
Current and Future Plans for FEniCS

Anders Logg
logg@simula.no

Simula Research Laboratory

BIT Circus Stockholm, August 31 - September 1 2006



The FEniCS Project
Current Plans
Future Plans

Outline

The FEniCS Project
Introduction
Examples
Efficiency

Current Plans
Overview
Linear algebra
The new mesh

Future Plans

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

The FEniCS Project

◮ Initiated in 2003

◮ Develop free software for the Automation of CMM

◮ An international project with collaborators from Simula
Research Laboratory, KTH, Chalmers, Delft University of
Technology, Texas Tech, University of Chicago, and Argonne
National Laboratory

The Automation of CMM:

(i) The automation of discretization (done)

(ii) The automation of discrete solution

(iii) The automation of error control

(iv) The automation of modeling

(v) The automation of optimization

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Key Features

◮ Simple and intuitive object-oriented API, C++ or Python

◮ Automatic and efficient evaluation of variational forms

◮ Automatic and efficient assembly of linear systems

◮ General families of finite elements, including arbitrary order
continuous and discontinuous Lagrange elements

◮ Arbitrary mixed elements may be defined

◮ High-performance parallel linear algebra

◮ Triangular and tetrahedral meshes, adaptive mesh refinement

◮ Multi-adaptive mcG(q)/mdG(q) and mono-adaptive
cG(q)/dG(q) ODE solvers

◮ Support for a range of output formats for post-processing,
including DOLFIN XML, ParaView/Mayavi/VTK, OpenDX,
Tecplot, Octave, MATLAB, GiD

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Components

◮ DOLFIN is the C++/Python
interface of FEniCS

◮ FIAT is the finite element backend
of FEniCS

◮ FFC is a just-in-time compiler for
variational forms

◮ FErari functions as an optimizing
backend for FFC

◮ Ko is a special-purpose interface
for simulation of mechanical
systems

◮ Puffin is a light-weight version of
FEniCS for Octave/MATLAB

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Poisson’s Equation

Find U ∈ Vh such that a(v, U) = L(v) for all v ∈ V̂h, where

a(v, U) =
∫
Ω
∇v · ∇U dx

L(v) =
∫
Ω

vf dx

element = FiniteElement("Lagrange", ...)

v = TestFunction(element)

U = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(U))*dx

L = v*f*dx

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

The Stokes equations

Differential equation:

−∆u + ∇p = f in Ω
∇ · u = 0 in Ω

u = u0 on ∂Ω

◮ Velocity u = u(x)

◮ Pressure p = p(x)

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Stokes with Taylor–Hood elements

Find (U, P ) ∈ Vh = V u
h × V

p
h such that

∫
Ω

∇v : ∇U − (∇ · v)P + q∇ · U dx =

∫
Ω

v · f dx

for all (v, q) ∈ V̂h = V̂ u
h × V̂

p
h

◮ Approximating spaces V̂h and Vh must satisfy the
Babuška–Brezzi inf–sup condition

◮ Use Taylor–Hood elements:
◮ Pq for velocity
◮ Pq−1 for pressure

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Implementation

P2 = FiniteElement("Vector Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

(v, q) = TestFunctions(TH)

(U, P) = TrialFunctions(TH)

f = Function(P2)

a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U))*dx

L = dot(v, f)*dx

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Solution (velocity field)

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Stabilization

◮ Circumvent the Babuška–Brezzi condition by adding
a stabilization term

◮ Modify the test function according to

(v, q) → (v, q) + (δ∇q, 0)

with δ = βh2

Find (U, P ) ∈ Vh = V u
h × V

p
h such that

∫
Ω

∇v : ∇U−(∇·v)P +q∇·U +δ∇q ·∇P dx =

∫
Ω

(v+δ∇q)·f dx

for all (v, q) ∈ V̂h = V̂ u
h × V̂

q
h

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Implementation

vector = FiniteElement("Vector Lagrange", "triangle", 1)

scalar = FiniteElement("Lagrange", "triangle", 1)

system = vector + scalar

(v, q) = TestFunctions(system)

(U, P) = TrialFunctions(system)

f = Function(vector)

h = Function(scalar)

d = 0.2*h*h

a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U) + \

d*dot(grad(q), grad(P)))*dx

L = dot(v + mult(d, grad(q)), f)*dx

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Benchmarks

◮ Measure CPU time for the evaluation of the element tensor
(the “element stiffness matrix”)

◮ Code automatically generated by the form compiler FFC

◮ Compute speedup compared to a standard quadrature-based
approach with loops over quadrature points

Form q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

Mass 2D 12 31 50 78 108 147 183 232

Mass 3D 21 81 189 355 616 881 1442 1475

Poisson 2D 8 29 56 86 129 144 189 236

Poisson 3D 9 56 143 259 427 341 285 356

Navier–Stokes 2D 32 33 53 37 — — — —

Navier–Stokes 3D 77 100 61 42 — — — —

Elasticity 2D 10 43 67 97 — — — —

Elasticity 3D 14 87 103 134 — — — —

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Compiling Poisson’s equation: non-optimized, 16 ops

void eval(real block[], const AffineMap& map) const

{

[...]

block[0] = 0.5*G0_0_0 + 0.5*G0_0_1 +

0.5*G0_1_0 + 0.5*G0_1_1;

block[1] = -0.5*G0_0_0 - 0.5*G0_1_0;

block[2] = -0.5*G0_0_1 - 0.5*G0_1_1;

block[3] = -0.5*G0_0_0 - 0.5*G0_0_1;

block[4] = 0.5*G0_0_0;

block[5] = 0.5*G0_0_1;

block[6] = -0.5*G0_1_0 - 0.5*G0_1_1;

block[7] = 0.5*G0_1_0;

block[8] = 0.5*G0_1_1;

}

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Compiling Poisson’s equation: ffc -O, 11 ops

void eval(real block[], const AffineMap& map) const

{

[...]

block[1] = -0.5*G0_0_0 + -0.5*G0_1_0;

block[0] = -block[1] + 0.5*G0_0_1 + 0.5*G0_1_1;

block[7] = -block[1] + -0.5*G0_0_0;

block[6] = -block[7] + -0.5*G0_1_1;

block[8] = -block[6] + -0.5*G0_1_0;

block[2] = -block[8] + -0.5*G0_0_1;

block[5] = -block[2] + -0.5*G0_1_1;

block[3] = -block[5] + -0.5*G0_0_0;

block[4] = -block[1] + -0.5*G0_1_0;

}

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

Compiling Poisson’s equation: ffc -f blas, 36 ops

void eval(real block[], const AffineMap& map) const

{

[...]

cblas_dgemv(CblasRowMajor, CblasNoTrans,

blas.mi, blas.ni, 1.0,

blas.Ai, blas.ni, blas.Gi,

1, 0.0, block, 1);

}

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Introduction
Examples
Efficiency

The compiler approach

◮ Any form

◮ Any element

◮ Maximum efficiency

Possible to combine generality with efficiency by using a
compiler approach:

Generality Efficiency

Compiler

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Recent updates (DOLFIN 0.6.2 / FFC 0.3.3)

◮ Release of DOLFIN 0.6.2 and FFC 0.3.3 (any day now)

◮ Improved linear algebra supporting PETSc and uBlas

◮ FErari optimization in FFC

◮ Much improved ODE solvers

◮ Boundary integrals

◮ PyDOLFIN, the Python interface of DOLFIN

◮ Bugzilla database

◮ Improved manual, compiler support, demos, matrix factory,
file formats, . . .

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Coming updates (DOLFIN 0.6.3)

◮ A new mesh library!

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Linear algebra backends

◮ Complete support for PETSc
◮ High-performance parallel linear algebra
◮ Krylov solvers, preconditioners

◮ Complete support for uBlas
◮ BLAS level 1, 2 and 3
◮ Dense, packed and sparse matrices
◮ C++ operator overloading and expression templates
◮ Krylov solvers, preconditioners added by DOLFIN

◮ Uniform interface to both linear algebra backends

◮ LU factorization by UMFPACK for uBlas matrix types

◮ Eigenvalue problems solved by SLEPc for PETSc matrix types

◮ Matrix-free solvers (“virtual matrices”)

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Matrices and vectors

Matrix A(M, N);

Vector x(N);

A(5, 5) = 1.0;

x(3) = 2.0;

◮ Default data types: Matrix, Vector

◮ Additional data types: SparseMatrix, DenseMatrix,
PETScMatrix, uBlasMatrix

◮ Common interface: GenericMatrix, GenericVector

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Solving linear systems (simple)

Direct solution by LU factorization:

LU::solve(A, x, b);

Iterative solution by ILU-preconditioned GMRES:

GMRES::solve(A, x, b);

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Solving linear systems (contd.)

Specify Krylov method and preconditioner:

KrylovSolver solver(gmres, ilu);

solver.solve(A, x, b);

◮ Krylov methods: cg, gmres, bicgstab

◮ Preconditioners: jacobi, sor, ilu, icc, amg

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Key features

◮ Dimension-independent interface

◮ Efficient (close to optimal) storage

◮ Automatic computation of connectivity

◮ Parallel

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Benchmarks

Initial results for some random mesh:

Task Old mesh New mesh

Reading and initializing 1000 times 0.9 s 0.21 s

Refining mesh uniformly 8 times 27.2 s 2.14 s

Iterating over connectivity 100 times 18.2 s 1.86 s

Memory usage 281 MB 43 MB

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Mesh abstractions

◮ Mesh = (Topology, Geometry)

◮ Topology = ({ Mesh entities }, Connectivity)

◮ Mesh entity = (dim, index)

◮ Connectivity = { Incidence relations d − d′ }

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Mesh entities

Entity Dimension Codimension

Vertex 0 –

Edge 1 –

Face 2 –

Facet – 1

Cell – 0

◮ Mesh entity defined by (dim, index)

◮ Named mesh entities: Vertex, Edge, Face, Facet, Cell

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Overview
Linear algebra
The new mesh

Mesh iterators

Basic iteration:

Mesh mesh;

for (MeshEntityIterator e(mesh, d); !e.end(); ++e)

for (MeshEntityIterator f(e, 0); !f.end(); ++f)

f->foo();

Iteration with named iterators:

for (CellIterator c(mesh); !c.end(); ++c)

for (VertexIterator v(c); !v.end(); ++v)

v->foo();

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

Highlights

◮ UFL/UFC

◮ Automation of error control
◮ Automatic generation of dual problems
◮ Automatic generation of a posteriori error estimates

◮ Discontinuous Galerkin methods

◮ Mesh algorithms
◮ Adaptive mesh refinement
◮ Mesh algorithms for ALE methods

◮ Improved geometry support

◮ Finite element exterior calculus

Anders Logg logg@simula.no Current and Future Plans for FEniCS



The FEniCS Project
Current Plans
Future Plans

A common framework

◮ UFL - Unified Form Language

◮ UFC - Unified Form-assembly Code

◮ Unify, standardize, extend

◮ Working protototypes: FFC (Logg), SyFi (Mardal)

Anders Logg logg@simula.no Current and Future Plans for FEniCS



FEniCS’06 in Delft November 8–9

http://www.fenics.org/


	The FEniCS Project
	Introduction
	Examples
	Efficiency

	Current Plans
	Overview
	Linear algebra
	The new mesh

	Future Plans
	

