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Survey efforts at automatic PDE simulation

Meta-theme 1: code Is object ofathematical
Investigation

Meta-theme 2: overarching structure in FEM

Technical content:
Representing discrete multilinear forms
Optimizing the evaluation of variational forms
Reasoning about form syntax with sieves
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Effort Is focused on Method X for Problem Y

Particular experts find development easy (most
people do not)

Difficult to explore wide range of models/methods

mplicit assumption: Mathematics tells you what tc
program, not how to program it
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New Languages

Analysa, FreeFEM

Embedded Languags

$Sundance, FFC, Life

v/

Library support

Albert , Deal

The situation is more complex than ODE:
General purpose code fof = f(u) available since

19/70’s

Steady increases in accuracy, adaptive error contr
differential algebraic equations, etc

But no method works for “all” PDE!
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Main developer, Kevin Long, SLNL

C++ (with Python interface) library for specifying
weak forms symbolically.

Differentiation, preprocessing, interface to solvers
Solve time>> symbolic processing

Arbitrary order Lagrange elements (other element:
pending) from FIAT.

Example: Pressure-stabilized FEM for
Navier-Stokes implemented in 113 lines (1/O,
Problem specification, continuation loop, etc)
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\ariational statement

Steady, incompressible Navier-Stokes equations:
Findu € V9, p € W such that

(Vu, Vov) + Re(u - Vu,v) — (p, V-v) =0
(V-u,w)=0

forallv e VO, w e W.
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Based on weak formulation of problem.

Approximation is to find solution on
finite-dimensional subspace.

EXxistence, uniqueness, stability analyzed similar t
PDE

Error estimate— approximation theory
But they’re hard to program on a computer
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\We consider thequal-order stabilizednethod
(Vuy, Vo) + Re(uy, - Vup,vp) — (pn, V- vp) =0
(V - Up, wh) + 5h2(Vph, th) =0

Circumvents the “inf-sup” condition (Babuska, Brez:
Ladyzhenskaya) and allows piecewise linear basis fu
tions for both velocity and pressure.
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Problem definition (declarations happen above)

egn = Integral (interior, (grad+«vx)=*(grad+ux) \
+ (gradxvy)*(gradxuy) - px*x(dx*vx+dy*vy) \
+ beta*h+~h+(grad+q)*(grad+*p) + q*(dx*ux+dyxuy) \
+ reynol ds*(vx*(uxgrad)*ux) \
+ reynol ds*(vyx(uxgrad)*xuy), quad2)

bc = Essential BC(left, vxxux + vy+uy, quad2) \
+ Essential BC(right, vx*ux + vyxuy, quad2) \

+ Essential BC(top, vx*(ux-1.0) + vy*xuy, quad2) \
+ Essential BC(bottom vx*ux + vy*uy, quad2)

The Nonl 1 near Probl em class takes derivatives
builds Jacobians, and talks to Newton’s method for yol

Mathematical Aspects of Automating Finite Element Compate— p.10/=



Source detection
Geometric/toplogical design of microfluidics device

New student projects at Chicago:

Studying convergence and conditioning
properties of various FEM for Stokes (Andy
Terrel, also using FEnICS/FFC/DOLFIN)

Incorporation of surface tension in a
Rayleigh-Taylor model (Noah Clemons)

Comparison of MHD formulations (Peter Brune
Many others...
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Focus moves beyonmhecode working forone
problem.

What is the inherent structure of the pieces of FEN
Topics:
—orm evaluation— tensor contractions

Discrete structures for optimized form evaluatic
Reasoning about syntax for variational forms.
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Tensor structure of discrete forms

= Example: Laplacian
m General result

= Local matrix (or its action) expressed as sequence
tensor contractions.

= These are optimized by discrete metrics/geometry
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Example: Laplacian

Variational form:

a(u,v):/Vu-Vv
0

For eachi ¢ 7;, need to build

A = / Vi, - Vi, do
K

D
=Y | DioiDlosds
d=1 7 &

This IS a sum ovemonomialterms.
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Transforming to reference elementjgi

Calculation usually happens via a change of variables;
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Transforming the Laplacian

/ V¢K1 V¢K 2(
0X., 0X 0d! (X acb2( )
_ F/ aq 0%, X
det KZ 915 O /K X, d
— ZAO €

Every A? is contracted withG ;- for each element.

042
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Transforming the Laplacian (2)

Tensors:

d.X

40 _ / 0P; (X) 097 (X)
@ Jk 00X, 0X,,

0X,, 0X
o d tF/ a1 65
K . K ; 5’:13‘5 85135

= Reference element and geometry separated

= One A" for the form, on&7 - for each element

= Main loop nest for computation of matrix:
contract/insert

Mathematical Aspects of Automating Finite Element Compate— p.17/=



)
9
@)
-
©
p -
e
-
@
)
O
=
{8
-
©
M
-
@

Notice this can be done cheaply, we’ll revisit this id¢

later.
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Symmetric form— G symmetric

Can reduce work for triangles from 4 to 3 (9 to 6 ol
tets)

Similar reductions for more complicated symmetri
forms.
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General class of multilinear forms:

Z/H%WW”%Wmex

veC
Notation:
ci(?,7) coefficient
Li(?,7y) basis function index

k;(2,7) | vector component index

0;(z,v) | multiindex for derivative

Mathematical Aspects of Automating Finite Element Compate— p.20/=



\ector Weighted Laplacian

a(v,u) > > / Ovim| au%]dx.

€T €T
y1=1 v9=1 a 2 a Y2

d |V5"

]
Y Y Y / 0x72 - w73¢”[y§’3 dz,

v1=1 =1 v3=1 8%2
In the notation above, we have= 2, m = 3, «(7,7) =
(11, 42,73), 0(i,7) = (72,72, 0), K(2,7) = (91,71,0) and
cj(i,7) = (1,1, w,,)
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Representation result

Theorem. Let Fx : Ky — K be affine,
{VEY, {Vo}m, discrete function space$,= ¢ o F.
Then

=Y AVGY Viel
acA

Z/ 5/ e K?] @)["3](2 a, )] dX,
KOJ 1

peb

- \5/ zozﬂ|aX6 (.0

ZdetFKHc]zozﬁ H H Os, o)
—1 k=1 ’k:ZOéa

pseb’
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Separateseference elememformation from
geometric/coefficienhformation.

Reference tensor and code for geometry tensor ce
be generated once for all (FFC).

Can be extended to nonlinearities, curved geomet
(Logg & K.)

One element isomorphic to matrix-vector
multiplication

But instead of BLAS...
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Abstract problem:
V. C R™with |V| < oo be given.
Find a process for computing’q : v € V'} for
arbitraryg € R™ in minimal flops
Points to remember:
V' Is very special — not random.

Finding true minimum Is very hard and not
necessary.

This is not something a general-purpose compiler
can do.
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What kinds of tricks are there?

Look back at the Laplacian.
m Sparsity
» Equality: u = v
» Colinearity:u = av, v # 0.
= Hamming distance
= Linear combinations = av + fw

If u'g is known, perhaps’g can be computed in less tha
m multiply-add pairs.
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Complexity-reducing relations

Definition. Letp : Y x Y — [0, m] be symmetric. We
say thatp i1s complexity-reducingf for every y,z € Y
with p(y, z) < k < m, y'g may be computed using the
resultz’qg in no more thark multiply-add pairs.
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0 = . .
d(y,z) =< S Discrete metric
| m, YF 2
(1, y=oz : :
=q Colinearit
c(y, 2) m, oyt az y

O, Yy ==z : :
d*(y, z) = { .y £ s Projective
H(y,z) = {7 : yi # 2} Hamming distance
Hamming:
Lety = {1,2,3},2 =1{1,2,5}.

2'g=y'g+ (2 —y)'g, butz —y = {0,0, 2}.
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Many CRRs are metrics, but not all are.

Others are metrics on projective space or
equivalence classes

Minimum over CRRs Is a CRR

Minimum over metric CRRs is not necessarily a
metric

Can define aneetoperation on metrics.

WLOG, we will assume a single CRRthat may or may
not be a metric in the following.
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A sketch of an “optimal” algorithm

g € R™ given

computev! g

I ={1}

while I # [1,n] do
Pick: ¢ I to minimize over{p(v;,v,) : j € I}.
Computeuv!g
I —Tu{i}

end while
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(V, p) defines a complete weighted graph with element
of I/ as nodes angd(v;, v,) the weight of the edge
betweeny; andw;.

The above algorithm needsw@nimum spanning treef
the graph associated witl, p).

Theorem. Let p be a complexity-reducing relation dn
andg € R™ be arbitrary. Then, computing'qg : v € V'}
by traversing of a minimum spanning tree(df, p) gives
a minimal-flop computation.
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D Total cost: 17 MAPs
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V' generated by FFC (need to pipe code back)

Can generate straight-line code (MST/graph is onl
used for generatiomot at run-time)

Computing MST is (worst-casey logn, n = |V|
by Prim or Kruskal.
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EXperimental results

= Observe flop reduction for a few forms
= Run-time impact for Laplacian
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Flop reduction, Laplacian

Total flop count for computing one element matrix. No
that the main cost on triangles is writing down the answ

triangles tetrahedra
degree| n m nm | MAPs degree| n m nm | MAPsS
1 §) 3 18 9 1 10 §) 60 27
2 21 3 63 17 2 55 §) 330 101
3 550 3 165 46 3 210 6 1260| 370
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Scalar weighted Laplacian

Ay (U, V) :/qu-Vv dx
0

0P; (X) 0d;, (X)
0o 1 2
Am_/Ecbal(X) e dX

0X,, 0X.,
(9:6 3 (9:6 I6; .

GS = w,, det F!

— Wy, (GL)(QQ’QB)

€

Note the outer product structure Gf
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Do contraction all at once (must buiddy)
- Y A

Contract with(G%)* first (optimize), then contract with

w.
ZAO GL ozz,oza)

ao,003

— E Aj 0, Wa,
07
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Contract withw first (optimize), thel G*)x

0427043 ZA aWay
E AOQ?O(S (042,043

2,063

Must account for
Computing outer product fa® ;- or not.
Cost of optimized first phase.
Cost of second, nonoptimized phase.
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In most cases, third approach gives the best reduc

triangles tetrahedra
degree| n @ m  nm MAPSs degree| n m nm MAPSs
1 §) 9 54 25 (3) 1 10 24 240 67 (2)
2 21 18 378 | 201 (3) 2 55 60 3300 | 795 (3)
3 55 30 1650| 1064 (3) 3 210 120 25200( 8988 (3)
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Seconds per million triangles

10.0000

OLinear
M Quadratic

Quadrature
Insertion
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Geometric optimization

= Relations between three or more (e.g. linear
dependence) tensors don't fit in graph-theoretic
structure.

= What's the right model?
= Integrate geometric dependencies with CRRs
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Let |V| < oo be asetand. C P(V) be a set of

lines Then(V, L) is apartial geometnyif there is at
most one line passing through each pair of points
and each line contains at least three points.

Note: typical geometries have every pair of points
contained irexactlyone line.

Partial geometries are encoded by ternary relation
on distinct unordered triples that satisfy

R{u,v,w} AN R{v,w,z} — R{u,v,z} N R{u,w, x}
Coplanarity is such a ternary relation.
Can generalize to relations of higher arity.
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Closure and generators

We define thelosureof S c V, denoted bys,
recursively by

mpeS—veS
mzcVAJzr,ye S R{z,y,2t »2¢€ S
We can also defingeneratordor a set:

wlf S=T C V,we sayS generated".

= If S generated’ and no subset o generate§’,
thenS is aminimal generatofor 7.
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Topological sort resolves dependencies, sequencs
computation

\A/ant minimAal nenarator tha
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Hardness unknown (so far)

Greedy algorithm:

Add “most connected” point to the set of
generators

Compute closure
Repeat until all tems are generated or generat

Don’t know If this gets the minimal, but seems
effective

Geometric optimization not as effective as CRR
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Want a “minimum spanning hypertree”

Each item
Is root (costsn) OR
Has one (binary) or two (geometric) parents

This Is probablyN P-hard (optimization over all
permutations oi/)

Simple modification of Prim’s algorithm is a first
approximation algorithm

Typically get about 25% additional reduction in floj
count

Mathematical Aspects of Automating Finite Element Compate— p.45/=



Reasoned about low-level algorithms

Can reason about “form syntax”
Represented as a DAG
DAG — Sieve
Nonlinear coupling
Extracting logical blocks
Implementation still in progress
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Incompressible Navier-Stokes equatior
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Introduced by Knepley and Karpeev (TOMS, 2005
as a combinatorial/topological model for finite
element meshes

Based on covering relation

Expresses dimensional/shape-independent mesh
(and many interesting operations)

Operations defined ochains(sets) of nodes in the
graph.

Allows construction of dattice on the power set of a
graph

Also allows us to reason about abstract syntax.
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cone( U) : In-neighbors ol
support (u) : out-neighbors ot
Define these on chains by union of nodewise resu

cl osur e(u) : applycone recursively, all points
from whichu is reachable

st ar (u) : applysupport recursively, all points
reachable fronu.

These are extended to chains as well.
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\We can introduce lattice operations as follows

neet (u, v) Is the minimal separator — minimal se
of points which, if removed, ensure thatv are not
both reachable from any point.

neet defined on chaing,ol n is neet on the dual
graph.

neet ,| ol n defined on chains by union

These operations are critical to reasoning about abst
syntax.
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star(cl osure(u))

Mathematical Aspects of Automating Finite Element Compate— p.51/=



star(nmeet(u,v))
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u,p would couple nonlinearly ihreet (u, p) are
nonempty.

Example: MHD, Lorenz force couples velocity,
magnetic field

polynomial nonlinearity iru. Need a slightly
different operatosel f neet (u) .
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PDE language allows extraction of logical blocks
Schur-type solver/preconditioner
Pattern match against existing code

Automatic/adaptive implicitness? (cf adaptive ODE
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Numerical PDE rich in structure atany levels

Potential for automation/optimization enriched if w
let mathematics inform our software engineering
(Mathematical software should Ipeathematical

Improve reliability and efficiency of scientists, new
opportunities for numerical analysts (and other
mathematicians, too)
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