PySE — Python Stencil Environment

Asmund @degard

Simula Research Laboratory

FEniCS'05, Chicago, October 19-20, 2005

Ddegard PySE — Python Stencil Environment

@ General Ideas of PySE

9 A simple example
© Some details on the interfaces

© Performance of PySE

Ddegard PySE — Python Stencil Environment

Outline

@ General Ideas of PySE

Ddegard PySE — Python Stencil Environment

Basic features of PySE

High—level tool for rapid development of FDM solvers.)

@ High—level syntax, Matlab-like.
@ Code close to the math or pseudo code.
@ Easy deployment on parallel computers.

@ Written in python, uses extension modules for better
performance.

(7]

Available at http://pyfdm.sourceforge.net.

(7]

Former know as paraStencils and pyFDM.

Priorities: 1. Abstractions, 2. Parallelization, 3. Efficiency J

Ddegard PySE — Python Stencil Environment

http://pyfdm.sourceforge.net

Ideas
Some related works

PySE use ideas and concepts from many other tools:

o Diffpack @ PETSc
@ hypre @ Trilinos
o A++/P++ @ Chombo
@ cogito

Ddegard PySE — Python Stencil Environment

Ideas
The abstractions

PySE defines the following abstractions.)

o Grid; for the domain and FDM mesh.
@ Field; for scalar fields over a Grid.
@ Stencil; the action of the PDE in a point.

@ StencilSet; set of stencils for a problem.

The first three abstractions are quite common.
Stencil and StencilSet are the most important abstractions in
PySE.

Ddegard PySE — Python Stencil Environment

Example

Outline

9 A simple example

Ddegard PySE — Python Stencil Environment

Consider a simple Heat equation:

uy = Vu x €Q
u(x,0) = f(x), x €
du(x,t)

o gn(x, t), x € 0Q,
U(Xu t):gd(X, t)7 x € 0Qy

Assume further that we want to solve this on the unit square with
f and g given as initialfunc and neumannfunc, respectively.

Ddegard PySE — Python Stencil Environment

A simple example, graphically

J e I] — L —

@ Assume A is the StencilSet.
@ One explicit step: upy1 = A(up). J

Ddegard PySE — Python Stencil Environment

Example

Example code

This short code solves the problem on the previous slide:

from pyFDM import *
def neumannfunc(x,y): return sin(x)*cos(y)

def initialfunc(x,y): return sin(x)*cos(y)

g = Grid(domain=([0,1,[0,1]),division=(100,100))
u = Field(g)

t =0; dt = T/n;

A = StencilSet(g)

innerstencil = Identity(g.nsd) + dtxLaplace(g)
innerind = A.addStencil(innerstencil, g.innerPoints())
A += createNeumannBoundary (innerstencil, g, neumannfunc)
u.fill(initialfunc)
for t < T:
u = A(u)
t += dt
plot(u)

Ddegard PySE — Python Stencil Environment

Example

Example code

Some remarks on the code)

@ Laplace and Identity are stencils defined in PySE
@ The Neumann condition function is not time dependent

@ |t can be made time dependent by wrapping into a lambda:

def neumannfunc(x,y,t): return x*xy*t

rt = 0
neumanncall = lambda x,y: neumannfunc(x,y,rt)
A += createNeumannBoundary(innerstencil, g, neumanncall)
while rt < T:
u = A(u)
t += dt
A .updateDataStructures()

Ddegard PySE — Python Stencil Environment

Details

Outline

© Some details on the interfaces

Ddegard PySE — Python Stencil Environment

Details

Stencil

You can easily build your own stencils J

h = (dt**2/g.dx**2)
lap_5pt = Stencil(nsd=2, varcoeff=False,\

nodes={ (0,1): 1.,\
(-1,0): 1., (0,0): -4., (1,0): 1.,\
(0,-1): 1.})

id = Stencil(nsd=2, varcoeff=False, nodes={(0,0): 1.0})
inner = id + hx*lap_b5pt

Stencils can be added together, scaled, and evaluated

Ddegard PySE — Python Stencil Environment

Details

StencilSet

@ Stencils are added to a StencilSet together with an iterator for
nodes.

@ Grid have methods for various sets of nodes:
allPoints

@ innerPoints

¢ boundary

@ corners

©

@ innerPoints and boundary take an optional region argument:

A.addStencil(diricond, \
grid.boundary(region=((-1,1),(-1,1)), \
type=’circle’, center=(0,0), \
radius=1, direction=’in’))

Ddegard PySE — Python Stencil Environment

Details
StencilSet

During the first call to the call-operator A(u) in StencilSet, more
efficient datastructures are build:

o Why:

@ Walking the iterators is time—consuming (in pure Python).
o Stencil—coefficients are assembled in a sparse matrix.
@ Source information is assembled in a vector.

@ We need to provide hooks to update for changes in
coefficients and source:
@ updateDataStructures
o updateSourceDatastructures

@ These methods trigger reassembling of all or parts of the data.

v

Ddegard PySE — Python Stencil Environment

Details
StencilSet

@ If present in StencilSet instances, the sparse matrix and vector
will be used on subsequent calls to A(u) and A*u.

o A.direct_matvec(x): operate on a NumPy vector, returns a
NumPy vector.

@ Less overhead (no Field creation), hence more efficient.

o The interface for updating datastructures is (at least for now)
less convenient in this case.

@ A Field u stores its data as u.data, a NumPy vector.

@ Remark, a dummy A(u) must be inserted to build
datastructures.

Ddegard PySE — Python Stencil Environment

Details

Neumann boundary conditions

Creating Neumann boundary conditions can be tricky in the
multidimensional case.

@ The function createNeumanBoundary function can be used:

nSet = createNeumanBoundary(stencil, grid, condition)

@ The Neumann creator also accept a region specification:

nSet = createNeumanBoundary(stencil, grid, condition,\
region=((-1,1),(-1,1)), \
type=’circle’, center=(0,0), \
raduis=1, direction=’out’)

Ddegard PySE — Python Stencil Environment

Details
Parallel computations with PySE

All parts of PySE are inherently parallel.)

@ Parallelism is initated with
grid.partition(StencilSet)

@ The StencilSet supplied shoud be “ready”
@ All Fields created on the grid, will be converted.

@ Other StencilSets in the grid get the same partitioning with
StencilSet.doInitParallel()

Ddegard PySE — Python Stencil Environment

Performance

Outline

© Performance of PySE

Ddegard PySE — Python Stencil Environment

Performance
A more involved example

Consider the following problem:
ur = V- (k(x,y)Vu) + f(x,y,t), (x,y) €Q, teRT,
u(x,y, t) = h(x,y, t), (x,y) €09, teR",
u(x,y,0) = g(x, y), (x,y) e
@ We chose f(x,y,t), k(x,y), h(x,y,t), and g(x,y) such that

u(x,y,t) = e ‘sin(mx)cos(my)

@ |Implementation follow the simple example.

Ddegard PySE — Python Stencil Environment

Performance
Timing of the solver

cpus: | 1 | 4 | 16 | 24 | 32
1000 x 1000, 160 step: || 7984 | 1998 | 498.5 | 332.0 | 249.3
speed—up: 1 399 | 160 | 240 | 32.0
1500 x 1500, 240 step: || 26820 | 6728 | 1681 | 1125 | 838.8
speed—up: 1 398 | 159 | 238 | 319
CPU time in seconds and corresponding speed-up numbers.

@ The solver uses the direct_matvec trick)

Ddegard PySE — Python Stencil Environment

Performance
Comparison with a C solver

We have created a (less flexible) solver in C:

Problem size | runtime | 1-cpu P/C | 32-cpu P/C
1000 x 1000, 160 steps: 107.3 74.4 2.32
1500 x 1500, 240 steps: 362.4 74.0 2.31

CPU time in seconds for the solver implemented in C, as well as
speed- relative to the Python solver running on one and 32
Processors.

@ For certain applications, this is just fine

i

Ddegard PySE — Python Stencil Environment

Performance
Comparison with a C solver

We have created a (less flexible) solver in C:

Problem size | runtime | 1-cpu P/C | 32-cpu P/C
1000 x 1000, 160 steps: 107.3 74.4 2.32
1500 x 1500, 240 steps: 362.4 74.0 2.31

CPU time in seconds for the solver implemented in C, as well as
speed- relative to the Python solver running on one and 32
Processors.

@ For certain applications, this is just fine

@ If we do not assemble in sparse matrix and vector, multiply
P/C numbers by O(10) (update source vs. all)

i

Ddegard PySE — Python Stencil Environment

Performance
Comparison with a C solver

We have created a (less flexible) solver in C:

Problem size | runtime | 1-cpu P/C | 32-cpu P/C
1000 x 1000, 160 steps: 107.3 74.4 2.32
1500 x 1500, 240 steps: 362.4 74.0 2.31

CPU time in seconds for the solver implemented in C, as well as
speed- relative to the Python solver running on one and 32
Processors.

@ For certain applications, this is just fine

@ If we do not assemble in sparse matrix and vector, multiply
P/C numbers by O(10) (update source vs. all)

@ Where do we loose that much?

i

Ddegard PySE — Python Stencil Environment

Performance
The bottelneck...

In this problem, the Dirichlet boundary condition and the source
function are time dependent.

@ For each timestep, we walk the iterators to update data.

@ If we remove the time dependency (and hence the need for
update of data), we get:

Problem size H C ‘ Python
1000 x 1000, 160 time steps: || 345 | 30.5

The modules we're using from Python for mat*vec, vec*vec are
obviously smarter than my C program

Ddegard PySE — Python Stencil Environment

Performance
The bottelneck can be removed!

@ NumPy can fill an array with values from a function very fast!

Ddegard PySE — Python Stencil Environment

Performance
The bottelneck can be removed!

@ NumPy can fill an array with values from a function very fast!

@ We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

Ddegard PySE — Python Stencil Environment

Performance
The bottelneck can be removed!

@ NumPy can fill an array with values from a function very fast!
@ We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.
@ Rewrite the explicit update as
u = A(u) + S(F) + B(H)

Ddegard PySE — Python Stencil Environment

Performance
The bottelneck can be removed!

@ NumPy can fill an array with values from a function very fast!

@ We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

@ Rewrite the explicit update as
u = A(u) + S(F) + B(H)

@ The Fields F and H can be filled quickly with
Ffill_vec(function).

Ddegard PySE — Python Stencil Environment

Performance
The bottelneck can be removed!

NumPy can fill an array with values from a function very fast!

(]

(]

We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

(]

Rewrite the explicit update as
u = A(u) + S(F) + B(H)

(7]

The Fields F and H can be filled quickly with
Ffill_vec(function).

(7]

The direct_matvec trick improve performance further.

Ddegard PySE — Python Stencil Environment

Performance

When the bottelneck is gone, we get good performance

cpus: | 1 | 4 | 16 | 24 | 32
1000 x 1000, 160 steps: || 365.0 | 93.90 | 23.51 | 16.05 | 12.52
speed—up: 1 3.89 155 | 22.7 | 29.2
1500 x 1500, 240 steps: || 1226 | 315.7 | 78.42 | 52.33 | 40.73
speed—up: 1 3.88 | 156 | 23.4 | 30.1
CPU time in seconds and corresponding speed-up numbers for the
improved Python solver.

Ddegard PySE — Python Stencil Environment

Performance
Comparison with C of the faster solver

Problem size | runtime | 1-cpu P/C | 32-cpu P/C
1000 x 1000, 160 steps: 107.3 3.40 0.12
1500 x 1500, 240 steps: 362.4 3.38 0.11

@ Is this fast enough?

Ddegard PySE — Python Stencil Environment

Performance
Comparison with C of the faster solver

Problem size | runtime | 1-cpu P/C | 32-cpu P/C
1000 x 1000, 160 steps: 107.3 3.40 0.12
1500 x 1500, 240 steps: 362.4 3.38 0.11

@ Is this fast enough?

@ What did we loose? Only nice syntax.

Ddegard PySE — Python Stencil Environment

Performance
Comparison with C of the faster solver

Problem size | runtime | 1-cpu P/C | 32-cpu P/C
1000 x 1000, 160 steps: 107.3 3.40 0.12
1500 x 1500, 240 steps: 362.4 3.38 0.11

@ Is this fast enough?
@ What did we loose? Only nice syntax.

@ What's not there: limited support for higher order methods,
no support for non—linear problems, only simple grids

Ddegard PySE — Python Stencil Environment

Performance
Comparison with C of the faster solver

Problem size | runtime | 1-cpu P/C | 32-cpu P/C
1000 x 1000, 160 steps: 107.3 3.40 0.12
1500 x 1500, 240 steps: 362.4 3.38 0.11

@ Is this fast enough?
@ What did we loose? Only nice syntax.

@ What's not there: limited support for higher order methods,
no support for non—linear problems, only simple grids

@ How can it be usefull in FEniCS?

Ddegard PySE — Python Stencil Environment

	General Ideas of PySE
	A simple example
	Some details on the interfaces
	Performance of PySE

