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Motivation I: ordinary differential equations

A mechanical system with R~ e
multiple time-scales: |
The Solar System

°* Moon: T'=1/12

* Earth: T =1

* Pluto: T' = 250

* Multiple time-scales

* |ndividual time steps

[——"]

EQE A simple system with multiple time scales

Animation contributed by Johan Jansson
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Motivation II: partial differential equations

* Geometry (local refinement)

* Equation (local structures)
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Outline

* Basic ideas

* Galerkin formulation

* Error estimates and adaptivity
* Implementation

* Examples and benchmarks

* Current status and future plans
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Basic ideas
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Objective

Solve the ODE initial value problem

u(t) — f(u(t)at)a tE(O,T],
u(0) = wup,

for u : [0, 7] — RY with adaptive and individual time steps for the
different components wu;(t).

The individual time steps are chosen adaptively based on an a
posteriori error estimate of the global error attime ¢t = T..
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Key features

* Adaptive individual time steps

* Efficient and reliable control of the global error

* Solution of dual problems, computation of stability factors
* Efficient adaptive iterative methods

* General implementation of arbitrary order mcG(q) and
mdG(q) within DOLFIN
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Individual time steps
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ﬁﬁ Multi-adaptive solution of the bistable equation

ﬁﬁ Multi-adaptive time steps for the bistable equation
I |
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Individual piecewise polynomials
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Galerkin formulation
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Standard Galerkin

Standard Galerkin, cG(q):

T T
/ (U,v)dt = / (f(U,),v)dt YveV,
0 0
with U € V, U(0) = ug, and trial and test spaces given by

‘A/ = {v € [C([O,T])]N : Ui‘]j S Pq(]j)}v

V = {UZ U’i|lj - Pq_l([j)}.

* Same time steps for all components U, of U
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Multi-adaptive Galerkin

Multi-adaptive Galerkin, mcG(g):

T T
/ (U,v)dt = / (f(U,),v)dt YveV,
0 0
with U € V, U(0) = ug, and trial and test spaces given by

‘A/ = {v€ [C([O,T])]N : Ui’[ij S P%j(]ij)}v

Vo= {v:wl, € PTHIy)}

* |ndividual time steps for all components U; of U
* Includes the standard c¢G(gq) method
* Similar extension of the dG(q) method to mdG(q)
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The discrete equations for mCG(q)

With the following Ansatz for U; on I;;,

q’LJ

Zfzgn 7-2] ))

we obtain

Eijn = €0+ / wWld) (735(8)) fi(U, £) dt

iJ

for certain weight functions {wq[f]} c P1(0,1).
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The discrete equations for de(q)

Similarly for the multi-adaptive discontinuous Galerkin method,
mdG(q), we obtain

&ijn = &ijo +/ wdsl (735(1)) fo(U, 1) dt,

for certain weight functions {wlf]} C P4(0,1).
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Properties of mcG(g) and mdG(q)

* mcG(q) conserves energy if ki, = ky,
* mdG(q) is B-stable: if f is monotone,

(f(u,-)—f(v,-),u—v) <0 vuyrUERN7

then
[U@E™) =V (&) <|UWO)=V(0)|
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lterative method

* Arrange elements in time slabs
* Adaptive fixed-point iteration on time slabs
* Control the computational error
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Basic strategy

The last component steps first

ﬁﬁ Recursive generation of time slabs

ﬁﬁ Adaptive iteration on time slabs
: |
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Error estimates and adaptivity
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A priori error estimates

* The order of mcG(q) is 2¢ (locally 2¢g;;):
le(T)| < CS(D)|[E* 16D L _o1100)-
* The order of mdG(q) is 2¢ + 1 (locally 2¢;; + 1):
le(T)[| < CSME*TuP DL or1)-

S(T) is a stability factor obtained from the discrete dual problem.
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A posteriori error estimates

The global error at final time is controlled using an a posteriori
error estimate of the form

Ly g(e)| < Eaq+ Ec + Eq,

where Ly ,(e) = (e(T), ) + fOT(e,g) dt is a functional of the
errore = U — u, and

* FEq: Galerkin error
* Eco: Computational error
* Eg: Quadrature error
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The Galerkin error: E

* Residual: |
R;(U,t) =U;(t) — fi;(U(t),1)

* Stability factor:
S[Q]( T) = / ‘qb(Q)‘dt

* Error estimate (for mcG(q)):

Eq =

/OT(R> ¢) dt‘ ZZ/ — Tp;) db

1=1 7=1

< chq max{kq R;(U)|}
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The Computational Error: £

* Computational residual:

RzC(Uv t) — t E Iij

U(tij) —Ul(tij—1) — /I fi(U,-)dt

E‘j

e Stability factor:
T

S(T) = /O 6] dt

* Error estimate:

aX RS

||Mz
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The Quadrature Error: £

* Quadrature residual:

1 ~
a k—z.? |:/wa’&(U’ ) e /Iij fZ(U’ ) dt:| e Iij

* Stability factor:
T
S@) = [ ol
0

* Error estimate:

N

Z maX RQ |

=1
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Computational cost (complexity of output)

* Computational cost given by the product S(T')||u®)||

* Determined both by the stability/sensitivity of the model and
the regularity of the solution

Quantitative classification according to stability:
* Parabolic: S(T) ~ 1
* Hyperbolic: S(T) ~ T
* Exponential: S(T") ~ exp(T)
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The dual problem

The dual problem is given by

~¢(t) T (w, U t)(t) +g(t), tel0,T),
o(T) = ¢,

where
1 8f
J(v1,v9,) = —(sv1 + (1 — s)vg, ) ds.
0 ou

By choosing 7 and g, different functionals L, ,(e) can be
estimated. Basic examples:

* Yp=e(T)/|le(T)]| and g = 0 gives Ly 4(e) = [[e(T)]]
° ¢ =1(0,...,0,1,0,...,0) and g = 0 gives Ly, 4(e) = e;(T)
° ¢:Oandg:(1,..., 1)/(NT) gives Ly 4(e) =€
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The adaptive algorithm

1. Solve the primal problem with S;(7T") = 1 and

. TOL Ha
Y \CONS;(D)||Rill1,,

Solve the dual problem

Compute new stability factors S;(7T)
Compute the error estimate E

If £ < TOL then stop, otherwise go back to 1

a 0N
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Implementation
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Implementation

* Implemented as a C++ library (part of DOLFIN)

* Mono-adaptive or multi-adaptive

* Newton or fixed-point

* User implements interface specified by ODE base class:

cl ass ODE

{
publ i c:

CDE(ui nt N);

virtual real f(const real u[], real t, uint i1);
virtual void f(const real u[], real t, real y[]);
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Implementation

* Data stored in a “minimal” set of C arrays
* Build time slab: O(# elements)
° Interpolate U;(t): O(1)

--> start tinmet of sub slab s
-->end tine t of sub slab s

--> conponent index i of elenent e
time slab s containing el enent e
--> previous elenent e of elenent e
urnt* ed; // --> first dependency d of elenent e
real* jx; [/ val ue of dof |

Iint* de; // d--> elenment e of dependency d

real* sa; //
real* sb; //
urnt* ei; [/
urnt* es; [/
urnt* ee; //

"D ® d® D »© O
1
1
V

1
1
V
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Mono-adaptive profile (c¢G(1))
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Multi-adaptive profile (mcG(1))
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Examples and benchmarks
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Examples

* A mechanical multi-scale system
* The heat equation
* A system of reaction—diffusion equations

* Wave propagation through a narrow slit
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A mechanical multi-scale system

( mzxz = ]C(Q?,;.H — sz) — ka;i, 1= ,
¢ mid; = k(zip —x) — k(@ —2i-1), 1 <i<N,
mzxz — —k(ZEZ — $7;_1), , = N
P
—
—
—
—
]
—
—
—
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A mechanical multi-scale system
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The heat equation

u(x,t) — Au(x,t) = f(x,t)
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A system of reaction—diffusion equations

Two substances, A and B, distributed along |0, 1] with
concentrations u; and us. A reacts to form B with B working as
a catalyst.

A+2B — B+ 2B

U — euf = —ujui
g — euly = ujus
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A system of reaction—diffusion equations

t=50

t=100

t=50 t=100

0.8
0.6
0.4
0.2

0.5
0.2
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A system of reaction—diffusion equations

0.6 0.8 1 . 0.4 0.6 0.8 1

0.6 0.8 1 . 0.4 0.6 0.8 1
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Wave propagation through a narrow slit
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Wave propagation through a narrow slit

* k~h
* Multi-adaptive speedup: 3.7 (theoretical 27)
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Current status and future plans

1 1
Toyota Technological Institute at Chicago :: Anders Logg Simula Research Laboratory, Oslo — August 23 2005 — p. 42



Current status and future plans

* A new improved multi-adaptive solver is currently being
developed as part DOLFIN:

http://ww.fenics.org/dolfin/
* (Re-)implement dual problems and global error control

* Improve multi-adaptive preconditioners

* Integrate multi-adaptive solver with FFC/DOLFIN
* Testing, benchmarking, optimization
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