Functions over Meshes

M. Knepley (ANL)

Matthew Knepley and Dmitry Karpeev

Mathematics and Computer Science Division
Argonne National Laboratory

FEniCS 2006
Delft University of Technology

ARGONNE

NATIONAL LABORATORY

Sections

FEniCS

1/26

@ Review of Mesh
@ Section Interface
@ Completion

@ Conclusions

M. Knepley (ANL) Sections FEniCS 2 /26

Part |

Review of Mesh

M. Knepley (ANL) Sections FEniCS 3 /26

Topology

A Topology is a collection of points with a
covering relation

@ Points represent vertices, edge, ...
@ Covering relation is represented by directed edges

e This produces a graph, called a Sieve
o For meshes, the graph is DAG and is stratified

@ In a Topology, we allow multiple Sieves

M. Knepley (ANL) Sections FEniCS 4 /26

-~
(%)
[}

=

O
[}

-
>
=

istr

D

Sieve

5 /26

0
<
wi
w

M. Knepley (A

A Bundle is an association of spaces to points

A Section is a function over these spaces

@ A Bundle combines Sections with a Topology
@ A Mesh is a Bundle over the computational topology

e It has a distinguished Section, coordinates
e The intrinsic dimension is the height/depth of the Sieve

M. Knepley (ANL) Sections FEniCS 6 /26

Part Il

Section Interface

M. Knepley (ANL) Sections FEniCS 7 /26

Section Interface

A Section is a mapping from Sieve points to a vector of values

@ restrict, update
o Defined on the closure of a point
@ Use an Atlas to manage dimension of each fiber
o Can be implemented by a Section
e Must also manage the domain (harder)
@ Participate in completion
o Communicate values over an Overlap

M. Knepley (ANL) Sections FEniCS 8 /26

Sieve: Mesh Data

III2I3I4I5I6I13IIA|\\5I I1I2I3I
® b

9 9

8 I 9|w|17||s'\ " n
@

I llz I 3|4|5 I 6| 7I8I 9Ilalullsllelwllslls;l‘ﬁqlzllzslzelsol
™
21
I ANSI 7| 8 I 9I13',14"6'19|20IzlIzzl23|24|25|26|27|31|32|33|

21

I 1 I 2 I 3 I 4 I 5 I sI 7 I 8 I 9Imlullzlwlul15|15|17|18|19|20|21|22|23I24'25Izsl27I28|29|30|31|32|33|
33

FEn

Part I11

Completion

M. Knepley (ANL) Sections FEniCS 10 / 26

Section Completion

An QOverlap is a Sieve associating points in different Sieves

We have four phases:

@ Copy local values
o Communicate sizes
o Notice that the size is constant

@ Communicate values

@ Update section with remote values

M. Knepley (ANL) Sections FEniCS 11 /26

Communication

We use auxiliary objects having a Section interface.

@ Use a sizer to allocate overlap section

o Use an Atlas and restrict to the point
e Use section interface for overlap section
o Just the completion of the Atlas

@ Use a filler to update overlap section
e Use a Section and restrict to the point
@ Communicate values in overlap sections
e Can use an arbitrary fusion strategy, not just addition or replacement

M. Knepley (ANL) Sections FEniCS 12 /26

Applications

General communication routines can enable
@ Mesh partition/distribution (and unification)

@ Section distribution

@ Load balancing

M. Knepley (ANL) Sections FEniCS 13 /26

Mesh Completion

Meshes can be reduced to sections

@ Discrete topology is a section over the partitions
e Complete this section to distribute points

@ Topology is a section over the discrete topology
e Values are cones, in the space of points
e Complete this section to distribute cones

o Complete associated sections

M. Knepley (ANL) Sections FEniCS 14 / 26

Section Implementations

@ ConstantSection

o Constant value over the domain
e No communication to complete

@ UniformSection

o Constant fiber dimension
o Atlas can be a ConstantSection

@ Section

o Arbitrary fiber dimension
o Atlas can be a UniformSection

@ Thus we have termination of a completion recursion

M. Knepley (ANL) Sections FEniCS 15 / 26

Concepts vs. Types

@ Sieve o Sifter

@ Overlap o Sifter

@ Section @ ConstantSection

o Atlas @ UniformSection

e Bundle | @ Mesh)

M. Knepley (ANL) Sections FEniCS 16 / 26

Custom Assembly

To define a given assembly, we need

Domain definition

Overlap Construction

Fusion operator

This could support

FETI-DP, BDDC
o GMG
FMM

M. Knepley (ANL) Sections FEniCS 17 / 26

Part IV

Conclusions

M. Knepley (ANL) Sections FEniCS 18 / 26

Conclusions

o Must distinguish between Concept and Type
o Soon to be included in C++
o Can make do with two basic objects
o Sieve
o Section
o This vastly simplifies algorithms
o Most notable in communication

M. Knepley (ANL) Sections FEniCS 19 / 26

Part V

|deas about Build Systems

M. Knepley (ANL) Sections FEniCS 20 / 26

Traditional Problems

Global namespace

e SCons continues this make shortcoming

Configuration and build dependencies
e No explicit hierarchy or dependencies

Audit trail for configure/build information
e When did this flag/library which broke my test get included?
Integration of configure and build

e Uniform, structured access to configure data

Configuration of batch systems

Persistence

M. Knepley (ANL) Sections FEniCS 21 /26

Proposals

@ Encapsulation
o Configure data in Python objects
e Use framework require to access configure objects
e Pass in build object to make rules

Auditing

e Some kind of transition log for designated variables

Configure integration
e Simple require() interface to the configure DAG

Configure extensibility
e Configure object template

Configure for batch systems

o Generate and build a C executable, which runs in the queue
o This generates reconfigure.py which sets options correctly

Persistence

e Use builtin Python persistence

M. Knepley (ANL) Sections FEniCS 22 /26

o Configure uses the framework require (’module.name’, self)
e Returns the requested configure object
o Creates a DAG edge between that object and self
e Could be extended to interproject dependencies?

o Build still using text BNF-style
o Should establish a full DAG underneath (broken in recursive make)
e Auto-dependencies?

M. Knepley (ANL) Sections FEniCS 23 /26

Configure Integration

addDefine (), addSubstitution()
o Replicates the Autoconf interface
addTypedef (), addPrototype ()
o Better interaction with C/C++
addMakeMacro (), addMakeRule()
o Structured interface to make

@ Custom build rules

o Determine includes, libraries, and flags directly from configure
e Can establish implicit rules
o Use automake-like targets

M. Knepley (ANL) Sections FEniCS 24 / 26

Build Rules

def bin_foo(maker):
’foo: foo.c bar.h’
return

def dylib_foo(maker):
’libfoo: foo.c bar.c’
return (maker.mpi.include, maker.mpi.lib, [’-DF00’])

def dylib_bat (maker) :
’1libbat: bat.c’
return ([], [os.path.join(maker.libDir, ’libfoo.a’)], L[

M. Knepley (ANL) Sections FEniCS 25/ 26

Other Features

Sometimes incidental features can greatly increase usability

PETSc Options and configure argument parsing
Configure help system
Integrated version control

importer.py

M. Knepley (ANL) Sections FEniCS 26 / 26

