Swiginac - Extending Python with Symbolic
Mathematics

Ola Skavhaug®? Ondrej Certic3*

Simula Research Laboratory!
Dept. of Informatics, University of Oslo?
Faculty of Mathematics and Physics3

Charles University in Prague*

October 19-20 2005, TTI, Chicago

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Outline

@ Famms
© Swiginac

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms

List of Topics

@ Famms

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

List of Topics

© Swiginac

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

GiNaC, http://www.ginac.de

GiNaC is not a CAS

GiNaC is a C++ library for applications in need of symbolic
manipulation. Python is such an application

Features

(]

Symbols and expressions with arithmetic operations
Multivariate polynomials and rational functions
Matrices and vectors

Linear systems solver

Tayler series expansions

Differentiation and integration

Output C, Python and LaTeX code

¢ © 6 6 ¢ ¢ ¢

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

GiNaC can be used from Python

Existing Python bindings to GiNaC:

@ PyGiNaC by Pearu Peterson
(http://cens.ioc.ee/projects/pyginac/)

@ PyGiNaC by by Jonathan Brandmeyer
(http://pyginac.sourceforge.net/)

Both interfaces are generated with Boost.Python. This procedure
requires quite a lot manual work, but produces efficient wrapper
code. Pearu Peterson's project looks dead

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Swiginac anno 2003

Why another Python interface to GiNaC?

In 2003, Pearu’s PyGiNaC was the only alternative, and it failed
the 5 min time limit for installation.

@ We used SWIG; a simplified wrapper interface generator
developed by David Beazly at Chicago

@ We had successfully used SWIG to interface Diffpack

@ For code verification using the method of manufactured
solutions, only a limited interface to GiNaC was needed

o Strategy: Automatically generate the interface files by running
the preprocessor on the GiNaC header files

@ The resulting interface was rather crude, and a higher—level
Python module, Symbolic, was implemented on top

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Swiginac anno 2005

A new interface

Ondrej Certic at Charles University in Prague contacted me and
wanted to improve the bindings

@ New strategy: Manually convert the GiNaC header files to
SWIG interface files, and implement a set of typemaps to
make a higher—level interface

@ A lot, but not all, of the GiNaC classes are now exposed to
Python

@ Certain GiNaC structures are converted to Python types in the
interface and vice versa

-

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

SWIG typemapping example

We convert various types to GiNaC's proxy class ex

%typemap(in) ex & {
$1 = type2ex($input);
if (!$1) return NULL;

ex * type2ex(PyObject * input) {
basic *btmp; GETDESC(basic);
if (not((SWIG_ConvertPtr(input, (void **)&btmp,basicdescr,0))==-1)
return new ex((*btmp));
if (PyInt_Check(input))
return new ex(numeric(PyInt_AsLong(input)));
if (PyFloat_Check(input))
return new ex(numeric(PyFloat_AsDouble(input)));
if (PyList_Check(input)) {
1st *1=list2lst(input);
if (1==NULL) return NULL;
return new ex(l->eval());
}
return NULL;

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Symbols

Symbols are basic units in Swiginac

from swiginac import *

a = symbol(’a’, r’\alpha’)
b = symbol(’b’, r’\beta’)
print b

u=b+a
u.set_print_context(’tex’)
print u

Prints b and 3+ « (in LaTeX)

All expressions in GiNaC are built with symbols. The drawback of
this approach is that the level of abstraction is limited

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Functions

Lots of functions are available

u = sin(exp(b))
print u.printlatex()

v = tgamma(a+sqrt(b))
print v.printlatex()

Prints sin(exp(3)) and T'(a + v/B) (in LaTeX)

All trigonometric and hyperbolic functions are implemented in
GiNaC, most of them interfaced in swiginac

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Symbolic differentiation

Objects have the method diff for differentiation:

symbol(’x’)
symbol(’y’)

= x**%5 + x*x*x2 + y
Ldiff(x, 1) # B*x**4+2%x
Ldiff(x, 2) # 2+20%x**3

O U U< M

[=]

= sin(exp(x))
u.diff(x,2) # -sin(exp(x))*exp(x)**2+exp (x)*cos(exp(x))

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Matrices

matl = matrix(2,2) #Two by two matrix
mat1[0,0] = v

mati[1,1] = u

print matl.printlatex()

Equivalent: matl = diag_matrix([u,v])

Output:

(F(a;\/ﬁ) Sin(efp(ﬁ)) >

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac
Matrices

matl = matrix(2,2) #Two by two matrix
mat1[0,0] = v

mati[1,1] = u

print matl.printlatex()

Equivalent: matl = diag_matrix([u,v])

Output:
(Mo+ VB) 0 >
0 sin(exp(3))

mat2 = matrix([[sqrt(a),0],[1.0, cosh(b)]])
print mat2.printc()

Output:
[[pow(a, (1.0/2.0)),0.0],[1.0000000000000000e+00,cosh(b)]]

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac
Simple integral support

We can construct integral objects and integrate either symbolically

or numerically:

x = symbol(’x’)

integ = integral(x, 0, 1, x*x)
print integ.printlatex()
print integ.eval_integ()
print integ.evalf ()

Output:

fol dx x?

1/3
0.33333333333333333332

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Substitution

Algebraic objects in expressions can be substituted

u = sin(exp(b))

v = u.subs(exp(b)==sqrt(a)) # v = sin(a**(1/2))

w = v.subs(a==2) .evalf () # Convert sin(2*x(1/2)) to numerig
float (w) # Convert to Python double

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Substitution

Algebraic objects in expressions can be substituted

u = sin(exp(b))

v = u.subs(exp(b)==sqrt(a)) # v = sin(a**(1/2))

w = v.subs(a==2) .evalf () # Convert sin(2*x(1/2)) to numerig
float (w) # Convert to Python double

Sub—expressions do not match:

symbol(’x’); y = symbol(’y’); z = symbol(’z’)
sin(x+y+z)

u.subs(x+y==4) # v = sin(x+y+z)

u.subs([x==1, y==2, z==3]) # Same as u.subs(x+y+z==6)

X
u
v
w

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

Solving linear systems

1solve solves linear systems:

>>> x = symbol(’x’)

>>> y = symbol(’y’)

>>> 1solve([3*x + bxy == 2, bxx+y == -3], [x,yl)
[x==-17/22, y==19/22]

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac

And finally, we have Taylor series expansion

Expressions can expand themselves as a Taylor series:

x =symbol("x")
>>> sin(x).series(x==0, 8)
1kx+(=1/6) *x**3+1/120*%x**5+(-1/5040) *x**7+0rder (x**8)

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Swiginac
Summary

Swiginac is a free CAS for Python
It is GPL, since GiNaC is
It can do basic symbolic manipution

Useful for MMS, generating talks, and probably a whole lot
more

Much remaining work and many unresolved questions

Visit http://swiginac.berlios.de

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

	Famms
	Swiginac

