
© 2006

Configure And Build
Åsmund Ødegård

Simula Research Laboratory AS
November, 2006

FEniCS’06

© 2006

What we will talk about

A rather short survey of available solutions

We only consider Open Source systems

Some of the solutions applied to dolfin

The currently selected solution for PyCC

© 2006

What is the challenge?

Installing software on peoples computer is the second

thoughest challenge (HPL)

You get 5 minutes attention span!

Most people unfortunately run Windows, so you have to

support that.

Binary distribution isn’t always feasible. Source distribution is

hard.

© 2006

What are really the main problems

Developers want something powerfull, flexible, but still possible

to comprehend.

(Advanced) users should be able to figure out things when

somethings goes wrong

For plain users your system should simply works.

Packaging - how should software be delivered to end-users?

© 2006

On the more technical side

Audit trails - what cause this flag in the build

Hierarchical configure and build - namespaces

Error messages should appear early!

On the more philosophical side: How much of your system do

you really need to inspect?

Pessimistic view: I really need to check everything

Optimistic view: I expect that my system works

© 2006

There is no perfect system around!

© 2006

There is no perfect system around!

Who are the main players in the field?

© 2006

There is no perfect system around!

The ancient (in)famous Autotools

Who are the main players in the field?

© 2006

There is no perfect system around!

The ancient (in)famous Autotools

CMake of kitware/VTK fame

Who are the main players in the field?

© 2006

There is no perfect system around!

The ancient (in)famous Autotools

CMake of kitware/VTK fame

SCons, grown out of the perl-based Cons

Who are the main players in the field?

© 2006

There is no perfect system around!

The ancient (in)famous Autotools

CMake of kitware/VTK fame

SCons, grown out of the perl-based Cons

BuildSystem from PETSc, Matt’s pet

Who are the main players in the field?

© 2006

There is no perfect system around!

The ancient (in)famous Autotools

CMake of kitware/VTK fame

SCons, grown out of the perl-based Cons

BuildSystem from PETSc, Matt’s pet

Ant from the Apache world

Who are the main players in the field?

© 2006

There is no perfect system around!

The ancient (in)famous Autotools

CMake of kitware/VTK fame

SCons, grown out of the perl-based Cons

BuildSystem from PETSc, Matt’s pet

Ant from the Apache world

Jam, and variants like FTjam, Boost.jam

Who are the main players in the field?

© 2006

Autotools - no intro required!

Autoconf, Automake, Libtool, and Gettext

Generated “standard” makefiles

Use make to actually do the build

Not so nice syntax. Based on sh and the M4

macro language

Backtrack on errors can be really hard.

Produced make-files are really messy.

The configure script in dolfin is 24627 lines.

© 2006

CMake

Developed by Kitware (VTK!)

Selected by the KDE team recently

Description files must be written in special

CMake syntax.

© 2006

CMake

project(DOLFIN)

set(CMAKE_CXX_FLAGS "-Wall -ansi")

Configuration parameters

set(PETSC_DIR, /usr/local/lib/petsc)
option(ENABLE_PETSC, "Enable PETSc support")
option(ENABLE_CURSES, "Enable curses support")
option(ENABLE_DEBUG, "Turn on debugging and warnings")
option(ENABLE_BOOST, "Enable BOOST support")

if (ENABLE_DEBUG)
 add_definitions(-DDEBUG=1)
 set(CMAKE_CXX_FLAGS "-g ${CMAKE_CXX_FLAGS}")
endif (ENABLE_DEBUG)

© 2006

CMake

Developed by Kitware (VTK!)

Selected by the KDE team recently

Description files must be written in special

CMake syntax.

 Simple but maybe not very powerful syntax

© 2006

Features of CMake

Strong on cross-platform development

Can generate Makefiles, kdevelop projects and

VisualStudio projects

Multiple compilation trees possible from a single

sourcetree.

Mainly a configure tool?

Quite mature! But lacks in documentation

Large user community.

Open Source

© 2006

SCons - a quite different tool
While its ancient roots is the Perl based Cons, SCons is
implemented in Python

Python also used as definition language

Began as ScCons, which won SC build competiton in 2000

Recently turned down by the KDE project

Actually, SCons combined with bksys, a wrapper created for
KDE.

The bksys guy forked SCons into Waf recently.

Replaces make!

Different concept of signatures (MD5 vs. time stamp)

© 2006

Features of SCons

Strong on cross-platform development

Supports for many languages, swig included

Built-in support for CVS, Bitkeeper, Perforce

Unfortunately, no support for SVN and Mercurial

Still beta, good for build, not configure

Works with Python ≥ 1.5.2

Smaller community.

Open Source. Good documentation.

© 2006

BuildSystem

Someone here knows this much better!

Implemented for PETSc?

Primarily a configure system, output Makefiles

Written in Python! Only requires Python to run.

Supports version control systems (Bitkeeper, what else?)

Open Source. Not so good documentation

No community.

It does its job, but have issues...

© 2006

Apache Ant is a Java-based build tool

In theory a replacement for make

Use XML for descriptions/buildfiles

Fully buzzword compliant?

Open source, large community

Cross plattform development

© 2006

Jam and all it’s variants

The original Jam is from perforce

Versions from freetype.org and Boost

Main strength that it understands C/C++

Can parse targets for #include to figure out what needs to

be compiled

All the variantes tell me it’s not a perfect thing

I really do not known Jam though. I have heard of enough

people struggle with it.

© 2006

What else have we
I have found numerous other tools mentioned:

© 2006

What else have we

tmake/qmake

MakeXS

GConfigure

buildtool

package-framework

MakeNG

nmake

Maven

Waf - fork of SCons

The commericial world?

Probably other systems I
don’t know about....

I have found numerous other tools mentioned:

© 2006

Some experiments with Dolfin

Arve Knudsen have done some experiments with SCons and CMake.

Only very a very limited part of dolfin is considered in these experiments.

No configure-tests are actually carried out

© 2006

Dolfin and CMake

Write a CMakeLists.txt in the root and eventually in subdirectories

<show example>

Run cmake . to create Makefiles in batch mode

Run cmake -i to run CMake interactively. All settings defined in the

CMakeLists.txt file, as well as some system variables can be modified

CMakeLists.txt files are quite clean

© 2006

Dolfin and SCons

Write a SConstruct file in the root

Write SConscript files in various subdirectories

As SCons is not a preprocessor to make, the buildrules must

be defined explicitly

Run by saying scons in the root directory.

A submodule can be compiled with scons -u in that directory.

Central concept: the Environment

<show an example>

© 2006

Pros and Cons
Pros - CMake

Clean syntax
Large user community

Cons - CMake
Special macro language
Not much documentation
available for free
Rely on make for
Looking into the CMake
system for VTK doesn’t give
me great confidence

Pros - SCons
Based on Python
Decent documentation
Support multiple build-
environments (but not true
hierarchical)
Can run under the regular
python debugger (pdb)

Cons - SCons
Lacks proper configure
Lot of relatively black magic
Build-files can be messy if not
implemented with care

© 2006

Making SCons work for us

We are currently using SCons for PyCC.

We have just started prototyping a configure system for

SCons

Our experience is that SCons feels more like a framework

for building configure and build system, than a system in it

self - at least for larger projects

Maybe that is what we need, and maybe what SCons has is

suitable for our needs

© 2006

Offloading the work
It is common that a configure system do all the searching for

information about external dependencies.

In our system, pkg-config will provide information about

external dependencies (Include dirs, lib dirs, compile and link

flags).

We provide a pkg-config “generator” that do the searching if

no pkg-config is found.

We still have to test that the information pkg-config

provides, is usable!

© 2006

Simple description of submodules
PyCC is organized in several submodules

To ease the burden for the developer, we have implemented

a simplified way of specifying sources and dependencies, in

Dependencies = ["numpy-1"]
LibSources = ["Conductivity.cpp", "FiberInterpolator.cpp"]

A swig directory with a file module.i within the directory for the submodule

will trigger building of a swig wrapper.

We create a SCons build environment (Environment) for each submodule.

There are other things as well that can be set in scons.cfg.

© 2006

SCons and configure

We are currently trying to prototype a separate configure

step for SCons.

It will use the scons.cfg files to figure out what is needed.

pkg-config is used to pull in information.

Using the build-system in SCons, tests can be carried out.

All necessary information is stored using cPickle, and read

when the user needs to build.

This system is by no means ready for consumption.

© 2006

Other slides

© 2006

Cross language
reference counting
Åsmund Ødegård, Ola Skavhaug, and others.

© 2006

Cross language reference counting

def somefunc(x):
 y = filter(x)
 c = SomeC++function(y)
 return c
c.doSomething() #seg.faults

Consider some python code where a python object is sent to
some wrapped C/C++ function:

Now, if the object ‘c’ use a pointer to data living
inside y, we get a seg.fault when c.doSomething() is
called, due to garbage collection.

© 2006

A few words on the context

Some C++ library

Wrap the library with SWIG

Use the library from Python

We want something we can plug in with the

SWIG typemap system

From the C++ side it should be transparent

whether an object has connections to Python

or not, when it comes to ref. count

© 2006

The FEniCS server

As I am in charge of running the server, does

anyone have any request?

