
Interpreted programming in
FEniCS

Johan Jansson

jjan@csc.kth.se

CSC (old NADA)

KTH

Interpreted programming in FEniCS – p. 1

Contents

• Motivate higher-level programming languages (abstraction)
• Overview of PyDOLFIN (FEniCS/DOLFIN Python interface)

Interpreted programming in FEniCS – p. 2

Science

• Formulate Model = Formulate Equation (Modeling)
• Solve Equation (Computation)

Interpreted programming in FEniCS – p. 3

Model = Differential Equations (DE)

u̇ = f(u,∇u), in Ω × (0, T]

+ initial and boundary conditions

u̇ =
∂u

∂t

∇u = (
∂u

∂x1

,
∂u

∂x2

,
∂u

∂x3

)

Interpreted programming in FEniCS – p. 4

Basic Models = DE

Navier: Solid Mechanics

ü−∇ · σ = f, σ = µe(u)

Navier-Stokes (Fluid Mechanics)

v̇ + v · ∇v − ν∆v + ∇p = f, ∇ · v = 0

Maxwell (Electromagnetism)

∇×H = J + Ḋ, ∇× E = −Ḃ, ∇ ·D = ρ, ∇ ·B = 0

Schr ödinger (Quantum Mechanics)

iψ̇ −
h2

2m
△ψ + V ψ = 0

A few more

Interpreted programming in FEniCS – p. 5

FEniCS

Automation of Computational Mathematical Modeling (ACMM)

Automation of:

(a) Discretization of differential equations

(b) Solution of discrete systems

(c) Error control of discrete solutions

(a)-(c): Galerkin’s method (FEM) + Duality

Interpreted programming in FEniCS – p. 6

FEniCS interface

1. Input DE

2. ???

3. Interpret solution of DE

2 includes:

• Manipulation/generation of DE, discrete systems.
• Primitives for solving discrete systems.
• ...

Aim to remove dividing line between manual
computation/expression manipulation on paper and computer
programming.

Interpreted programming in FEniCS – p. 7

Perspective on computer programming

• All programming languages (in practical use) are Turing
complete.

• A Turing machine describes all of mathematics (definition).

Choosing a language is thus only a question of efficiency or
administration: having to do as little manual work as possible.

Interpreted programming in FEniCS – p. 8

Automation = Maximal Laziness

Knuth:

“Premature optimization is the root of all evil”

• Keep a high abstraction level. Do not optimize.
• Typically: 90% of the time is spent in 10% of the source code.

Do not optimize 90% of the source code.
• Resist urge to be clever.

Interpreted programming in FEniCS – p. 9

Higher-level language

Abstraction progression:

Assembler operate on numbers

C/Fortran operate on arrays

Python/... operate on functions (equations)

Vision: Implementation of algorithms on form/equation level
(stabilization, error control).
Higher-level languages commonly interpreted.

Interpreted programming in FEniCS – p. 10

Interpreted language

Compiled Translate source code into lower level code before
execution. Static typing.

Interpreted Translate source code into lower level code during
execution. Allows dynamic typing, dynamic creation of new
types.

Allows introducing new definitions/abstractions while running the
program, analogy to pen & paper development.

“Pocket-calculator” interface (Matlab/Octave, UNIX shell).

Interpreted programming in FEniCS – p. 11

FEniCS interface example

class MyFunction(Function):

def eval(self, point, i):

return sin(point[1]) + 1.0

K = FiniteElement("Lagrange", "triangle", 1)

mesh = UnitSquare(20, 20)

f = MyFunction()

Pf = project(f, K, mesh)

plot(Pf)

Interpreted programming in FEniCS – p. 12

Interface example

def projection(K):

Construct projection form in FFC representation

v = TestFunction(K)

U = TrialFunction(K)

g = Function(K)

a = dot(v, U) * dx

L = dot(v, f) * dx

return [a, L]

def project(f, K, mesh):

Assemble discrete system

M = Matrix()

b = Vector()

assemble(a, L, M, b, f, mesh)

Solve discrete system

x = Vector()

solve(M, x, b)

Define a function from computed degrees of freedom

Pf = Function(x, mesh, K)

Interpreted programming in FEniCS – p. 13

Time-dependent PDE

Automatic time-discretization by MG:

u̇ = f(t, u) in Ω × (0, T]

∫
Ω

u̇v =

∫
Ω

f(t, u)v in Ω × (0, T],∀v ∈ V

Mξ̇ = b(t, ξ) in (0, T]

DOLFIN can automatically construct M and b(t, ξ) from a
description of

∫
Ω
u̇v and

∫
Ω
f(t, u)v in the FFC form language.

Exists in interface as: TimeDependentPDE.

Interpreted programming in FEniCS – p. 14

Elasticity example: form

K1 = FiniteElement("Vector Lagrange", "tetrahedron", 1)

K2 = FiniteElement("Vector Lagrange", "tetrahedron", 1)

Kmix = element1 + element2

(w_0, w_1) = TestFunctions(Kmix)

(Udot_0, Udot_1) = TrialFunctions(Kmix)

(U_0, U_1) = Functions(Kmix)

f = Function(K2)

Dimension of domain

d = element1.shapedim()

def epsilon(u):

return 0.5 * (grad(u) + transp(grad(u)))

sigma = mult(10.0, epsilon(U_0))

a = (dot(Udot_0, w_0) + dot(Udot_1, w_1)) * dx

L = (dot(U_1, w_0) - dot(sigma, epsilon(w_1)) + dot(f, w_1)) * dx

Interpreted programming in FEniCS – p. 15

Elasticity example: PDE

class ElasticityPDE(TimeDependentPDE):

def __init__(self, mesh, f, bc, T):

forms = import_formfile("Elasticity.form")

Initialize variables...

def fu(self, x, dotx, t):

Assemble right-hand side

FEM_assemble(self.L(), dotx, self.mesh())

FEM_applyBC(dotx, self.mesh(), self.a().trial(), self.bc())

dotx.div(m)

Interpreted programming in FEniCS – p. 16

Ko

All DE solved using same interface, just specify the DE: f(u).

Ko: Large deformation elasto-visco-plasto with contact.
Ko Stair 1
Ko Stair 2
Ko Frontal

Contact implemented as mass-spring model in C++,
transparently used in Python, TimeDependentPDE interface.

Interpreted programming in FEniCS – p. 17

SWIG: automatic interface generation

Principle similar to FEniCS: automatically computes a mapping
from a C/C++ interface to Python (+other languages). Can use
interface language for tailoring.

Consequence: can use compiled language to define low-level
algorithms and data structures, can use an interpreted language
for structure and further abstraction.

Interpreted programming in FEniCS – p. 18

“JIT”

Use SWIG/compiler to transparently generate efficient
implementation of low-level algorithms: form evaluation,
coefficient evaluation.
K = FiniteElement("Lagrange", "triangle", 1)

f = Function(K)

a = dot(grad(v), grad(U))*dx

L = v*f*dx

Import compiled forms

forms = import_form([a, L, None], ‘‘Poisson’’)

a = forms.PoissonBilinearForm()

L = forms.PoissonLinearForm(f)

coeffs = import_header(‘‘Coefficients.h’’)

Import compiled coefficient

f = coeffs.MySource()

Instant.

Interpreted programming in FEniCS – p. 19

Performance

• Performance overhead of using Python negligible
• Utilize pre-computation (forms) and selective compilation

(coefficients) to achieve performance.
• General principle: Ω(n) algorithms should be implemented in

a compiled language.

Interpreted programming in FEniCS – p. 20

Weaknesses

• Multiple abstractions for same concept (triplicate of Finite
Element in FIAT, FFC, DOLFIN). Name collisions.

• Python definitions cannot easily be used in C++ (need SWIG
in reverse mode). Possible solution: embed Python interpreter.

• Linear algebra interface not very complete in Python.

Interpreted programming in FEniCS – p. 21

Future

Interpreted programming in FEniCS – p. 22

Simple observation

State of the art in mathematics: Perelman submits proof of
Poincaré. Proof is manually checked, takes months.

Automation/computers have existed for over 50 years, still have
not penetrated very deep into science, except essentially as
adding machines.

Interpreted programming in FEniCS – p. 23

	Contents
	Science
	Model = Differential Equations (DE)
	Basic Models = DE
	FEniCS
	FEniCS interface
	Perspective on computer programming
	Automation = Maximal Laziness
	Higher-level language
	Interpreted language
	FEniCS interface example
	Interface example
	Time-dependent PDE
	Elasticity example: form
	Elasticity example: PDE
	Ko
	SWIG: automatic interface generation
	``JIT''
	Performance
	Weaknesses
	Future
	Simple observation

