
Famms Swiginac

Swiginac - Extending Python with Symbolic

Mathematics

Ola Skavhaug1,2 Ondrej Certic3,4

Simula Research Laboratory1

Dept. of Informatics, University of Oslo2

Faculty of Mathematics and Physics3

Charles University in Prague4

October 19–20 2005, TTI, Chicago

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Outline

1 Famms
2 Swiginac

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

List of Topics

1 Famms

2 Swiginac

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

List of Topics

1 Famms

2 Swiginac

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

GiNaC, http://www.ginac.de

GiNaC is not a CAS

GiNaC is a C++ library for applications in need of symbolic
manipulation. Python is such an application

Features

Symbols and expressions with arithmetic operations

Multivariate polynomials and rational functions

Matrices and vectors

Linear systems solver

Tayler series expansions

Differentiation and integration

Output C, Python and LaTeX code

...

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

GiNaC can be used from Python

Existing Python bindings to GiNaC:

PyGiNaC by Pearu Peterson
(http://cens.ioc.ee/projects/pyginac/)

PyGiNaC by by Jonathan Brandmeyer
(http://pyginac.sourceforge.net/)

Both interfaces are generated with Boost.Python. This procedure
requires quite a lot manual work, but produces efficient wrapper
code. Pearu Peterson’s project looks dead

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Swiginac anno 2003

Why another Python interface to GiNaC?

In 2003, Pearu’s PyGiNaC was the only alternative, and it failed
the 5 min time limit for installation.

We used SWIG; a simplified wrapper interface generator
developed by David Beazly at Chicago

We had successfully used SWIG to interface Diffpack

For code verification using the method of manufactured
solutions, only a limited interface to GiNaC was needed

Strategy: Automatically generate the interface files by running
the preprocessor on the GiNaC header files

The resulting interface was rather crude, and a higher–level
Python module, Symbolic, was implemented on top

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Swiginac anno 2005

A new interface

Ondrej Certic at Charles University in Prague contacted me and
wanted to improve the bindings

New strategy: Manually convert the GiNaC header files to
SWIG interface files, and implement a set of typemaps to
make a higher–level interface

A lot, but not all, of the GiNaC classes are now exposed to
Python

Certain GiNaC structures are converted to Python types in the
interface and vice versa

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

SWIG typemapping example

We convert various types to GiNaC’s proxy class ex

%typemap(in) ex & {
$1 = type2ex($input);
if (!$1) return NULL;

}

ex * type2ex(PyObject * input) {
basic *btmp; GETDESC(basic);
if (not((SWIG_ConvertPtr(input,(void **)&btmp,basicdescr,0))==-1))
return new ex((*btmp));

if (PyInt_Check(input))
return new ex(numeric(PyInt_AsLong(input)));

if (PyFloat_Check(input))
return new ex(numeric(PyFloat_AsDouble(input)));

if (PyList_Check(input)) {
lst *l=list2lst(input);
if (l==NULL) return NULL;
return new ex(l->eval());

}
return NULL;

}

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Symbols

Symbols are basic units in Swiginac

from swiginac import *
a = symbol(’a’, r’\alpha’)
b = symbol(’b’, r’\beta’)
print b
u = b + a
u.set_print_context(’tex’)
print u

Prints b and β + α (in LaTeX)

All expressions in GiNaC are built with symbols. The drawback of
this approach is that the level of abstraction is limited

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Functions

Lots of functions are available

u = sin(exp(b))
print u.printlatex()

v = tgamma(a+sqrt(b))
print v.printlatex()

Prints sin(exp(β)) and Γ(α +
√

β) (in LaTeX)

All trigonometric and hyperbolic functions are implemented in
GiNaC, most of them interfaced in swiginac

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Symbolic differentiation

Objects have the method diff for differentiation:

x = symbol(’x’)
y = symbol(’y’)
P = x**5 + x**2 + y
P.diff(x, 1) # 5*x**4+2*x
P.diff(x, 2) # 2+20*x**3

u = sin(exp(x))
u.diff(x,2) # -sin(exp(x))*exp(x)**2+exp(x)*cos(exp(x))

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Matrices

mat1 = matrix(2,2) #Two by two matrix
mat1[0,0] = v
mat1[1,1] = u
print mat1.printlatex()
Equivalent: mat1 = diag_matrix([u,v])

Output:
(

Γ(α +
√

β) 0
0 sin(exp(β))

)

mat2 = matrix([[sqrt(a),0],[1.0, cosh(b)]])
print mat2.printc()

Output:
[[pow(a,(1.0/2.0)),0.0],[1.0000000000000000e+00,cosh(b)]]

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Matrices

mat1 = matrix(2,2) #Two by two matrix
mat1[0,0] = v
mat1[1,1] = u
print mat1.printlatex()
Equivalent: mat1 = diag_matrix([u,v])

Output:
(

Γ(α +
√

β) 0
0 sin(exp(β))

)

mat2 = matrix([[sqrt(a),0],[1.0, cosh(b)]])
print mat2.printc()

Output:
[[pow(a,(1.0/2.0)),0.0],[1.0000000000000000e+00,cosh(b)]]

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Simple integral support

We can construct integral objects and integrate either symbolically
or numerically:

x = symbol(’x’)
integ = integral(x, 0, 1, x*x)
print integ.printlatex()
print integ.eval_integ()
print integ.evalf()

Output:
∫ 1

0
dx x

2

1/3
0.33333333333333333332

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Substitution

Algebraic objects in expressions can be substituted

u = sin(exp(b))
v = u.subs(exp(b)==sqrt(a)) # v = sin(a**(1/2))
w = v.subs(a==2).evalf() # Convert sin(2**(1/2)) to numeric
float(w) # Convert to Python double

Sub–expressions do not match:

x = symbol(’x’); y = symbol(’y’); z = symbol(’z’)
u = sin(x+y+z)
v = u.subs(x+y==4) # v = sin(x+y+z)
w = u.subs([x==1, y==2, z==3]) # Same as u.subs(x+y+z==6)

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Substitution

Algebraic objects in expressions can be substituted

u = sin(exp(b))
v = u.subs(exp(b)==sqrt(a)) # v = sin(a**(1/2))
w = v.subs(a==2).evalf() # Convert sin(2**(1/2)) to numeric
float(w) # Convert to Python double

Sub–expressions do not match:

x = symbol(’x’); y = symbol(’y’); z = symbol(’z’)
u = sin(x+y+z)
v = u.subs(x+y==4) # v = sin(x+y+z)
w = u.subs([x==1, y==2, z==3]) # Same as u.subs(x+y+z==6)

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Solving linear systems

lsolve solves linear systems:

>>> x = symbol(’x’)
>>> y = symbol(’y’)
>>> lsolve([3*x + 5*y == 2, 5*x+y == -3], [x,y])
[x==-17/22, y==19/22]

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

And finally, we have Taylor series expansion

Expressions can expand themselves as a Taylor series:

x =symbol("x")
>>> sin(x).series(x==0, 8)
1*x+(-1/6)*x**3+1/120*x**5+(-1/5040)*x**7+Order(x**8)

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

Famms Swiginac

Summary

Swiginac is a free CAS for Python

It is GPL, since GiNaC is

It can do basic symbolic manipution

Useful for MMS, generating talks, and probably a whole lot
more

Much remaining work and many unresolved questions

Try it out:

Visit http://swiginac.berlios.de

Skavhaug and Certic Swiginac - Extending Python with Symbolic Mathematics

	Famms
	Swiginac

