
The FEniCS Project
L. Ridgway Scott

The Institute for Biophysical Dynamics, the Computation Institute, and the

Departments of Computer Science and Mathematics, The University of

Chicago, Chicago IL 60637, U.S.A.

and the FEniCS Team, especially:

U Chicago/CS: Rob Kirby

ANL/MCS: Matt Knepley

TTI-Chicago: Anders Logg

Chalmers U: Claes Johnson

KTH/NADA: Johan Hoffman

Presented at the Midwest Numerical Analysis Conference, 21 May

2005, University of Iowa.

1

1 Overview of CMM

Objective of computational mathematical modeling (CMM) is to

make quantitative predictions of natural phenomena based on

some type of mathematical description.

Models using partial differential equations can be found today in

economics, financial modeling, protein design, materials

engineering, as well as more traditional areas.

Automation of generation of software both minimizes errors in

approximation and allows more accurate models to be used.

The FEniCS project is devoted to

• studying the fundamental challenges of automating

computational mathematical modeling

• developing middleware to automate the generation of software.

2

1.1 More reliable simulations

The greatest source of error is the model itself.

Modelers need to experiment with different models.

Current software development paradigms make this

costly, time consuming, and unreliable.

FEniCS automates generation of simulation codes based on

description of a model (FFC) and the finite element (FIAT).

This allows rapid and reliable simulations with novel models.

Mathematical structure of finite elements

facilitates automation of code generation.

Mathematical modeling can be done using tools of different levels

of complexity. We focus on issues relating to partial differential

equation models to simplify the discussion.

3

1.2 Variational form compiler

Variational forms provide a convenient language to

describe partial differential equations.

Several systems have dealt with arbitrary problems expressed in

variational form. Key step is compilation of variational forms and

code generation in a suitable language (e.g., C++ or Fortran).

A form compiler can generate not only the code related directly to

the variational forms, but also derived forms: error estimators,

derivatives required for Newton’s method, or extended systems.

Scientific simulation requires the highest possible level of

performance from software and hardware.

This means that code optimization techniques are essential.

The FErari system optimizes the generation

of finite element matrices and their actions.

4

2 FFC examples

Copyright (c) 2005 Johan Jansson.

Licensed under the GNU GPL Version 2

#

The bilinear form e(u) : e(u) for linear

elasticity with e(u) = grad(u) + grad(u)^T

#

Compile this form with FFC: ffc Elasticity.form

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

u = BasisFunction(element)

a = (u[i].dx(j) + u[j].dx(i)) * (v[i].dx(j) + v[j].dx(i)) * dx

5

Copyright (c) 2004 Anders Logg (logg@tti-c.org)

Licensed under the GNU GPL Version 2

#

The bilinear form for the nonlinear term in the

Navier-Stokes equations with fixed convective velocity.

#

Compile this form with FFC: ffc NavierStokes.form

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

u = BasisFunction(element)

w = Function(element)

a = w[j]*u[i].dx(j)*v[i]*dx

This compiles to 388 lines of C++ code (38665 characters)

6

3 Introduction to matrix formation

Formation of matrices takes a substantial amount of time

in finite element computations.

Disadvantage of finite elements over finite differences.

But standard algorithm can be far from optimal.

We give a general formalism which can be automated and linked

with FIAT and FFC.

Narrows the efficiency gap between finite elements and finite

differences.

Algorithms we present here can be used in “matrix free”

representations of finite element operations: substantial reductions

in memory requirements and memory traffic.

7

3.1 Long term goal

Provide guidance regarding the development of a form

compiler for finite element variational approximation.

The FEniCS Form Compiler (FFC) is a first step in this direction

and is already in production use.

Our examples provide an indication of some of the challenges of

designing such a compiler if it is intended to be reasonably efficient.

A critical step is to understand what code needs to be generated.

This is less obvious for higher level languages which have complex

operations as elementary units.

There are opportunities for optimization which would be

difficult to uncover automatically from a low-level representation.

They must be captured at high level.

8

3.2 Automation in computational mathematical

modeling

The idea of automating such tasks not new in scientific computing.

Automatic differentiation tools produce efficient gradient, adjoint,

and Hessian for existing code, enabling optimal control calculations,

extended system solvers, and Newton-based nonlinear solvers.

Other tools that automate finite element computation:

• FreeFEM and Sundance provide type of variational form

compiler and automatic generation of matrices

• Similar tools were provided in the Analysa and Dolfin projects

• Also work in numerical linear algebra, etc.

9

4 Operators related to multilinear forms

Consider a variational problem to find u ∈ V such that

a(v, u) = F (v) ∀v ∈ V (4.1)

for a given (continuous, coercive) bilinear form a(·, ·). Corresponds

to a linear system of equations

AU = F ∀v ∈ V (4.2)

where

Aij := a(φi, φj) Fj := F (φj) u :=
∑

i∈I

Uiφi (4.3)

where, e.g., {φi : i ∈ I} is the standard Lagrange nodal basis and

where I denotes the index set for the nodes.

10

In many iterative methods, the actual matrix A is not needed

explicity, rather all that is required is some way to compute the

action of A, that is, the mapping that sends a vector V to the

vector AV . This operation can be defined purely in terms of the

bilinear form as follows. Suppose we write

v :=
∑

i∈I

Viφi (4.4)

Then for all i ∈ I

(AV)i =
∑

j∈I

AijVj =
∑

j∈I

a(φi, φj)Vj

=a(φi,
∑

j∈I

Vjφj) = a(φi, v)
(4.5)

The vector AV can be computed by evaluating a(φi, v) for all i ∈ I.

The standard matrix assembly algorithm can be used to compute

the action efficiently.

11

With (4.5) as motivation, we can introduce the notation a(V , v)

where

a(V , v) := AV . (4.6)

Note that the notation “V” inserted in a slot in the variational

form indicates implicitly the range of the index variable i. Note

that evaluating Yi := a(v, φi) for all i ∈ I computes the vector

Y = AtV . In the notation of (4.6), we have AtV = a(v,V).

Correspondingly, it is natural to define a(V ,V) = A.

The action of a bilinear form can be used in several contexts.

Perhaps the simplest is when non-homogeneous boundary

conditions are posed. Suppose g represents a function defined on

the whole domain which satisfies the correct boundary conditions.

A typical variational problem is to find u such that u − g ∈ V and

a(v, u) = 0 ∀v ∈ V . (4.7)

12

This can be re-written using the difference u0 := u − g ∈ V . The

variational problem becomes: Find u0 ∈ V such that

a(v, u0) = −a(v, g) ∀v ∈ V . (4.8)

In matrix form, we would write this as

AU0 = −a(V , g). (4.9)

This could be solved by a direct method (e.g., Gaussian

elimination) with −a(V , g) as the right-hand-side vector. However,

we could equally well think of (4.7) as

a(V , u0) = −a(V , g). (4.10)

which does not require the explicit evaluation of a matrix and could

be solved by an interative method.

13

4.1 The Action of Trilinear Forms

The nonlinear term in the Navier–Stokes provides an example of

the action of a general multi-linear form. Certain algorithms might

involve a variational problem to find u ∈ V such that

a(u,w) = c(v, ṽ,w) ∀w ∈ V (4.11)

for two different v ∈ V and ṽ ∈ V . Choose w = φi for a generic

basis function φi. Write as usual u :=
∑

i∈I Uiφi. By analogy with

the definition (4.3), we set

Aij := a(φi, φj) ∀i, j ∈ I (4.12)

which, by a simple extension of our convention (4.6), can be

written as

A = a(V ,V). (4.13)

Then (4.11) can be written as

14

(
AtU

)
i
=
∑

j∈I

AjiUj

=
∑

j∈I

a(φj , φi)Uj

=a(
∑

j∈I

Ujφj , φi)

=a(u, φi)

=c(v, ṽ, φi) ∀i ∈ I.

(4.14)

In notation analogous to that of (4.6), we can write (4.14) as

a(u,V) = AtU = c(v, ṽ,V), (4.15)

where the latter term introduces notation for the action of a

trilinear form.

15

4.2 Generating matrices from multilinear forms

With forms of two or more variables, there are other objects that

can be generated automatically in a way that is similar to what we

can do to generate the action of a form. For trivarariate forms, it is

of interest to work with the matrix

Cij := c(v, φi, φj) ∀i, j ∈ I (4.16)

which we write in our shorthand as

C = c(v,V ,V) (4.17)

For example, one might want to solve (for u, given f) the equation

u + v · ∇u = f (4.18)

for a fixed, specified v ∈ V , using the variational form

(u,w)L2 + c(v,u,w) = (f ,w)L2 ∀w ∈ V (4.19)

16

Now write the variational equation

(u,w)L2 + c(v,u,w) = (f ,w)L2 ∀w ∈ V (4.20)

in component form:
∑

i∈I

Ui ((φi, φj)L2 + c(v, φi, φj)) = (f , φj)L2 ∀j ∈ I (4.21)

In operator notation, this becomes

U t ((V ,V)L2 + c(v,V ,V)) = F (4.22)

17

4.3 General tensors from Forms

Frequently the spaces in a form are not all the same, e.g.,

b(v, p) :=

∫
∇·v(x)p(x) dx (4.23)

The form b(·, ·) in (4.23) involves spaces of scalar functions (say, Π)

as well as vector functions (say, V). The matrix b(V , Π) is defined

analogously to (4.12) and (4.13):

(b(V , Π))ij := b(φi, qi) (4.24)

where {φi : i ∈ I} is a basis of V as before, and {qi : i ∈ J } is a

basis of Π. Note that b(V , Π) will not, in general, be a square

matrix.

18

In general, if we have a form a(v1, . . . , vn) of n entries, then the

expression

a
(
. . . ,V1, . . . ,Vk, . . .

)
(4.25)

defines a tensor of rank k. More precisely, each of the n arguments

in the form a(v1, . . . , vn) may be a function space or a member of a

function space.

For example, a
(
v1, v2,V1, v3,V2,V3, v4

)
denotes a tensor of rank 3,

whereas a
(
v1,V1, v2, v3,V2, v4, v5

)
denotes a tensor of rank 2.

Note that a tensor of rank zero is just a scalar, consistent with the

usual interpretation of a(v1, . . . , vn).

A tensor of rank one is a vector, and a tensor of rank two is a

matrix.

Tensors of rank three or higher are less common in computational

linear algebra.

19

5 Matrix Evaluation by Assembly

The assembly of integrated differential forms is done by summing

its constituent parts over each element, which are computed

separately through the use of a numbering scheme called the

local-to-global index. This index, ι(e, λ), relates the local (or

element) node number, λ ∈ L, on a particular element, indexed by

e, to its position in the global data structure.

We may write a finite element function f in the form
∑

e

∑

λ∈L

fι(e,λ)φ
e
λ (5.26)

where fi denotes the “nodal value” of the finite element function at

the i-th node in the global numbering scheme and {φe
λ : λ ∈ L}

denotes the set of basis functions on the element domain Te.

20

The element basis functions, φe
λ, are extended by zero outside Te.

Can relate “element” basis functions φe
λ to fixed set of basis

functions on “reference” element, T , via mapping of T to Te.

Could involve changing both the “x” values and the “φ” values in a coordinated

way, as with the Piola transform , or it could be one whose Jacobian is

non-constant, as with tensor-product elements or isoparametric elements.

For an affine mapping, ξ → Jξ + xe, of T to Te:

φe
λ(x) = φλ

(
J−1(x − xe)

)
.

The inverse mapping, x → ξ = J−1(x − xe) has as its Jacobian

J−1
mj =

∂ξm

∂xj

,

and this is the quantity which appears in the evaluation of the

bilinear forms. Of course, detJ = 1/ detJ−1.

21

5.1 Evaluation of bilinear forms

The assembly algorithm utiizes the decomposition of a variational

form as a sum over “element” forms

a(v, w) =
∑

e

ae(v, w)

where “element” bilinear form for Laplace’s equation defined via

ae(v, w) :=

∫

Te

∇v(x) · ∇w(x) dx

=

∫

T

d∑

j=1

∂

∂xj

v(Jξ + xe)
∂

∂xj

w(Jξ + xe) det(J) dξ

(5.27)

by transofrming to the reference element.

Finite element matrices computed via assembly in a similar way.

The local element form is computed as follows.

22

5.2 Evaluation of bilinear forms—continued

ae(v, w) =

∫

T

d∑

j=1

∂

∂xj

v(Jξ + xe)
∂

∂xj

w(Jξ + xe) det(J) dξ

=

∫

T

d∑

j,m,m′=1

∂ξm

∂xj

∂

∂ξm

(
∑

λ∈L

vι(e,λ)φλ(ξ)

)
×

∂ξm′

∂xj

∂

∂ξm′



∑

µ∈L

wι(e,µ)φµ(ξ)


det(J) dξ

=




vι(e,1)

·

·

vι(e,|L|)




t

Ke




wι(e,1)

·

·

wι(e,|L|)




.

(5.28)

23

Here, the element stiffness matrix, Ke, is given by

Ke
λ,µ :=

d∑

j,m,m′=1

∂ξm

∂xj

∂ξm′

∂xj

det(J)

∫

T

∂

∂ξm

φλ(ξ)
∂

∂ξm′

φµ(ξ) dξ

=
d∑

m,m′=1

Ge
m,m′Kλ,µ,m,m′

(5.29)

where

Kλ,µ,m,m′ =

∫

T

∂

∂ξm

φλ(ξ)
∂

∂ξm′

φµ(ξ) dξ (5.30)

and

Ge
m,m′ := det(J)

d∑

j=1

∂ξm

∂xj

∂ξm′

∂xj

(5.31)

for λ, µ ∈ L and m, m′ = 1, . . . , d.

24

5.3 Computation of Bilinear Form Matrices

The matrix associated with a bilinear form is

Aij := a(φi, φj) =
∑

e

ae(φi, φj) (5.32)

for all i, j.We can compute this again by assembly.

First, set all the entries of A to zero. Then loop over all elements e

and local element numbers λ and µ and compute

Aι(e,λ),ι(e,µ)+ =Ke
λ,µ =

∑

m,m′

Ge
m,m′Kλ,µ,m,m′ (5.33)

where Ge
m,m′ are defined in (5.31).

We optimize the computation of each

Ke
λ,µ =

∑

m,m′

Ge
m,m′Kλ,µ,m,m′ (5.34)

25

6 Computing K for general elements

Tensor K for quadratics represented as a matrix of 2 × 2 matrices.

3 0 0 -1 1 1 -4 -4 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 3 1 1 0 0 4 0 -4 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

-4 0 0 0 -4 -4 8 4 0 -4 0 4

-4 0 0 0 0 0 4 8 -4 -8 4 0

0 0 0 4 0 0 0 -4 8 4 -8 -4

4 0 0 0 0 0 -4 -8 4 8 -4 0

0 0 0 -4 0 0 0 4 -8 -4 8 4

0 0 0 -4 -4 -4 4 0 -4 0 4 8

26

The tensor Ki,j,m,n can be presented as an |L| × |L| matrix of d× d

matrices, as presented in the table for the case of quadratics in two

dimension.

The entries of resulting matrix Ke can be viewed as the dot (or

Frobenius) product of the entries of K and Ge:

Ke
i,j = Ki,j : Ge (6.35)

The key point to consider is how many independent entries there

are in K, and the complexity of them.

For example, six of the entries are all zero, the four 2 × 2 matrices

in the upper-left corner of the table as well as four other entries

representing K are trivial, and there are significant redundancies

among the rest. For example, −4K3,1 = K4,1 = K3,4.

27

6.1 Tensor K for quadratics

zero entries, trivial entries and related entries (−4K3,1 = K3,4 = K4,1)

3 0 0 -1 1 1 -4 -4 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 3 1 1 0 0 4 0 -4 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

-4 0 0 0 -4 -4 8 4 0 -4 0 4

-4 0 0 0 0 0 4 8 -4 -8 4 0

0 0 0 4 0 0 0 -4 8 4 -8 -4

4 0 0 0 0 0 -4 -8 4 8 -4 0

0 0 0 -4 0 0 0 4 -8 -4 8 4

0 0 0 -4 -4 -4 4 0 -4 0 4 8

28

6.2 Computing K for quadratics

Taking advantage of these simplifications, each Ke for quadratics in

two dimensions can be computed with at most 18 floating point

operations instead of 288 floating point operations: an

improvement of a factor of sixteen in computational complexity.

On the other hand, there are only 64 nonzero entries in each K. So

eliminating multiplications by zero gives a four fold improvement.

Sparse matrix accumulation requires at least 76 (=36+36+4)

memory references, not including sparse matrix indexing. Even if

the matrix is stored in symmetric form, at least 46 (=21+21+4)

memory references are needed.

Computational complexity less than cost of memory references.

29

6.3 Linears in three dimensions

The tensor Ki,j,m,n for the case of linears in three dimensions is

presented in the following table: 4K =

1 0 0 0 1 0 0 0 1 -1 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 -1 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 -1 -1 -1

-1 0 0 0 -1 0 0 0 -1 1 1 1

-1 0 0 0 -1 0 0 0 -1 1 1 1

-1 0 0 0 -1 0 0 0 -1 1 1 1

30

6.4 Algorithm for linears in three-D

Each Ke can be computed by computing the three row sums of Ge,

the three column sums, and the sum of one of these sums.

We also have to negate all of the column and row sums, leading to

a total of 20 floating point operations instead of 288 floating point

operations using the straightforward definition, an improvement of

a factor of nearly fifteen in computational complexity.

On the other hand, there are only 36 non-zero elements in K, and

all of these are ±1.

At most 57 (=16+16+16+9) memory references are needed to do a

general sparse matrix update for each element.

Using symmetry of Ge (row sums equal column sums) we can reduce the

computation to only 10 floating point operations, leading to a improvement of

nearly 29. For a sparse matrix update, at most 39 (=10+10+10+9) memory

references are needed.

31

32

7 Evaluation of general multi-linear

forms

Arbitrary multi-linear forms can appear in finite element

calculations.

We use as the next example the nonlinear form c(·, ·, ·) in the

Navier–Stokes term using “element” trilinear forms:

ce(u,v,w) :=

∫

Te

u · ∇v(x) · w(x) dx

=

∫

Te

d∑

j,k=1

uj(x)
∂

∂xj

vk(x)wk(x) dx

=

∫

T

d∑

j,k=1

uj(Jξ + xe)
∂

∂xj

vk(Jξ + xe)wk(Jξ + xe) det(J) dξ

(7.36)

33

Therefore

ce(u,v,w) =

Z

T

d
X

j,k,m=1

X

λ∈L

u
ι(e,λ)
j φλ(ξ)

!

∂ξm

∂xj

X

µ∈L

v
ι(e,µ)
k

∂

∂ξm

φµ(ξ)

!

×

X

ρ∈L

w
ι(e,ρ)
k φρ(ξ)

!

det(J) dξ

=
d
X

j,k,m=1

X

λ,µ,ρ∈L

u
ι(e,λ)
j

∂ξm

∂xj

v
ι(e,µ)
k w

ι(e,ρ)
k det(J)×

Z

T

φλ(ξ)
∂

∂ξm

φµ(ξ)φρ(ξ) dξ

=
d
X

j,k=1

X

λ,µ,ρ∈L

u
ι(e,λ)
j v

ι(e,µ)
k w

ι(e,ρ)
k

d
X

m=1

∂ξm

∂xj

det(J)Nλ,µ,ρ,m

(7.37)

where

Nλ,µ,ρ,m :=

∫

T

φλ(ξ)
∂

∂ξm

φµ(ξ)φρ(ξ) dξ (7.38)

34

To summarize, we have

ce(u,v,w) =
d∑

j,k=1

∑

λ,µ,ρ∈L

u
ι(e,λ)
j v

ι(e,µ)
k w

ι(e,ρ)
k Ne

λ,µ,ρ,j

=

d∑

k=1

∑

µ,ρ∈L

v
ι(e,µ)
k w

ι(e,ρ)
k

d∑

j=1

∑

λ∈L

u
ι(e,λ)
j Ne

λ,µ,ρ,j

(7.39)

where the element coefficients Ne
λ,µ,ρ,j are defined by

Ne
λ,µ,ρ,j :=

d∑

m=1

∂ξm

∂xj

det(J)Nλ,µ,ρ,m. =:
d∑

m=1

G̃mjNλ,µ,ρ,m. (7.40)

where G̃mj := ∂ξm

∂xj
det(J).

35

Recall that J is the Jacobian above, and J−1 is its inverse, and

(
J−1

)
m,j

=
∂ξm

∂xj

.

Note that both Nλ,µ,ρ,(·) and Ne
λ,µ,ρ,(·) can be thought of as

d-vectors. Moreover

Ne
λ,µ,ρ,(·) = det(J)Nλ,µ,ρ,(·)J

−1.

Also note that Nλ,µ,ρ,(·) = Nρ,µ,λ,(·), so that considerable storage

reduction could be made if desired.

36

The matrix C defined by Cij = c(u, φi, φj) can be computed using

the assembly algorithm as follows. First, note that C can be

written as a matrix of dimension |V| × |V| with entries that are

d× d diagonal blocks. In particular, let Id denote the d× d identity

matrix. Now set C to zero, loop over all elements and up-date the

matrix by

Cι(e,µ),ι(e,ρ)+ =Id

d∑

j=1

∑

λ∈L

u
ι(e,λ)
j Ne

λ,µ,ρ,j

=Id

d∑

m,j=1

G̃mj

(
∑

λ∈L

u
ι(e,λ)
j Nλ,µ,ρ,m

)

=Id

∑

m,λ∈L

γmλNλ,µ,ρ,m

(7.41)

for all µ and ρ, where (continued on next slide)

37

γmλ =

d∑

j=1

G̃mju
ι(e,λ)
j . (7.42)

and G̃mj := ∂ξm

∂xj
det(J).

It thus appears that the computation of C can be viewed as similar

in form to (6.35), and similar optimization techniques applied. In

fact, we can introduce the notation Ke,u where

Ke,u
µ,ρ =

∑

m,λ∈L

γmλNλ,µ,ρ,m (7.43)

Then the update of C is done in the obvious way with Ke,u.

The memory traffic required to compute γ is at most |V| × d + d2,

and the update of C could require as few as 3|V|2 memory

references.

38

7.1 Trilinear Forms with Piecewise Linears

In the piecewise linear case, (7.38) simplifies to

Nλ,µ,ρ,m :=
∂φµ

∂ξm

∫

T

φλ(ξ)φρ(ξ) dξ (7.44)

We can think of Nλ,µ,ρ,m defined from two matrices:

Nλ,µ,ρ,m = Dµ,mFλ,ρ where

Dµ,m :=
∂φµ

∂ξm

=




1 0

0 1

1 1


 (d = 2) and




1 0 0

0 1 0

0 0 1

1 1 1




(d = 3) (7.45)

and

Fλ,ρ :=

∫

T

φλ(ξ)φρ(ξ) dξ (7.46)

39

The latter matrix is easy to determine.

In the piecewise linear case, we can compute integrals of products

using the quadrature rule that is based on edge mid-points (with

equal weights given by the area of the simplex divided by the

number of edges).

Thus the weights are ω = 1/6 for d = 2 and ω = 1/24 for d = 3.

Each of the values φλ(ξ) is either 1
2 or zero, and the products are

equal to 1
4 or zero.

For the diagonal terms λ = ρ, the product is non-zero on d edges,

so Fλ,λ = 1/12 for d = 2 and 1/32 for d = 3.

If λ 6= ρ, then the product φλ(ξ)φρ(ξ) is non-zero for exactly one

edge (the one connecting the corresponding vertices), so

Fλ,ρ = 1/24 for d = 2 and 1/96 for d = 3.

40

Thus we can describe the matrices F in general as having d on the

diagonals, 1 on the off-diagonals, and scaled by 1/24 for d = 2 and

1/96 for d = 3. Thus 4(d + 1)!F =




d 1 · · · 1

1 d · · · 1

· · · · · ·

1 1 · · · d




= (d − 1)Id+1 +




1 1 · · · 1

1 1 · · · 1

· · · · · ·

1 1 · · · 1




(7.47)

for d = 2 or 3, where Id denotes the d×d identity matrix. Note that

for a given d, the matrices in (7.47) are d + 1 × d + 1 in dimension.

41

The tensor N (multiplied by ninety-six) for piecewise linears in

three dimensions represented as a matrix of four by three matrices.

3 1 1 1 0 0 0 0 0 0 0 0 3 1 1 1

0 0 0 0 3 1 1 1 0 0 0 0 3 1 1 1

0 0 0 0 0 0 0 0 3 1 1 1 3 1 1 1

1 3 1 1 0 0 0 0 0 0 0 0 1 3 1 1

0 0 0 0 1 3 1 1 0 0 0 0 1 3 1 1

0 0 0 0 0 0 0 0 1 3 1 1 1 3 1 1

1 1 3 1 0 0 0 0 0 0 0 0 1 1 3 1

0 0 0 0 1 1 3 1 0 0 0 0 1 1 3 1

0 0 0 0 0 0 0 0 1 1 3 1 1 1 3 1

1 1 1 3 0 0 0 0 0 0 0 0 1 1 1 3

0 0 0 0 1 1 1 3 0 0 0 0 1 1 1 3

0 0 0 0 0 0 0 0 1 1 1 3 1 1 1 3

42

We see now a new ingredient for computing the entries of Ke,u

from the matrix γm,λ. Define γm =
∑4

λ=1 γm,λ for m = 1, 2, 3, and

then γ̃m,λ = 2γm,λ + γm for m = 1, 2, 3 and λ = 1, 2, 3, 4. Then

Ke,u =




γ̃11 γ̃21 γ̃31 γ̃11 + γ̃21 + γ̃31

γ̃12 γ̃22 γ̃32 γ̃12 + γ̃22 + γ̃32

γ̃13 γ̃23 γ̃33 γ̃13 + γ̃23 + γ̃33

γ̃14 γ̃24 γ̃34 γ̃14 + γ̃24 + γ̃34




(7.48)

However, note that the γm’s are not computations that would have

appeared directly in the formulation of Ke,u but are intermediary

terms that we have defined for convenience and efficiency. This

requires 39 operations, instead of 384 operations using (7.43).

Only 21 memory references are required to compute γ, and at most

48 memory references are required to update C.

43

7.2 Algorithmic implications

The examples provide guidance for the general case.

The “vector” space of the evaluation problem (7.43) can be

arbitrary in size.

In the case of the trilinear form in Navier-Stokes considered there,

the dimension is the spatial dimension times the dimension of the

approximation (finite element) space.

High-order finite elements would lead to very high-dimensional

problems.

We need to look for relationship among the “computational

vectors” in high-dimensional spaces, e.g., up to several hundred in

extreme cases. The lowest order case in three space dimensions

requires a twelve-dimensional space for the complexity analysis.

44

It will not be sufficient just to look for simple combinations to

determine optimal algorithms. We need to think of this as an

approximation problem.

Must look for vectors (matrices) which closely approximate a set of

vectors that we need to compute. The vectors

v1 = (1, 1, 1, 1, 0, . . . , 0),v2 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),v3 =

(0, . . . , 0, 1, 1, 1, 1) are each edit-distance one from four vectors we

need to compute. The quantities γm represent the computations

(dot-product) with vm. The quantities γ̃mλ are simple

perturbations of γ which require only two operations to evaluate. A

simple rescaling can reduce this to one operation.

Edit-distance is a useful measure to approximate the computational

complexity distance, since it provides an upper-bound on the

number of computations it takes to get from one vector to another.

Thus we need to add this type of optimization.

45

8 The FErari system

We have implemented a prototype system called FErari, for Finite

Element Re-arrangement Algorithm to Reduce Instructions.

We used FErari to verify that simple algorithms can find

substantial reduction in operations that we exposed in our

examples.

We give FErari results for conforming and nonconforming Lagrange

elements in two dimensions in the following tables.

We have grouped the vectors according to whether they are zero

(0), equal (=), colinear (‖), have only one nonzero entry (1e), differ

by edit distance one (ED1), have only two nonzero entries (2e), are

a linear combination of two other vectors (LC2).

46

Table 1: FErari at work on Conforming Lagrange elements in two dimen-

sions. All of the vectors are accounted for by the algorithm. Key: O is the

order of polynomials; Tot is the total number of vectors. The remaining

entries are the number of vectors that are zero (0), equal (=), colinear (‖),

have only one nonzero entry (1e), differ by edit distance one (ED1), have

only two nonzero entries (2e), are a linear combination of two other vectors

(LC2). MAPs is an upper bound on floating point operations required.

O Tot 0 = ‖ 1e ED1 2e LC2 MAPs

1 9 0 0 0 4 4 0 1 10

2 36 6 11 6 4 8 0 1 20

3 100 6 41 10 4 16 8 15 76

4 225 0 98 6 4 35 16 66 209

5 441 0 183 15 4 51 28 160 446

6 784 0 342 21 4 75 32 310 784

47

The picture for non-conforming elements has fewer simple relations,

but coplanarity relations can still be used to reduce computation

substantially.

Table 2: FErari at work on Nonconforming Lagrange elements in

two dimensions. All of the vectors (Total) are accounted for by the

algorithm. See Table 1 for explanation of terms.

O Tot 0 = ‖ 1e ED1 2e LC2 MAPs

1 9 0 0 0 4 4 0 1 10

3 100 0 11 1 0 0 0 88 177

5 441 0 105 0 0 0 0 336 672

48

FErari searches through the vectors as follows. (The operation

counts for FErari to find the dependences or properties are given in

parentheses.) The operation counts that result from using the

discovered property are listed at the end, and are counted as

multiply-add pairs (MAPs). FErari starts with the entire list of

(Total) vectors and marks vectors in the list at the i-th state that

have the i-th property:

1. zero vectors (O(n)) – these entries of K are free

2. vectors that are equal (O(n log(n)) – these entries of K are free

3. vectors that are colinear (O(n log(n))) – costs one MAP each

4. vectors that have only one nonzero entry (O(n)) – one MAP

each

5. vectors that are edit distance one (ED1) from another vector or

its negation (O(n2)) – one MAP each, plus maybe a (cheap)

sign flip

49

6. vectors that have only two nonzero entries (O(n)) – two MAPs

each

7. vectors that are linear combinations (LC2) of two other vectors

(O(n2)) – two MAPs each

Note that the cheaper operations to perform and the ones that

have the biggest payoff are done first.

FErari did not search here among alternate evaluation graphs, but

rather it assigned evaluation strategies to each vector iteratively

following the above scheme.

The examples are limited to two-dimensional cases for the Poisson

operator, for simplicity. The data were generated with the Fiat

system. However, FErari can be applied to data supplied by any

method.

50

8.1 Collinearity tests

Two vectors in IRD are collinear if and only if the absolute value of

the cosine of the angle between them is one. If the vectors are

normalized to have Euclidean length one, then just check whether

their dot-product has absolute value one or not. Test can be

performed in O(D) arithmetic operations.

Further normalization: make the first non-zero coordinate of the

unit vectors positive, by multiplying the vector by −1 if necessary.

This provides a unique representation of the vectors in projective

space, and we can check for collinearity by simply checking equality

of individual components.

In a sense, we use a lexicographic ordering to check for equality.

Using a sorting algorithm with this ordering determines collinearity

in O(D log n) arithmetic operations.

51

8.2 A (random) dimensional reduction algorithm

A randomized approach could be faster for large D.

If two vectors are collinear, so will be any projection of the vectors

onto a subset of coordinates.

Pick at random k different coordinates (numbers from 1 to D) and

apply an appropriate algorithm in k dimensions. (If k = 2 or 3,

special techniques apply.)

When two vectors are collinear in these k dimensions, apply to the

algorithm again in two other randomly selected coordinates.

It is only necessary to apply the algorithm to subsets of vectors

linked by potential collineartiy.

When such equivalence classes are sufficiently small, test all

remaining coordinates.

52

8.3 Efficient Computation of co-planarity

One vector can be written as a linear combination of two others if

and only if the three vectors (and the origin) are co-planar.

A simple approach to finding co-planar trios of vectors would

require an amount of computation cubic in the number of vectors.

For example, we could randomly select three coordinates and

consider the projection of all trios of vectors in these coordinates.

Form the matrix from the three projected vectors and compute the

determinant. If it is non-zero, then the vectors are linearly

independent, so this trio of vectors need not be considered further.

Apply the algorithm recursively to the subset of vectors that

appear to be linearly dependent in the coordinates currently

chosen. This is a simple and attractive algorithm, but its cost is

still cubic in the number of vectors.

53

8.4 A (nearly) quadratic algorithm

The basic idea is to determine the set of planes generated by all

pairs of vectors.

We assume that collinear pairs have been removed.

Then three vectors lie in a plane if and only if the planes of each of

the pairs are the same (co-planar). Thus we have reduced the

problem to a form similar to the efficient collinearity algorithm.

Determining whether two planes are the same could be done in a

variety of ways.

54

8.5 Determining co-planarity of three vectors

Pick three random coordinates and project vectors onto them.

For each pair of vectors a and b, represent the plane that they span

by the normal vector (which can be computed using the vector

cross-product a × b).

Finding equal planes equivalent to finding normals that are

collinear.

Thus we have reduced to the collinearity problem for 1
2n(n + 1)

vectors. The cost of the algorithm will be nearly quadratic in the

number of vectors.

As in the collinearity algorithm, we find equivalence classes of

vectors that are co-planar in the three coordinates chosen. We

apply the algorithm recursively to the equivalence classes, but now

the equivalence relation is more complicated.

55

8.6 Co-planarity equivalence relation

Suppose that a, b, c and b, c, d are co-planar. Then all of a, b, c, d are co-planar

in the three coordinates chosen. Thus we would apply the algorithm to the

subset a, b, c, d. That is, we see that we can define a precise equivalence relation

among triples: two triples are equivalent if they have a pair in common.

But now suppose that we find that a, b, c and c, d, e are co-planar in the chosen

three coordinates, but there are no other relations involving a, b, d, e. Then we

could apply the algorithm separately to a, b, c and c, d, e. However, this may

not be a big win computationally, since c is in both sets. That is, it may make

sense to apply the algorithm instead to the set a, b, c, d, e. This means that we

use a different, weaker notion of equivalence: two triples are equivalent if they

have a single entry in common.

There are obvious trade-offs between the two equivalence relations. One is

more precise but may generate a larger number of smaller equivalence classes.

The other is weaker and may generate a smaller number of larger equivalence

classes. The relative performance may depend on implementation details and

be strongly data dependent.

56

8.7 Is quadratic optimal?

It is interesting to know how close to being optimal this algorithm

is. To know this requires knowing just how many common planes

there can be. Consider a set of vectors in three dimensions, for

simplicity, in the positive orthant (x ≥ 0, y ≥ 0, z ≥ 0). Now

consider the projection of the vectors on the triangle T defined by

x + y + z = M, x ≥ 0, y ≥ 0, z ≥ 0 (8.49)

where M > 0 could be arbitrary, but we will take it to be

sufficiently large to simplify our notation. Three such vectors lie in

a plane through the origin if and only if the projections onto T are

collinear. We now construct a set of n points with O(n2) common

planes.

57

Let k be a positive integer, and consider the points in the

rectangular lattice

(i, j), i = 1, . . . , 2k, j = 1, 2, 3 (8.50)

We see that for each point with j = 0 we can associate k lines going

through three points, and thus there are at least 2k2 common

planes. Figure 1 shows an example with k = 4 showing only four of

the eight sets of four planes for i = 1, 2, 3, 4.

58

Figure 1: Example of lattice with k = 4. For each point on the lower

line, there are exactly four planes. Only the planes for i = 1, 2, 3, 4

are shown.

Since the number of planes to be determined is quadratic in the

number of initial vectors, a quadratic algorithm for determining

them is the best we would expect in the worst case.

59

9 FErari for matrix action

Quadratic Lagrange elements for scalar gradient form in two-D.

Indicated are amounts per element (for matrix representation

only). A typical vector requires two words per element.

Method used to sparse local floating total

compute form action mem refs mem refs point ops memory

Store Elem. Stiff. Mat. 54 0 72 36

FErari Elem. Stiff. Mat. 21 8 78 3

quadrature/special 21 6 62 3

Global Stiff. Mat. 27 0 46 23

Conclusion: FErari is not compelling, but very competitive.

FErari masks cost of computing local stiffness matrix.

60

10 Conclusions

The determination of local element matrices involves a novel

problem in computational complexity.

There is a mapping from (small) geometry matrices to “difference

stencils” that must be computed.

We have demonstrated the potential speed-up available with simple

low-order methods.

We have suggested by examples that it may be possible to

automate this to some degree by solving abstract graph

optimization problems.

Algorithm for determining co-planarity can find dependences in the

computation of finite element matrices automatically.

The code FErari (for Finite Element ReARrangemnts of Integrals)

was developed to carry out this type of optimization automatically.

61

