Boundary conditions.

class ElectricWalls( SubDomain):
def inside( self, x, on_boundary):

return on_boundary

dirichlet_bc = DirichletBC( combined_space,
Function( combined_space, "0.0"), ElectricWalls())

dividing the γ− fo plane into two regions. The region above the fo-axis is used to
represent the magnitude of the imaginary part of γ, whereas the real part falls in
the lower region. A mode that propagates along the guide for a given frequency
will thus lie in the upper half-plane of the plot and a complex mode will be rep-
resented by a data point above and below the fo-axis. This procedure is followed
in [?] and other literature and allows for quick comparisons and validation of
results.

Field Visualisation

In order to visualise the fields associated with a given solution, the basis func-
tions need to be weighted with coefficients corresponding to the entries in an
eigenvector obtained from one of the eigenvalue problems. In addition, the trans-
verse or axial components of the field may need to be extracted. An example for
plotting the transverse and axial components of the field is given in Listing 34.5.
Here the variable x assigned to the function vector is one of the eigenvectors
obtained by solving the eigenvalue problem.

Listing 34.5: Extraction and visualisation of transverse and axial field compo-
nents.

f = Function( combined_space) f. vector(). assign( x)

( transverse, axial) = f. split()

plot( transverse)
plot( axial)

The eval() method of the transverse and axial functions can also be
called in order to evaluate the functions at a given spatial coordinate, allowing
for further visualisation or post-processing options.

34.3 Examples

The first of the examples considered is the canonical one of a hollow waveguide,
which has been covered in a multitude of texts on the subject [?, ?, ?, ?]. Since
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the analytical solutions for this structure are known, it provides an excellent
benchmark and is a typical starting point for the validation of a computational
electromagnetic solver for solving waveguide problems.

The second and third examples are a partially filled rectangular guide and
a shielded microstrip line on a dielectric substrate, respectively. In each case
results are compared to published results from the literature as a means of vali-
dation.

34.3.1 Hollow Rectangular Waveguide

Figure 34.2 shows the cross section of a hollow rectangular waveguide. For the
purpose of this chapter a guide with dimensions a = 1m and b = 0.5m is con-
sidered. The analytical expressions for the electric field components of a hollow

ǫr = 1
µr = 1

a

b

Figure 34.2: A diagram showing the cross section and dimensions of a hollow
rectangular waveguide.

rectangular guide with width a and height b are given by [?]

Ex =
n

b
Amn cos

(mπx
a

)
sin
(nπy

b

)
, (34.26)

Ey =
−m
a
Amn sin

(mπx
a

)
cos
(nπy

b

)
, (34.27)

for the TEmn mode, whereas the z-directed electric field for the TMmn mode has
the form [?]

Ez = Bmn sin
(mπx

a

)
sin
(nπy

b

)
, (34.28)

with Amn and Bmn constants for a given mode. In addition, the propagation con-
stant, γ, has the form

γ =
√
k2

o − k2
c , (34.29)

with ko the operating wavenumber dependent on the operating frequency, and

k2
c =

(mπ
a

)2

+
(nπ
b

)2

, (34.30)

the analytical solution for the square of the cutoff wavenumber for both the TEmn

and TMmn modes.
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Cutoff Analysis

Figure 34.3 shows the first two calculated TE cutoff modes for the hollow rectan-
gular guide, with the first two TM cutoff modes being shown in Figure 34.4. The
solution is obtained with 64 triangular elements and second order basis functions
in the transverse as well as the axial discretisations.
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(a) TE10 mode.
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(b) TE01 mode.

Figure 34.3: The first two calculated TE cutoff modes of a 1 m × 0.5 m hollow
rectangular waveguide.
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(a) TM11 mode.
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(b) TM21 mode.

Figure 34.4: The first two calculated TM cutoff modes of a 1 m × 0.5 m hollow
rectangular waveguide.

Table 34.1 gives a comparison of the calculated and analytical values for the
square of the cutoff wavenumber of a number of modes for a hollow rectangular
guide. As can be seen from the table, there is excellent agreement between the
values.
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Table 34.1: Comparison of analytical and calculated cutoff wavenumber squared
(k2

c ) for various TE and TMmodes of a 1 m × 0.5 m hollow rectangular waveguide.
Mode Analytical [m−2] Calculated [m−2] Relative Error
TE10 9.8696 9.8696 1.4452e-06
TE01 39.4784 39.4784 2.1855e-05
TE20 39.4784 39.4784 2.1894e-05
TM11 49.3480 49.4048 1.1514e-03
TM21 78.9568 79.2197 3.3295e-03
TM31 128.3049 129.3059 7.8018e-03
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Dispersion Analysis

When considering the calculation of the dispersion curves for the hollow rectan-
gular waveguide, the mixed formulation as discussed in 34.1.2 is used. The cal-
culated dispersion curves for the first 10 modes of the hollow rectangular guide
are shown in Figure 34.5 along with the analytical results. For the rectangular
guide a number of modes are degenerate with the same dispersion and cutoff
properties as predicted by (34.29) and (34.30). This explains the visibility of only
six curves. There is excellent agreement between the analytical and computed
results.

150 200 250 300 350
fo  [MHz]

�1.0

�0.5

0.0
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1.0

(

�/k o)2

Figure 34.5: Dispersion curves for the first 10 modes of a 1 m × 0.5 m hollow
rectangular waveguide. Markers are used to indicate the analytical results with
� and � indicating TE and TM modes respectively.

34.3.2 Half-Loaded Rectangular Waveguide

In some cases, a hollow rectangular guide may not be the ideal structure to use
due to, for example, limitations on its dimensions. If the guide is filled with
a dielectric material with a relative permittivty ǫr > 1, the cutoff frequency of
the dominant mode will be lowered. Consequently a loaded waveguide will be
mode compact than a hollow guide for the same dominant mode frequency. Fur-
thermore, in many practical applications, such as impedance matching or phase
shifting sections, a waveguide that is only partially loaded is used [?].

Figure 34.6 shows the cross section of such a guide. The guide considered
here has the same dimensions as the hollow rectangular waveguide used in the
previous section, but its lower half is filled with an ǫr = 4 dielectric material.
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ǫr = 1

µr = 1

µr = 1

ǫr = 4

a

b

d

Figure 34.6: A diagram showing the cross section and dimensions of a half-loaded
rectangular waveguide. The lower half of the guide is filled with an ǫr = 4 dielec-
tric material.

Cutoff Analysis

Figure 34.7 shows the first TE and TM cutoff modes of the half-loaded guide
shown in Figure 34.6. Note the concentration of the transverse electric field in
the hollow part of the guide. This is due to the fact that the displacement flux,
D = ǫE, must be normally continuous at the dielectric interface [?, ?].
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(b) First TM mode.

Figure 34.7: The first calculated TE and TM cutoff modes of a 1 m × 0.5 m
rectangular waveguide with the lower half of the guide filled with an ǫr = 4
dielectric.

Dispersion Analysis

The dispersion curves for the first 8 modes of the half-loaded waveguide are
shown in Figure 34.8 with results for the first 4 modes from [?] provided as ref-
erence. Here it can be seen that the cutoff frequency of the dominant mode has
decreased and there is no longer the same degeneracy in the modes when com-
pared to the hollow guide of the same dimensions. In addition, there are complex

302



Evan Lezar and David B. Davidson

100 120 140 160 180 200 220 240 260 280 300 320 340
fo  [MHz]

�4�3�2
�101

2

3

4

(

�/k o)2

Figure 34.8: Dispersion curves for the first 8 modes of a 1 m × 0.5 m rectangular
waveguide with its lower half filled with an ǫr = 4 dielectric material. Reference
values for the first 4 modes from [?] are shown as �. The presence of complex
mode pairs are indicated by N and •.

modes present as a result of the fourth and fifth as well as the sixth and seventh
modes occurring as conjugate pairs at certain points in the spectrum. It should
be noted that the imaginary parts of these conjugate pairs are very small and
thus the • markers in Figure 34.8 appear to fall on the fo-axis. These complex
modes are discussed further in 34.3.3.

34.3.3 Shielded Microstrip

Microstrip line is a very popular type of planar transmission line, primarily due
to the fact that it can be constructed using photolithographic processes and in-
tegrates easily with other microwave components [?]. Such a structure typically
consists of a thin conducting strip on a dielectric substrate above a ground plane.
In addition, the strip may be shielded by enclosing it in a PEC box to reduce elec-
tromagnetic interference. A cross section of a shielded microstrip line is shown
in Figure 34.9 with the thickness of the strip, t, exaggerated for clarity. The
dimensions used to obtain the results discussed here are given in Table 34.2.

Table 34.2: Dimensions for the shielded microstrip line considered here. Defini-
tions for the symbols are given in Figure 34.9.

Dimension [mm]
a, b 12.7
d, w 1.27
t 0.127
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ǫr = 1

µr = 1

µr = 1

ǫr = 8.875
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Figure 34.9: A diagram showing the cross section and dimensions of a shielded
microstrip line. The microstrip is etched on a dielectric material with a relative
permittivity of ǫr = 8.75. The plane of symmetry is indicated by a dashed line and
is modelled as a magnetic wall in order to reduce the size of the computational
domain.

Cutoff Analysis

Since the shielded microstrip structure consists of two conductors, it supports a
dominant transverse electromagnetic (TEM) wave that has no axial component
of the electric or magnetic field [?]. Such a mode has a cutoff wavenumber of zero
and thus propagates for all frequencies [?, ?]. The cutoff analysis of this structure
is not considered here explicitly. The cutoff wavenumbers for the higher order
modes (which are hybrid TE-TM modes [?]) can however be determined from the
dispersion curves by the intersection of a curve with the fo-axis.

Dispersion Analysis

The dispersion analysis presented in [?] is repeated here for validation with the
resultant curves shown in Figure 34.10. As is the case with the half-loaded guide,
the results calculated with FEniCS agree well with previously published results.
In the figure it is shown that for certain parts of the frequency range of inter-
est, modes six and seven have complex propagation constants. Since the matri-
ces in the eigenvalue problem are real valued, the complex eigenvalues – and
thus the propagation constants – must occur in complex conjugate pairs as is the
case here and reported earlier in [?]. These conjugate propagation constants are
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associated with two equal modes propagating in opposite directions along the
waveguide and thus resulting in zero energy transfer. It should be noted that
for lossy materials (not considered here), complex modes are expected but do not
necessarily occur in conjugate pairs [?].
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Figure 34.10: Dispersion curves for the first 7 even modes of shielded microstrip
line using a magnetic wall to enforce symmetry. Reference values from [?] are
shown as �. The presence of complex mode pairs are indicated by N and •.

34.4 Analysis of Waveguide Discontinuities

Although this chapter focuses on eigenvalue type problems related to waveg-
uides, the use of FEniCS in waveguide analysis is not limited to such problems.
This section briefly introduces the solution of problems relating to waveguide dis-
continuities as an additional problem class. Applications where the solutions of
these problems are of importance to microwave engineers is the design of waveg-
uide filters as well as the analysis and optimisation of bends in a waveguide
where properties such as the scattering parameters (S-parameters) of the device
are calculated [?].

The hybrid finite element-modal expansion technique discussed in [?] is im-
plemented and used to solve problems related to H-plane waveguide discontinu-
ities. For such cases – which are uniform in the vertical (y) direction transverse
to the direction of propagation (z) – the problem reduces to a scalar one in two
dimensions [?] with the operating variable the y-component of the electric field
in the guide. In order to obtain the scattering parameters at each port of the
device, the field on the boundary associated with the port is written as a sum-
mation of the tangential components of the incoming and outgoing waveguide
modes. These modes can either be computed analytically, when a junction is
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Figure 34.11: Magnitude (solid line) and phase (dashed line) of the trans-
mission coefficient (S21) of a length of rectangular waveguide with dimensions
a = 18.35mm, b = 9.175mm, and l = 10mm. The analytical results for the same
structure are indicated by markers with � and • indicating the magnitude and
phase respectively.

rectangular for example, or calculated with methods such as those discussed in
the preceding sections [?].

Transmission parameter (S21) results for a length of hollow rectangular waveg-
uide are shown in Figure 34.11. As expected, the length of guide behaves as a
fixed value phase shifter [?] and the results obtained show excellent agreement
with the analytical ones.
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Figure 34.12: Schematic of an H-plane iris in a rectangular waveguide dimen-
sions: a = 18.35mm, c = 4.587mm, d = 1mm, s = 0.5mm, and w = 9.175mm. The
guide has a height of b = 9.175mm. The ports are indicated by dashed lines on
the boundary of the device.
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A schematic for a more interesting example is the H-plane iris shown in Fig-
ure 34.12. The figure shows the dimensions of the structure and indicates the
port definitions. The boundaries indicated by a solid line is a PEC material.
The magnitude and phase results for the S-parameters of the device are given in
Figure 34.13 and compared to the results published in [?] with good agreement
between the two sets of data.
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Figure 34.13: Results for the magnitude and phase of the reflection coefficient
(S11 – solid line) and transmission coefficient (S21 – dashed line) of an H-plane
iris in a rectangular waveguide shown in Figure 34.12. Reference results from [?]
are indicated by markers with � and • indicating the reflection and transmission
coefficient respectively.

34.5 Conclusion

In this chapter, the solutions of cutoff and dispersion problems associated with
electromagnetic waveguiding structures have been implemented and the results
analysed. In all cases, the results obtained agree well with previously published
or analytical results. This is also the case where the analysis of waveguide
discontinuities are considered, and although the solutions shown here are re-
stricted to H-plane waveguide discontinuities, the methods applied are applica-
ble to other classes of problems such as E-plane junctions and full 3D analysis.

This chapter has also illustrated the ease with which complex formulations
can be implemented and how quickly solutions can be obtained. This is largely
due to the almost one-to-one correspondence between the expressions at a for-
mulation level and the high-level code that is used to implement a particular
solution. Even in cases where the required functionality is limited or missing,
the use of FEniCS in conjunction with external packages greatly reduces devel-
opment time.
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CHAPTER 35

Applications in Solid Mechanics

By Kristian B. Ølgaard and Garth N. Wells

Chapter ref: [oelgaard-1]

Summarise work on automated modelling for solid mechanics, with applica-
tion to hyperelasticity, plasticity and strain gradient dependent models. Special
attention will be paid the linearisation of function which do come from a finite
element space.
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CHAPTER 36

Modelling Evolving Discontinuities

By Mehdi Nikbakht and Garth N. Wells

Chapter ref: [nikbakht]

Summarise work on automated modelling of PDEs with evolving discontinu-
ities, e.g. cracks.
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CHAPTER 37

Optimal Control Problems

By Kent-Andre Mardal, Oddrun Christine Myklebust and Bjørn Fredrik Nielsen

Chapter ref: [mardal-3]

This chapter is devoted to the study of several optimal control problems and
their implementation in FEniCS. We start with an abstract description of op-
timal control problems before we apply the abstract theory to several concrete
examples. We also discuss the construction of block preconditioners for efficient
solution of these problems.
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CHAPTER 38

Automatic Calibration of Depositional Models

By Hans Joachim Schroll

Chapter ref: [schroll]

A novel concept for calibrating depositional models is presented. In this ap-
proach transport coefficients are determined from well output measurements.
Finite element implementation of the multi–lithology models and their duals is
automated by the FEniCS project DOLFIN using a python interface.

38.1 Issues in dual lithology sedimentation

Different types of forward computer models are being used by sedimentologists
and geomorphologists to simulate the process of sedimentary deposition over ge-
ological time periods. The models can be used to predict the presence of reser-
voir rocks and stratigraphic traps at a variety of scales. State–of–the–art ad-
vanced numerical software provides accurate approximations to the mathemat-
ical model, which commonly is expressed in terms of a nonlinear diffusion dom-
inated PDE system. The potential of todays simulation software in industrial
applications is limited however, due to major uncertainties in crucial material
parameters that combine a number of physical phenomena and therefore are
difficult to quantify. Examples of such parameters are diffusive transport coeffi-
cients.

The idea in this contribution is to calibrate uncertain transport coefficients to
direct observable data, like well measurements from a specific basin. In this ap-
proach the forward evolution process, mapping data to observations, is reversed
to determine the data, i.e. transport coefficients. Mathematical tools and nu-
merical algorithms are applied to automatically calibrate geological models to
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actual observations — a critical but so far missing link in forward depositional
modeling.

Automatic calibration, in combination with stochastic modeling, will boost the
applicability and impact of modern numerical simulations in industrial applica-
tions.

38.2 A multidimensional sedimentation model

Submarine sedimentation is an evolution process. By flow into the basin, sedi-
ments build up and evolve in time. The evolution follows geophysical laws, ex-
pressed as diffusive PDE models. The following system is a multidimensional
version of the dual lithology model by Rivenæs [?, ?]

(
A s
−A 1− s

)(
s
h

)

t

= ∇ ·
(
αs∇h
β(1− s)∇h

)
in [0, T ]× B . (38.1)

Here h denotes the thickness of a layer of deposit and s models the volume frac-
tion for the sand lithology. Consequently, 1−s is the fraction for mud. The system
is driven by fluxes anti proportional to the flow rates s∇h and (1−s)∇h resulting
in a diffusive, but incompletely parabolic, PDE system. The domain of the basin
is denoted by B. Parameters in the model are: The transport layer thickness A
and the diffusive transport coefficients α, β.

For a forward in time simulation, the system requires initial and boundary
data. At initial time, the volume fraction s and the layer thickness h need to be
specified. According to geologists, such data can be reconstructed by some kind
of “back stripping”. Along the boundary of the basin, the flow rates s∇h and
(1− s)∇h are given.

38.3 An inverse approach

The parameter–to–observation mapping R : (α, β) 7→ (s, h) is commonly referred
to as the forward problem. In a basin direct observations are only available
at wells. Moreover, from the age of the sediments, their history can be recon-
structed. Finally, well–data is available in certain well areas W ⊂ B and back-
ward in time.

The objective of the present investigation is to determine transport coeffi-
cients from observed well–data and in that way, to calibrate the model to the
data. This essentially means to invert the parameter–to–observation mapping.
Denoting observed well–data by (s̃, h̃), the goal is to minimize the output func-
tional

J(α, β) =
1

|W |

∫ T

0

∫

W

(s̃− s)2 + (h̃− h)2 dx dt (38.2)
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with respect to the transport coefficients α and β.
In contrast to the ”direct inversion” as described by Imhof and Sharma [?],

which is considered impractical, we do not propose to invert the time evolution
of the diffusive depositional process. We actually use the forward–in–time evo-
lution of sediment layers in a number of wells to calibrate transport coefficients.
Via the calibrated model we can simulate the basin and reconstruct its historic
evolution. By computational mathematical modeling, the local data observed in
wells determines the evolution throughout the entire basin.

38.4 The Landweber algorithm

In a slightly more abstract setting, the task is to minimize an objective functional
J which implicitly depends on the parameters p via u subject to the constraint
that u satisfies some PDEmodel; a PDE constrained minimization problem: Find
p such that J(p) = J(u(p)) = min and PDE(u, p) = 0.

Landweber’s steepest decent algorithm [?] iterates the following sequence un-
til convergence:

1. Solve PDE(uk, pk) = 0 for uk.

2. Evaluate dk = −∇pJ(pk)/‖∇pJ(pk)‖.

3. Update pk+1 = pk + ∆pkdk.

Note that the search direction dk, the negative gradient, is the direction of
steepest decent. To avoid scale dependence, the search direction is normed.

The increment ∆pk is determined by a one dimensional line search algorithm,
minimizing a locally quadratic approximation to J along the line pk + γdk, γ ∈ R.
We use the ansatz

J(pk + γdk) = aγ2 + bγ + c , γ ∈ R .

The extreme value of this parabola is located at

γk = − b

2a
. (38.3)

To determine ∆pk = γk, the parabola is fitted to the local data. For example b is
given by the gradient

Jγ(p
k) = b = ∇J(pk) · dk = −‖∇J(pk)‖2 .

To find a, another gradient of J along the line pk + γdk is needed. To avoid an
extra evaluation, we project pk−1 = pk − γk−1dk−1 onto the line pk + γdk, that is
π(pk−1) = pk − γ∗dk and approximate the directional derivative

Jγ(p
k − γ∗dk) ≈ ∇J(pk−1) · dk . (38.4)
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Note that this approximation is exact if two successive directions dk−1 and dk are
in line. Elementary geometry yields γ∗ = γk−1 cosϕ and cosϕ = dk−1 · dk. Thus
γ∗ = γk−1 · dk−1 · dk. From Jγ(p

k − γ∗dk) = −2aγ∗ + b and (38.4) we find

−2a =
(∇J(pk−1)−∇J(pk)) · dk

γk−1 · dk−1 · dk
.

Finally, the increment (38.3) evaluates as

∆pk = γk =
∇J(pk) · ∇J(pk−1)

∇J(pk) · ∇J(pk−1)− ‖∇J(pk)‖2 ·
∇J(pk)

∇J(pk−1)
· dk−1 .

38.5 Evaluation of gradients by duality arguments

Every single step of Landweber’s algorithm requires the simulation of a time de-
pendent, nonlinear PDE system and the evaluation of the gradient of the objec-
tive functional. The most common approach to numerical derivatives, via finite
differences, is impractical for complex problems: Finite difference approximation
would require to perform n + 1 forward simulations in n parameter dimensions.
Using duality arguments however, n nonlinear PDE systems can be replaced by
one linear, dual problem. After all, J is evaluated by one forward simulation
of the nonlinear PDE model and the complete gradient ∇J is obtained by one
(backward) simulation of the linear, dual problem. Apparently, one of the first
references to this kind of duality arguments is [?].

The concept is conveniently explained for a scalar diffusion equation

ut = ∇ · (α∇u) .

As transport coefficients may vary throughout the basin, we allow for a piecewise
constant coefficient

α =

{
α1 x ∈ B1

α2 x ∈ B2

.

Assuming no flow along the boundary and selecting a suitable test function φ,
the equation in variational form reads

A(u, φ) :=

∫ T

0

∫

B

utφ+ α∇u · ∇φdxdt = 0 .

Taking an derivative /.∂αi, i = 1, 2 under the integral sign, we find

A(uαi
, φ) =

∫ T

0

∫

B

uαi,tφ+ α∇uαi
· ∇φdxdt = −

∫ T

0

∫

Bi

∇u · ∇φdxdt . (38.5)
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The corresponding derivative of the output functional J =
∫ T

0

∫
W

(u−d)2dxdt reads

Jαi
= 2

∫ T

0

∫

W

(u− d)uαi
dxdt , i = 1, 2 .

The trick is to define a dual problem

A(φ, ω) = 2

∫ T

0

∫

W

(u− d)φdxdt

such that A(uαi
, ω) = Jαi

and by using the dual solution ω in (38.5)

A(uαi
, ω) = Jαi

= −
∫ T

0

∫

Bi

∇u · ∇ωdxdt , i = 1, 2 .

In effect, the desired gradient ∇J = (Jα1, Jα2) is expressed in terms of primal–
and dual solutions. In this case the dual problem reads

∫ T

0

∫

B

φtω + α∇φ · ∇ωdxdt = 2

∫ T

0

∫

W

(u− d)φdxdt ,

which in strong form appears as a backward in time heat equation with zero
terminal condition

−ωt = ∇ · (α∇ω) + 2(u− d)|W . (38.6)

Note that this dual equation is linear and entirely driven by the data mismatch
in the well. With perfectly matching data d = u|W , the dual solution is zero.

Along the same lines of argumentation one derives the multilinear operator
to the depositional model (38.1)

A(u, v)(φ, ψ) =
∫ T

0

∫

B

(Aut + uht + svt)φ+ αu∇h · ∇φ+ αs∇v · ∇φdxdt

+

∫ T

0

∫

B

(−Aut − uht(1− s)vt)ψ − βu∇h · ∇ψ + β(1− s)∇v · ∇ψdxdt .

The dual system related to the well output functional (38.2) reads

A(φ, ψ)(ω, ν) = 2

∫ T

0

∫

W

(s− s̃)φ+ (h− h̃)ψdxdt .

By construction it follows A(sp, hp)(ω, ν) = Jp(α, β). Given both primal and dual
solutions, the gradient of the well output functional evaluates as

Jαi
(α, β) = −

∫ T

0

∫

Bi

s∇h · ∇ωdxdt ,

Jβi
(α, β) = −

∫ T

0

∫

Bi

(1− s)∇h · ∇νdxdt .

319



Automatic Calibration of Depositional Models

A detailed derivation including non zero flow conditions is given in [?]. For
completeness, not for computation(!), we state the dual system in strong form

−A(ω − ν)t + ht(ω − ν) + α∇h · ∇ω = β∇h · ∇ν +
2

|W |(s− s̃)
∣∣∣∣
W

−(sω + (1− s)ν)t = ∇ · (αs∇ω + β(1− s)∇ν) +
2

|W |(h− h̃)
∣∣∣∣
W

.

Obviously the system is linear and driven by the data mismatch at the well.
It always comes with zero terminal condition and no flow conditions along the
boundary of the basin. Thus, perfectly matching data results in a trivial dual
solution.

38.6 Aspects of the implementation

The FEniCS project DOLFIN [?] automates the solution of PDEs in variational
formulation and is therefore especially attractive for implementing dual prob-
lems, which are derived in variational form. In this section the coding of the dual
diffusion equation (38.6) is illustrated. Testing the equation in space, suppϕ ⊂ B,
the weak form reads

∫

B

−ωtϕ+ α∇ω · ∇ϕdx = 2

∫

W

(u− d)ϕdx .

Trapezoidal rule time integration gives

−
∫

B

(ωn+1 − ωn)ϕdx+
∆t

2

∫

B

α∇(ωn+1 + ωn) · ∇ϕdx

= ∆t

∫

W

(ωn+1 − dn+1 + ωn − dn)ϕdx , n = N,N − 1, . . . , 0 .

(38.7)

To evaluate the right hand side, the area of the well is defined as an subdomain:

class WellDomain(SubDomain):
def inside(self, x, on_boundary):

return bool((0.2 <= x[0] and x[0] <= 0.3 and \
0.2 <= x[1] and x[1] <= 0.3))

Next, it gets marked:

well = WellDomain()
subdomains = MeshFunction("uint",mesh, mesh.topology() .dim())
well.mark(subdomains, 1)

An integral over the well area is defined:
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dxWell = Integral("cell", 1)

The driving source in (38.7) is written as:

f = dt * (u1-d1+u0-d0) * phi * dxWell
b = assemble(f, mesh, cell_domains=subdomains)

The first line in (38.7) is stated in variational formulation:

F = (u_trial-u) * phi * dx \
+ 0.5 * dt * ( d * dot( grad(u_trial+u), grad(phi) ) ) * dx

Let DOLFIN sort out left– and right hand sides:

a = lhs(F); l = rhs(F)

Assemble the linear system in matrix–vector form:

A = assemble(a, mesh); b += assemble(l, mesh)

And solve it:

solve(A, u.vector(), b)

The direct solver may be replaced by GMRES with algebraic multigrid:

solve(A, u.vector(), b, gmres, amg)

38.7 Numerical experiments

With these preparations, we are now ready to inspect the well output functional
(38.2) for possible calibration of the dual lithology model (38.1) to “observed”,
actually generated synthetic, data. We consider the PDE system (38.1) with
discontinuous coefficients

α =

{
α1 x ≥ 1/2

α2 x < 1/2
, β =

{
β1 x ≥ 1/2

β2 x < 1/2

in the unit square B = [0, 1]2. Four wells W = W1 ∪W2 ∪W3 ∪W4 are placed one
in each quarter

W4 = [0.3, 0.3]× [0.7, 0.8] , W3 = [0.7, 0.8]× [0.7, 0.8] ,

W1 = [0.2, 0.3]× [0.2, 0.3] , W2 = [0.7, 0.8]× [0.2, 0.3] .

Initially s is constant s(0, ·) = 0.5 and h is piecewise linear

h(0, x, y) = 0.5 max(max(0.2, (x− 0.1)/2), y − 0.55) .
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Figure 38.1: Evolution of h, initial left, t = 0.04 right.

The diffusive character of the process is evident from the evolution of h as shown
in Figure 38.1. No flow boundary conditions are implemented in all simulations
throughout this section.

To inspect the output functional, we generate synthetic data by computing a
reference solution. In the first experiment, the reference parameters are (α1, α2) =
(β1, β2) = (0.8, 0.8). We fix β to the reference values and scan the well output over
the α–range [0.0, 1.5]2. The upper left plot in Figure 38.2 depicts contours of the
apparently convex functional, with the reference parameters as the global min-
imum. Independent Landweber iterations, started in each corner of the domain
identify the optimal parameters in typically five steps. The iteration is stopped
if ‖∇J(pk)‖ ≤ 10−7, an indication that the minimum is reached. The lower left
plot shows the corresponding scan over β where α = (0.8, 0.8) is fixed. Obviously
the search directions follow the steepest decent, confirming that the gradients
are correctly evaluated via the dual solution. In the right column of Figure 38.2
we see results for the same experiments, but with 5% random noise added to the
synthetic well data. In this case the optimal parameters are of course not the ref-
erence parameters, but still close. The global picture appears stable with respect
to noise, suggesting that the concept allows to calibrate diffusive, depositional
models to data observed in wells.

Ultimately, the goal is to calibrate all four parameters α = (α1, α2) and β =
(β1, β2) to available data. Figure 38.3 depicts Landweber iterations in four di-
mensional parameter space. Actually projections onto the α and β coordinate
plane are shown. Each subplot depicts one iteration. The initial guess varies
from line to line. Obviously, all iterations converge and, without noise added,
the reference parameters, α = β = (0.8, 0.8), are detected as optimal parame-
ters. Adding 5% random noise to the recorded data, we simulate data observed
in wells. In this situation, see the right column, the algorithm identifies optimal
parameters, which are clearly off the reference. Fig. 38.5 depicts fifty realiza-
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tions of this experiments. The distribution of the optimal parameters is shown
together with their average in red. The left column in Fig. 38.5 corresponds to
the reference parameters (α1, α2) = (β1, β2) = (0.8, 0.8) as in Fig. 38.3. The ini-
tial guesses vary from row to row and are the same as in Fig. 38.3. On average
the calibrated, optimal parameters are close to the reference. Typical standard
deviations vary from 0.07 to 0.17, depending on the coefficient.

In the next experiments non uniform reference parameters are set for α =
(0.6, 1.0) and β = (1.0, 0.6). Figure 38.4 shows iterations with the noise–free ref-
erence solution used as data on the left hand side. Within the precision of the
stopping criterion, the reference parameters are detected. Adding 5% noise to
the well data leads to different optimal parameters, just as expected. On av-
erage however, the optimal parameters obtained in repeated calibrations match
the reference parameters quite well, see Figure 38.5, right hand side.

In the next experiments, β is discontinuous along y = 1/2 and piecewise con-
stant in the lower and upper half of the basin

α =

{
α1 x ≥ 1/2

α2 x < 1/2
, β =

{
β1 y ≥ 1/2

β2 y < 1/2
.

In this way the evolution is governed by different diffusion parameters in each
quarter of the basin. Having placed one well i each quarter, one can effectively
calibrate the model to synthetic data with and without random noise, as shown
in Figures 38.6 and 38.7.

38.8 Results and conclusion

The calibration of piecewise constant diffusion coefficients using local data in
a small number of wells is a well behaved inverse problem. The convexity of
the output functional, which is the basis for a successful minimization, remains
stable with random noise added to the well data.

We have automated the calibration of diffusive transport coefficients in two
ways: First, the Landweber algorithm, with duality based gradients, automat-
ically detects optimal parameters. Second, the FEniCS project DOLFIN, auto-
matically implements the methods. As the dual problems are derived in varia-
tional form, DOLFIN is the appropriate tool for efficient implementation.
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(green), reference parameters (red). Clean data left column, noisy data right.
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Figure 38.3: Landweber iterations. Clean (left) and noisy data (right).
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Figure 38.6: Landweber iterations. Clean (left) and noisy data (right).
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Figure 38.7: Landweber iterations. Clean (left) and noisy data (right).
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Computational Thermodynamics
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correct format.

We test the functionality of FEniCS on the challenge of computational ther-
modynamics in the form of a finite element solver of the Euler equations express-
ing conservation of mass, momentum and energy. We show that computational
solutions satisfy a 2nd Law formulated in terms of kinetic energy, internal (heat)
energy, work and shock/turbulent dissipation, without reference to entropy. We
show that the 2nd Law expresses an irreversible transfer of kinetic energy to
heat energy in shock/turbulent dissipation arising because the Euler equations
lack pointwise solutions, and thus explains the occurence of irreversibility in
formally reversible systems as an effect of instability with blow-up of Euler
residuals combined with finite precision computation, without resort to statis-
tical mechanics or ad hoc viscous regularization. We simulate the classical Joule
experiment of a gas expanding from rest under temperature drop followed by
temperature recovery by turbulent dissipation until rest in the double volume.

39.1 FEniCS as Computational Science

The goal of the FEniCS project is to develop software for automated computa-
tional solution of differential equations based on a finite element methodology
combining generality with efficiency. The FEniCS Application Unicorn offers a
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solver for a fluid-solids continuum based on a unified Eulerian formulation of mo-
mentum balance combined with constitutive laws for fluid/solid in Eulerian/up-
dated Lagrangian form, which shows the capability of FEniCS for automation of
computational fluid-structure interaction.

Thermodynamics is a basic area of continuum mechanics with many impor-
tant applications, which however is feared by both teachers, students and en-
gineers as being difficult to understand and to apply, principally because of the
apperance of turbulence. In this article we show that turbulent thermodynamics
can be made understandable and useful by automated computational solution,
as another example of the capability of FEniCS.

The biggest mystery of classical thermodynamics is the 2nd Law about en-
tropy and automation cannot harbor any mystery. Expert systems are required
for mysteries and FEniCS is not an expert system. Automation requires a contin-
uummechanics formulation of thermodynamics with a transparent 2nd Law. We
present a formulation of thermodynamics based on finite precision computation
with a 2nd Law without reference to entropy, which we show can serve as a basis
for automated computational simulation of complex turbulent thermodynamics
and thus can open to new insight and design, a main goal of FEniCS. In this
setting the digital finite element model becomes the real model of the physics of
thermodynamics viewed as a form of analog finite precision computation, a model
which is open to inspection and analysis because solutions can be computed and
put on the table. This represents a new kind of science in the spirit of Dijkstra
[?] and Wolfram [?], which can be explored using FEniCS and which we present
in non-technical form in My Book of Knols [?].

39.2 The 1st and 2nd Laws of Thermodynamics

Heat, a quantity which functions to animate, derives from an internal fire
located in the left ventricle. (Hippocrates, 460 B.C.)

Thermodynamics is fundamental in a wide range of phenomena from macro-
scopic to microscopic scales. Thermodynamics essentially concerns the interplay
between heat energy and kinetic energy in a gas or fluid. Kinetic energy, or me-

chanical energy, may generate heat energy by compression or turbulent dissipa-
tion. Heat energy may generate kinetic energy by expansion, but not through
a reverse process of turbulent dissipation. The industrial society of the 19th
century was built on the use of steam engines, and the initial motivation to un-
derstand thermodynamics came from a need to increase the efficiency of steam
engines for conversion of heat energy to useful mechanical energy. Thermody-
namics is closely connected to the dynamics of slightly viscous and compressible

gases, since substantial compression and expansion can occur in a gas, but less
in fluids (and solids).
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The development of classical thermodynamics as a rational science based on
logical deduction from a set of axioms, was initiated in the 19th century by
Carnot [?], Clausius [?] and Lord Kelvin [?], who formulated the basic axioms
in the form of the 1st Law and the 2nd Law of thermodynamics. The 1st Law
states (for an isolated system) that the total energy, the sum of kinetic and heat
energy, is conserved. The 1st Law is naturally generalized to include also conser-
vation of mass and Newton’s law of conservation of momentum and then can be
expressed as the Euler equations for a gas/fluid with vanishing viscosity.

The 2nd Law has the form of an inequality dS ≥ 0 for a quantity named
entropy denoted by S, with dS denoting change thereof, supposedly expressing
a basic feature of real thermodynamic processes. The classical 2nd Law states
that the entropy cannot decrease; it may stay constant or it may increase, but it
can never decrease (for an isolated system).

The role of the 2nd Law is to give a scientific basis to the many observations
of irreversible processes, that is, processes which cannot be reversed in time, like
running a movie backwards. Time reversal of a process with strictly increasing
entropy, would correspond to a process with strictly decreasing entropy, which
would violate the 2nd Law and therefore could not occur. A perpetum mobile
would represent a reversible process and so the role of the 2nd Law is in particu-
lar to explain why it is imposssible to construct a perpetummobile, and why time
is moving forward in the direction an arrow of time, as expressed by Max Planck
[?, ?, ?]: Were it not for the existence of irreversible processes, the entire edifice of

the 2nd Law would crumble.
While the 1st Law in the form of the Euler equations expressing conservation

of mass, momentum and total energy can be understood and motivated on ratio-
nal grounds, the nature of the 2nd Law is mysterious. It does not seem to be a
consequence of the 1st Law, since the Euler equations seem to be time reversible,
and the role of the 2nd Law is to explain irreversibility. Thus questions are lining
up: nIf the 2nd Law is a new independent law of Nature, how can it be justified?
What is the physical significance of that quantity named entropy, which Nature
can only get more of and never can get rid of, like a steadily accumulating heap
of waste? What mechanism prevents Nature from recycling entropy? How can
irreversiblity arise in a reversible system? How can viscous dissipation arise in
a system with vanishing viscosity? Why is there noMaxwell demon [?]? Why can
a gas by itself expand into a larger volume, but not by itself contract back again,
if the motion of the gas molecules is governed by the reversible Newton’s laws of
motion? Why is there an arrow of time? This article presents answers.

39.3 The Enigma

Those who have talked of “chance” are the inheritors of antique superstition
and ignorance...whose minds have never been illuminated by a ray of scien-
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tific thought. (T. H. Huxley)

These were the questions which confronted scientists in the late 19th century,
after the introduction of the concept of entropy by Clausius in 1865, and these
showed to be tough questions to answer. After much struggle, agony and debate,
the agreement of the physics community has become to view statistical mechan-

ics based on an assumption of molecular chaos as developed by Boltzmann [?],
to offer a rationalization of the classical 2nd Law in the form of a tendency of
(isolated) physical processes to move from improbable towards more probable
states, or from ordered to less ordered states. Boltzmann’s assumption of molec-
ular chaos in a dilute gas of colliding molecules, is that two molecules about to
collide have independent velocities, which led to the H-theorem for Boltzmann’s

equations stating that a certain quantity denoted by H could not decrease and
thus could serve as an entropy defining an arrow of time. Increasing disorder
would thus represent increasing entropy, and the classical 2nd Law would re-
flect the eternal pessimistists idea that things always get more messy, and that
there is really no limit to this, except when everything is as messy as it can ever
get. Of course, experience could give (some) support this idea, but the trouble
is that it prevents things from ever becoming less messy or more structured,
and thus may seem a bit too pessimistic. No doubt, it would seem to contradict
the many observations of emergence of ordered non-organic structures (like crys-
tals or waves and cyclons) and organic structures (like DNA and human beings),
seemingly out of disordered chaos, as evidenced by the physics Nobel Laureate
Robert Laughlin [?].

Most trained thermodynamicists would here say that emergence of order out
of chaos, in fact does not contradict the classical 2nd Law, because it concerns
“non-isolated systems”. But they would probably insist that the Universe as a
whole (isolated system) would steadily evolve towards a “heat-death” with maxi-
mal entropy/disorder (and no life), thus fulfilling the pessimists expectation. The
question from where the initial order came from, would however be left open.

The standard presentation of thermodynamics based on the 1st and 2nd Laws,
thus involves a mixture of deterministic models (Boltzmann’s equations with the
H-theorem) based on statistical assumptions (molecular chaos) making the sub-
ject admittedly difficult to both learn, teach and apply, despite its strong impor-
tance. This is primarily because the question why necessarily dS ≥ 0 and never
dS < 0, is not given a convincing understandable answer. In fact, statistical
mechanics allows dS < 0, although it is claimed to be very unlikely. The basic
objective of statistical mechanics as the basis of classical thermodynamics, thus
is to (i) give the entropy a physical meaning, and (ii) to motivate its tendency
to (usually) increase. Before statistical mechanics, the 2nd Law was viewed as
an experimental fact, which could not be rationalized theoretically. The classical
view on the 2nd Law is thus either as a statistical law of large numbers or as
a an experimental fact, both without a rational deterministic mechanistic theo-
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retical foundation. The problem with thermodynamics in this form is that it is
understood by very few, if any:

• Every mathematician knows it is impossible to understand an elementary course in

thermodynamics. (V. Arnold)

• ...no one knows what entropy is, so if you in a debate use this concept, you will

always have an advantage. (von Neumann to Shannon)

• As anyone who has taken a course in thermodynamics is well aware, the mathe-

matics used in proving Clausius’ theorem (the 2nd Law) is of a very special kind,

having only the most tenous relation to that known to mathematicians. (S. Brush
[?])

• Where does irreversibility come from? It does not come form Newton’s laws. Obvi-

ously there must be some law, some obscure but fundamental equation. perhaps in

electricty, maybe in neutrino physics, in which it does matter which way time goes.

(Feynman [?])

• For three hundred years science has been dominated by a Newtonian paradigm

presenting theWorld either as a sterile mechanical clock or in a state of degeneration

and increasing disorder...It has always seemed paradoxical that a theory based on

Newtonian mechanics can lead to chaos just because the number of particles is

large, and it is subjectivly decided that their precise motion cannot be observed by

humans... In the Newtonian world of necessity, there is no arrow of time. Boltzmann

found an arrow hidden in Nature’s molecular game of roulette. (Paul Davies [?])

• The goal of deriving the law of entropy increase from statistical mechanics has so

far eluded the deepest thinkers. (Lieb [?])

• There are great physicists who have not understood it. (Einstein about Boltzmann’s
statistical mechanics)

39.4 Computational Foundation

In this note we present a foundation of thermodynmaics, further elaborated in
[?, ?], where the basic assumption of statistical mechanics of molecular chaos, is
replaced by deterministic finite precision computation, more precisely by a least

squares stabilized finite element method for the Euler equations, referred to as
Euler General Galerkin or EG2. In the spirit of Dijkstra [?], we thus view EG2 as
the physical model of thermodynamics, that is the Euler equations together with
a computational solution procedure, and not just the Euler equations without
constructive solution procedure as in a classical non-computational approach.

Using EG2 as a model of thermodynamics changes the questions and answers
and opens new possibilities of progress together with new challenges to mathe-
matical analysis and computation. The basic new feature is that EG2 solutions
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are computed and thus are available to inspection. This means that the anal-
ysis of solutions shifts from a priori to a posteriori; after the solution has been
computed it can be inspected.

Inspecting computed EG2 solutions we find that they are turbulent and have
shocks, which is identified by pointwise large Euler residuals, reflecting that
pointwise solutions to the Euler equations are lacking. The enigma of thermo-
dynamics is thus the enigma of turbulence (since the basic nature of shocks is
understood). Computational thermodynamics thus essentially concerns compu-
tational turbulence. In this note and [?] we present evidence that EG2 opens to
a resolution of the enigma of turbulence and thus of thermodynamics.

The fundamental question concerns wellposedness in the sense of Hadamard,
that is what aspects or outputs of turbulent/shock solutions are stable under
perturbations in the sense that small perturbations have small effects. We show
that wellposedness of EG2 solutions can be tested a posteriori by computationally
solving a dual linearized problem, through which the output sensitivity of non-
zero Euler residuals can be estimated. We find that mean-value outputs such as
drag and lift and total turbulent dissipation are wellposed, while point-values of
turbulent flow are not. We can thus a posteriori in a case by case manner, assess
the quality of EG2 solutions as solutions of the Euler equations.

We formulate a 2nd Law for EG2 without the concept of entropy, in terms of
the basic physical quantities of kinetic energy K, heat energy E, rate of work W
and shock/turbulent dissipation D > 0. The new 2nd Law reads

K̇ = W −D, Ė = −W +D, (39.1)

where the dot indicates time differentiation. Slightly viscous flow always de-
velops turbulence/shocks with D > 0, and the 2nd Law thus expresses an irre-
versible transfer of kinetic energy into heat energy, while the total energy E +K
remains constant.

With the 2nd Law in the form (39.1), we avoid the (difficult) main task of
statistical mechanics of specifying the physical significance of entropy and moti-
vating its tendency to increase by probabilistic considerations based on (tricky)
combinatorics. Thus using Ockham’s razor [?], we rationalize a scientific theory
of major importance making it both more understandable and more useful. The
new 2nd Law is closer to classical Newtonian mechanics than the 2nd Law of
statistical mechanics, and thus can be viewed to be more fundamental.

The new 2nd Law is a consequence of the 1st Law in the form of the Euler
equations combined with EG2 finite precision computation effectively introduc-
ing viscosity and viscous dissipation. These effects appear as a consequence of
the non-existence of pointwise solutions to the Euler equations reflecting insta-
blities leading to the development shocks and turbulence in which large scale
kinetic energy is transferred to small scale kinetic energy in the form of heat en-
ergy. The viscous dissipation can be interpreted as a penalty on pointwise large
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Euler residuals arising in shocks/turbulence, with the penalty being directly cou-
pled to the violation following a principle of criminal law exposed in [?]. EG2 thus
explains the 2nd Law as a consequence of the non-existence of pointwise solu-
tions with small Euler residuals. This offers an understanding to the emergence
of irreversible solutions of the formally reversible Euler equations. If pointwise
solutions had existed, they would have been reversible without dissipation, but
they don’t exist, and the existing computational solutions have dissipation and
thus are irreversible.

39.5 Viscosity Solutions

An EG2 solution can be viewed as particular viscosity solution of the Euler equa-
tions, which is a solution of regularized Euler equations augmented by additive
terms modeling viscosity effects with small viscosity coefficients. The effective
viscosity in an EG2 solution typically may be comparable to the mesh size.

For incompressible flow the existence of viscosity solutions, with suitable so-
lution dependent viscosity coefficients, can be proved a priori using standard
techniques of analytical mathematics. Viscosity solutions are pointwise solu-
tions of the regularized equations. But already the most basic problem with
constant viscosity, the incompressible Navier-Stokes equations for a Newtonian
fluid, presents technical difficulties, and is one of the open Clay Millennium Prob-
lems.

For compressible flow the technical complications are even more severe, and it
is not clear which viscosities would be required for an analytical proof of the exis-
tence of viscosity solutions [?] to the Euler equations. Furthermore, the question
of wellposedness is typically left out, as in the formulation of the Navier-Stokes
Millennium Problem, with the motivation that first the existence problem has to
be settled. Altogether, analytical mathematics seems to have little to offer a pri-
ori concerning the existence and wellposedness of solutions of the compressible
Euler equations. In contrast, EG2 computational solutions of the Euler equa-
tions seem to offer a wealth of information a posteriori, in particular concerning
wellposedness by duality.

An EG2 solution thus can be viewed as a specific viscosity solution with a
specific regularization from the least squares stabilization, in particular of the
momentum equation, which is necessary because pointwise momentum balance
is impossible to achieve in the presence of shocks/turbulence. The EG2 viscosity
can be viewed to be the minimal viscosity required to handle the contradiction
behind the non-existence of pointwise solutions. For a shock EG2 could then be
directly interpreted as a certain physical mechanism preventing a shock wave
from turning over, and for turbulence as a form of automatic computational tur-
bulence model.

EG2 thermodynamics can be viewed as form of deterministic chaos, where
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the mechanism is open to inspection and can be used for prediction. On the
other hand, the mechanism of statistical mechanics is not open to inspection and
can only be based on ad hoc assumption, as noted by e.g. Einstein [?]. If Boltz-
mann’s assumption of molecular chaos cannot be justified, and is not needed,
why consider it at all, [?]?

Figure 39.1: Joule’s 1845 experiment

◮ Editor note: Missing figure.

39.6 Joule’s 1845 Experiment

To illustrate basic aspects of thermodynamics, we recall Joule’s experiment from
1845 with a gas initially at rest with temperature T = 1 at a certain pressure in a
certain volume immersed into a container of water, see Fig. 39.1. At initial time
a valve was opened and the gas was allowed to expand into the double volume
while the temperature change in the water was carefully measured by Joule. To
the great surprise of both Joule and the scientific community, no change of the
temperature of the water could be detected, in contradiction with the expecta-
tion that the gas would cool off under expansion. Moreover, the expansion was
impossible to reverse; the gas had no inclination to contract back to the original
volume. Simulating Joule’s experiment using EG2, we discover the following as
displayed in Fig. 39.2-39.7

Figure 39.2: Density at two time instants

Figure 39.3: Temperature at two time instants

In a first phase the temperature drops below 1 as the gas expands with in-
creasing velocity, and in a second phase shocks/turbulence appear and heat the
gas towards a final state with the gas at rest in the double volume and the tem-
perature back to T = 1. The total (heat) energy is, of course, conserved since the
density is reduced by a factor 2 after expansion to double volume. We can also
understand that the rapidity of the expansion process makes it difficult to detect
any temperature drop in the water in the inital phase. Altogether, using EG2
we can first simulate and then understand Joule’s experiment, and we thus see
no reason to be surprised. We shall see below as a consequence of the 2nd Law
that reversal of the process with the gas contracting back to the original small
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Figure 39.4: Average density in left and right chamber

Figure 39.5: Average temperature in left and right chamber

volume, is impossible because the only way the gas can be put into motion is by
expansion, and thus contraction is impossible.

In statistical mechanics the dynamics of the process would be dismissed and
only the initial and final state would be subject to analysis. The final state would
then be viewed as being “less ordered” or “more probable” or having “higher en-
tropy”, because the gas would occupy a larger volume, and the reverse process
with the gas contracting back to the initial small volume, if not completely im-
possible, would be “improbable”. But to say that a probable state is is more
probable than an improbable state is more mystifying than informative. Taking
the true dynamics of the process into account including in particular the second
phase with heat generation from shocks or turbulence, we can understand the
observation of constant temperature and irreversibility in a deterministic fash-
ion without using any mystics of entropy based on mystics of statistics. In [?] we
develop a variety of aspects of the arrow of time enforced by the new 2nd Law.

39.7 The Euler Equations

We consider the Euler equations for an inviscid perfect gas enclosed in a volume
Ω in R

3 with boundary Γ over a time interval I = (0, 1] expressing conservation
of mass density ρ, momentum m = (m1, m2, m3) and internal energy e: Find û =
(ρ,m, e) depending on (x, t) ∈ Q ≡ Ω× I such that

Rρ(û) ≡ ρ̇+∇ · (ρu) = 0 in Q,
Rm(û) ≡ ṁ+∇ · (mu+ p) = f in Q,

Re(û) ≡ ė+∇ · (eu) + p∇ · u = g in Q,
u · n = 0 on Γ× I

û(·, 0) = û0 in Ω,

(39.2)

where u = m
ρ

is the velocity, p = (γ − 1)e with γ > 1 a gas constant, f is a

given volume force, g a heat source/sink and û0 a given initial state. We here
express energy conservation in terms of the internal energy e = ρT , with T the
temperature, and not as conservation of the total energy ǫ = e + k with k = ρv2

2

the kinetic energy, in the form ǫ̇ + ∇ · (ǫu) = 0. Because of the appearance of

Figure 39.6: Average kinetic energy and temperature: short time
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Figure 39.7: Average kinetic energy in both, left and right chamber(s): long time

shocks/turbulence, the Euler equations lack pointwise solutions, except possible
for short time, and regularization is therefore necessary. For a mono-atomic gas
γ = 5/3 and (39.2) then is a parameter-free model, the ideal form of mathematical
model according to Einstein...

39.8 Energy Estimates for Viscosity Solutions

For the discussion we consider the following regularized version of (39.2) assum-
ing for simplicity that f = 0 and g = 0: Find ûν,µ ≡ û = (ρ,m, e) such that

Rρ(û) = 0 in Q,
Rm(û) = −∇ · (ν∇u) +∇(µp∇ · u) in Q,
Re(û) = ν|∇u|2 in Q,

u = 0 on Γ× I,
û(·, 0) = û0 in Ω,

(39.3)

where ν > 0 is a shear viscocity µ >> ν ≥ 0 if ∇ · u > 0 in expansion (with µ = 0
if ∇ · u ≤ 0 in compression), is a small bulk viscosity, and we use the notation
|∇u|2 =

∑
i |∇ui|2. We shall see that the bulk viscosity is a safety feature putting

a limit to the work p∇ · u in expansion appearing in the energy balance.
We note that only the momentum equation is subject to viscous regulariztion.

Further, we note that the shear viscosity term in the momentum equation mul-
tiplied by the velocity u (and formally integrated by parts) appears as a positive
right hand side in the equation for the internal energy, reflecting that the dissi-
pation from shear viscosity is transformed into internal heat energy. In contrast,
the dissipation from the bulk viscosity represents another form of internal en-
ergy not accounted for as heat energy, acting only as a safety feature in the sense
that its contribution to the energy balance in general will be small, while that
from the shear viscosity in general will be substantial reflecting shock/turbulent
dissipation.

Below wewill consider instead regularization by EG2with the advantage that
the EG2 solution is computed and thus is available to inspection, while ûν,µ is not.
We shall see that EG2 regularization can be interpreted as a (mesh-dependent)
combination of bulk and shear viscosity and thus (39.3) can be viewed as an
analytical model of EG2 open to simple form of analysis in the form of energy
estimates.

As indicated, the existence of a pointwise solution û = ûν,µ to the regularized
equations (39.3) is an open problem of analytical mathematics, although with
suitable additional regularization it could be possible to settle [?]. Fortunately,
we can leave this problem aside, since EG2 solutions will be shown to exist a
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posteriori by computation. We thus formally assume that (39.3) admits a point-
wise solution, and derive basic energy estimates which will be paralleled below
for EG2. We thus use the regularized problem (39.3) to illustrate basic features
of EG2, including the 2nd Law.

We shall prove now that a regularized solution û is an approximate solution
of the Euler equations in the sense that Rρ(û) = 0 and Re(û) ≥ 0 pointwise, Rm(û)
is weakly small in the sense that

‖Rm(û)‖−1 ≤
√
ν√
µ

+
√
µ << 1, (39.4)

where ‖ · ‖−1 denotes the L2(I;H
−1(Ω))-norm, and the following 2nd Law holds:

K̇ ≤ W −D, Ė = −W +D, (39.5)

where

K =

∫

Ω

k dx, E =

∫

Ω

e dx, W =

∫

Ω

p∇ · u dx, D =

∫

Ω

ν|∇u|2 dx.

Choosing ν << µ we can assure that ‖Rm(ûν,µ)‖−1 is small. We can view the 2nd
Law as a compensation for the fact that the momentum equation is only satisfied
in a weak sense, and the equation for internal energy with inequality.

The 2nd Law (39.5) states an irreversible transfer of kinetic energy to heat
energy in the presence of shocks/turbulence with D > 0, which is the generic
case. On the other hand, the sign of W is variable and thus the corresponding
energy transfer may go in either direction.

The basic technical step is to multiply the momentum equation by u, and use

the mass balance equation in the form |u|2

2
(ρ̇+∇ · (ρu)) = 0, to get

k̇ +∇ · (ku) + p∇ · u−∇(µp∇ · u) · u−∇ · (ν∇u) · u = 0. (39.6)

By integration in space it follows that K̇ ≤ W − D, and similarly it follows that
Ė = −W + D from the equation for e, which proves the 2nd Law. Adding next
(39.6) to the equation for the internal energy e and integrating in space, gives

K̇ + Ė +

∫

Ω

µp(∇ · u)2 dx = 0,

and thus after integration in time

K(1) + E(1) +

∫

Q

µp(∇ · u)2 dxdt = K(0) + E(0). (39.7)

We now need to show that E(1) ≥ 0 (or more generally that E(t) > 0 for t ∈ I),
and to this end we rewrite the equation for the internal energy as follows:

Due+ γe∇ · u = ν|∇u|2,
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where Due = ė+ u · ∇e is the material derivative of e following the fluid particles
with velocity u. Assuming that e(x, 0) > 0 for x ∈ Ω, it follows that e(x, 1) > 0 for
x ∈ Ω, and thus E(1) > 0. Assuming K(0) + E(0) = 1 the energy estimate (39.7)
thus shows that ∫

Q

µp(∇ · u)2 dxdt ≤ 1, (39.8)

and also that E(t) ≤ 1 for t ∈ I. Next, integrating (39.6) in space and time gives,
assuming for simplicity that K(0) = 0,

K(1) +

∫

Q

ν(∆u)2dxdt =

∫

Q

p∇ · udxdt−
∫

Q

µp(∇ · u)2dxdt ≤ 1

µ

∫

Q

pdxdt ≤ 1

µ
,

where we used that
∫

Q
pdxdt = (γ − 1)

∫
Q
edxdt ≤

∫
I
E(t)dt ≤ 1. It follows that

∫

Q

ν|∇u|2dxdt ≤ 1

µ
. (39.9)

By standard estimation (assuming that p is bounded), it follows from (39.8) and
(39.9) that

‖Rm(û)‖−1 ≤ C(
√
µ+

√
ν√
µ

),

with C a constant of moderate size, which completes the proof. As indicated,
‖Rm(û)‖−1 is estimated by computation, as shown below. The role of the analysis
is thus to rationalize computational experience, not to replace it.

39.9 Compression and Expansion

The 2nd Law (39.5) states that there is a transfer of kinetic energy to heat energy
if W < 0, that is under compression with ∇ · u < 0, and a transfer from heat to
kinetic energy if W > 0, that is under expansion with ∇ · u > 0. Returning to
Joule’s experiment, we see by the 2nd Law that contraction back to the original
volume from the final rest state in the double volume, is impossible, because the
only way the gas can be set into motion is by expansion. To see this no reference
to entropy is needed.

39.10 A 2nd Law witout Entropy

We note that the 2nd Law (39.5) is expressed in terms of the physical quanti-
ties of kinetic energy K, heat energy E, work W , and dissipation D and does
not involve any concept of entropy. This relieves us from the task of finding a
physical significance of entropy and justification of a classical 2nd Law stating
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that entropy cannot decrease. We thus circumvent the main difficulty of clas-
sical thermodynamics based on statistical mechanics, while we reach the same
goal as statistical mechanics of explaining irreversibility in formally reversible
Newtonian mechanics.

We thus resolve Loschmidt’s paradox [?] asking how irreversibility can oc-
cur in a formally reversible system, which Boltzmann attempted to solve. But
Loschmidt pointed out that Boltzmann’s equations are not formally reversible,
because of the assumption of molecular chaos that velocities are independent
before collision, and thus Boltzmann effectively assumes what is to be proved.
Boltzmann and Loschmidt’s met in heated debates without conclusion, but after
Boltzmann’s tragic death followed by the experimental verification of the molec-
ular nature of gases, Loschmidt’s paradox evaporated as if it had been resolved,
while it had not. Postulating molecular chaos still amounts to assume what is to
be proved.

39.11 Comparison with Classical Thermodynamics

Classical thermodynamics is based on the relation

Tds = dT + pdv, (39.10)

where ds represents change of entropy s per unit mass, dv change of volume and
dT denotes the change of temperature T per unit mass, combined with a 2nd Law
in the form ds ≥ 0. On the other hand, the new 2nd Law takes the symbolic form

dT + pdv ≥ 0, (39.11)

effectively expressing that Tds ≥ 0, which is the same as ds ≥ 0 since T > 0.
In symbolic form the new 2nd Law thus expresses the same as the classical 2nd
Law, without referring to entropy.

Integrating the classical 2nd Law (39.10) for a perfect gas with p = (γ − 1)ρT
and dv = d(1

ρ
) = −dρ

ρ2 , we get

ds =
dT

T
+
p

T
d(

1

ρ
) =

dT

T
+ (1− γ)dρ

ρ
,

and we conclude that with e = ρT ,

s = log(Tρ1−γ) = log(
e

ργ
) = log(e)− γ log(ρ) (39.12)

up to a constant. Thus, the entropy s = s(ρ, e) for a perfect gas is a function of
the physical quantities ρ and e = ρT , thus a state function, suggesting that s
might have a physical significance, because ρ and e have. We thus may decide
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to introduce a quantity s defined this way, but the basic questions remains: (i)
What is the physical significance of s? (ii) Why is ds ≥ 0? What is the entropy
non-perfect gas in which case s may not be a state function?

To further exhibit the connection between the classical and new forms of the
2nd Law, we observe that by the chain rule,

ρDus =
ρ

e
Due− γDuρ =

1

T
(Due+ γρT∇ · u) =

1

T
(Due+ e∇ · u+ (γ − 1)ρT∇ · u)

since by mass conservation Duρ = −ρ∇ · u. It follows that the entropy S = ρs
satisfies

Ṡ +∇ · (Su) = ρDus =
1

T
(ė+∇ · (eu) + p∇ · u) =

1

T
Re(û). (39.13)

A solution û of the regularized Euler equations (39.3) thus satisfies

Ṡ +∇ · (Su) =
ν

T
|∇u|2 ≥ 0 in Q, (39.14)

where S = ρ log(eρ−γ). In particular, in the case of the Joule experiment with T
the same in the initial and final states, we have s = γ log(V ) showing an increase
of entropy in the final state with larger volume.

We sum up by noting that the classical and new form of the second law ef-
fectively express the same inequality ds ≥ 0 or Tds ≥ 0. The new 2nd law is
expressed in terms of the fundamental concepts of of kinetic energy, heat energy
and work without resort to any form of entropy and statistical mechanics with
all its complications. Of course, the new 2nd Law readily extends to the case of a
general gas.

39.12 EG2

EG2 in cG(1)cG(1)-form for the Euler equations (39.2), reads: Find û = (ρ,m, ǫ) ∈
Vh such that for all (ρ̄, ū, ǭ) ∈Wh

((Rρ(û), ρ̄)) + ((hu · ∇ρ, u · ∇ρ̄)) = 0,

((Rm(û), ū)) + ((hu · ∇m, u · ∇ū)) + (νsc∇u,∇ū)) = 0,

((Rǫ(û), ē)) + ((hu · ∇ǫ, u · ∇ǭ)) = 0,

(39.15)

where Vh is a trial space of continuous piecewise linear functions on a space-time
mesh of size h satisfying the initial condition û(0) = û0 with u ∈ Vh defined by
nodal interpolation of m

ρ
, and Wh is a corresponding test space of function which

are continuous piecewise linear in space and piecewise constant in time, all func-
tions satisfying the boundary condition u ·n = 0 at the nodes on Γ. Further, ((·, ·))
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denotes relevant L2(Q) scalar products, and νsc = h2|Rm(û)| is a residual depen-
dent shock-capturing viscosity, see [?]. We here use the conservation equation for
the total energy ǫ rather than for the internal energy e.

EG2 combines a weak satisfaction of the Euler equations with a weighted
least squares control of the residual R(û) ≡ (Rρ(û), Rm(û), Re(û)) and thus rep-
resents a midway between the Scylla of weak solution and Carybdis of least
squares strong solution.

39.13 The 2nd Law for EG2

Subtracting the mass equation with ρ̄ a nodal interpolant of |u|2

2
from the mo-

mentum equation with ū = u and using the heat energy equation with ē = 1,
we obtain the following 2nd Law for EG2 (up to a

√
h-correction controled by the

shockcapturing viscosity [?]):

K̇ = W −Dh, Ė = −W +Dh, (39.16)

where
Dh = ((hρu · ∇u, u · ∇u)). (39.17)

For solutions with turbulence/shocks, Dh > 0 expressing an irreversible transfer
of kinetic energy into heat energy, just as above for regularized solutions. We
note that in EG2 only the momentum equation is subject to viscous regulariza-
tion, sinceDh expresses a penalty on u ·∇u appearing in the momentum residual.

39.14 The Stabilization in EG2

The stabilization in EG2 is expressed by the dissipative term Dh which can be
viewed as a weighted least squares control of the term ρu · ∇u in the momentum
residual. The rationale is that least squares control of a part of a residual which
is large, effectively may give control of the entire residual, and thus EG2 gives
a least squares control of the momentum residual. But the EG2 stabilization
does not correspond to an ad hoc viscosity, as in classical regularization, but to
a form of penalty arsing because Euler residuals of turbulent/shock solutions
are not pointwise small. In particular the dissipative mecahnism of EG2 does
not correspond to a simple shear viscosity, but rather to a form of “streamline
viscosity” preventing fluid particles from colliding while allowing strong shear.

39.15 Output Uniqueness and Stability

Defining a mean-value output in the form of a space-time integral ((û, ψ)) defined
by a smooth weight function ψ, we obtain by duality-based error estimation as in
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[?] an a posteriori error estimate of the form

|((û, ψ))− ((ŵ, ψ))| ≤ S(‖R(û)‖−1 + (‖R(ŵ)‖−1) ≤ S(‖hR(û)‖0 + (‖hR(ŵ)‖0),

where û and ŵ are two EG2 solutions on meshes of meshsize h, S = S(û, ŵ) is
a stablity factor defined as the H1(Q)-norm of a solution to a linearized dual
problem with coedd with the data ψ and ‖ · ‖0 is the L2(Q)-norm. An output
((û, ψ̂)) is wellposed if S‖hR(û)‖0 ≤ TOL with S = S(û, û)) and TOL a small
tolerance TOL of interest.

In the case shocks/turbulence ‖R(û)‖0 will be large ∼ h−1/2, while ‖hR(û)‖0
may be small ∼ h1/2, and an output thus is wellposed if S << h−1/2. In [?] we
present computed stability factors for different weights ψ̂, with global support
corresponding to global mean-value outputs and local support to pointwise out-
puts. We find that global mean-values of turbulent flow are wellposed, but local
not.
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CHAPTER 40

Saddle Point Stability

By Marie E. Rognes

Chapter ref: [rognes]

The stability of finite element approximations for abstract saddle point prob-
lems has been an active research field for the last four decades. The well-known
Babuska- Brezzi conditions provide stability for saddle point problems of the
form

a(v, u) + b(v, p) + b(u, q) = 〈f, v〉+ 〈g, q〉 ∀(v, q) ∈ V ×Q, (40.1)

where a, b are bilinear forms and V , Q Hilbert spaces. For a choice of discrete
spaces Vh ⊂ V andQh ⊂ Q, the corresponding discrete Babuska-Brezzi conditions
guarantee stability.

However, there are finite element spaces used in practice, with success1, that
do not satisfy the stability conditions in general. The element spaces may satisfy
the conditions of certain classes of meshes. Or, there are only a few spurious
modes to be filtered out before the method is stable.

The task of determining the stability of a given set of finite element spaces for
a given set of equations has mainly been a manual task. However, the flexibility
of the FEniCS components has made automation feasible.

For each set of discrete spaces, the discrete Brezzi conditions can be equiva-
lently formulated in terms of an eigenvalue problem. For instance, [...] where
B is the element matrix associated with the form b and M , N are the matrices
induced by the inner-products on V and Q respectively. Hence, the stability of
a set of finite element spaces on a type of meshes can be tested numerically by
solving a series of eigenvalue problems.

A small library FEAST (Finite Element Automatic Stability Tester) has been
built on top of the core FEniCS components, providing automated functionality
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for the testing of finite element spaces for a given equation on given meshes.
With some additional input, convergence rates and in particular optimal choices
of element (in some measure such as error per degrees of freedom) can be deter-
mined.

In this note, the functionality provided by FEAST is explained and results
for equations such as the Stokes equations, Darcy flow and mixed elasticity are
demon- strated.
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APPENDIXA

Notation

The following notation is used throughout this book.

A – the global tensor with entries {Ai}i∈I
AK – the element tensor with entries {AK

i }i∈IK

A0 – the reference tensor with entries {A0
iα}i∈IK ,α∈A

a – a multilinear form
aK – the local contribution to a multilinear form a from a cell K

A – the set of secondary indices

B – the set of auxiliary indices

e – the error, e = uh − u

FK – the mapping from the reference cell K0 to K

GK – the geometry tensor with entries {Gα
K}α∈A

I – the set
∏ρ

j=1[1, N
j ] of indices for the global tensor A

IK – the set
∏ρ

j=1[1, n
j
K ] of indices for the element tensor AK (primary indices)

ιK – the local-to-global mapping from [1, nK ] to [1, N ]
K – a cell in the mesh T
K0 – the reference cell

L – a linear form (functional) on V̂ or V̂h

L – the degrees of freedom (linear functionals) on Vh

LK – the degrees of freedom (linear functionals) on PK

L0 – the degrees of freedom (linear functionals) on P0

N – the dimension of V̂h and Vh

nK – the dimension of PK

ℓi – a degree of freedom (linear functional) on Vh

ℓK
i – a degree of freedom (linear functional) on PK

ℓ0
i – a degree of freedom (linear functional) on P0

PK – the local function space on a cell K

P0 – the local function space on the reference cell K0
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Pq(K) – the space of polynomials of degree ≤ q on K

r – the (weak) residual, r(v) = a(v, uh)− L(v) or r(v) = F (uh; v)
uh – the finite element solution, uh ∈ Vh

U – the vector of degrees of freedom for uh =
∑N

i=1 Uiφi

u – the exact solution of a variational problem, u ∈ V

V̂ – the test space
V – the trial space

V̂ ∗ – the dual test space, V̂ ∗ = V0

V ∗ – the dual trial space, V ∗ = V̂

V̂h – the discrete test space
Vh – the discrete trial space
φi – a basis function in Vh

φ̂i – a basis function in V̂h

φK
i – a basis function in PK

Φi – a basis function in P0

z – the dual solution, z ∈ V ∗

T – the mesh, T = {K}
Ω – a bounded domain in R
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