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1 The Fundamentals

FEniCS is a user-friendly tool for solving partial differential equations (PDEs).
The purpose of this tutorial is get you started with FEniCS through a series
of simple examples that demonstrate

– how to define the PDE problem in terms of a variational problem
– how to define simple domains
– how to deal with Dirichlet, Neumann, and Robin conditions
– how to treat variable coefficients
– how to deal with domains built of several materials (subdomains)
– how to compute derived quantities like the flux vector field or a functional

of the solution
– how to quickly visualize the mesh, the solution, the flux, etc.
– how to solve nonlinear PDEs in various ways
– how to deal with time-dependent PDEs
– how to set parameters governing solution methods for linear systems
– how to create domains of more complex shape

The mathematics of the illustrations is kept simple to better focus on FEniCS
functionality and syntax. This means that we mostly use the Poisson equation
and the time-dependent diffusion equation as model problems, often with
input data adjusted such that we get a very simple solution that can be
exactly reproduced by any standard finite element method over a uniform,
structured mesh. This latter property greatly enhances the verification of the
impelementations. Occasionally we insert a physically more relevant example
to remind the reader that changing the PDE and boundary conditions to
something more real might often be a trivial task.

FEniCS may seem to require a thorough understanding of the abstract
mathematical version of the finite element method as well as familiarity with
the Python programming language. Nevertheless, it turns out that many are
able to pick up the fundamentals of finite elements and Python programming
as they go along with this tutorial. Simply keep on reading and try out the
examples. You will be amazed of how easy it is to solve PDEs with FEniCS!
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Reading this tutorial obviously requires access to a machine where the
FEniCS software is installed. Chapter 8.3 explains briefly how to install the
necessary tools.

1.1 The Poisson Equation

Computer programming books frequently start with an example on how to
print “Hello, World!” on the screen. The counterpart to the “Hello, World!”
example in the world of software for partial differential equations is a program
which solves the Poisson problem,

−∆u = f in Ω,
u = u0 on ∂Ω .

(1)

Here, u(x) is the unknown function, f(x) is a prescribed function of space, ∆
is the Laplace operator (also often written as ∇2), Ω is the spatial domain,
and ∂Ω is the boundary of Ω. A stationary PDE like this, together with a
complete set of boundary conditions, constitute a boundary-value problem,
which must be precisely stated before it makes sense to start solving it with
FEniCS.

In two space dimensions with coordinates x and y, we can write out the
Poisson equation (1) in detail:

−
∂2u

∂x2
−

∂2u

∂y2
= f(x, y) . (2)

The unknown u is now a function of two variables, u(x, y), defined over a
two-dimensional domain Ω.

The Poisson equation (1) arises in numerical physical contexts, for ex-
ample, heat conduction, electrostatics, diffusion of substances, twisting of
elastic rods, inviscid fluid flow, water waves. Moreover, the equation appears
in numerical splitting strategies of more complicated systems of PDEs, in
particular the Navier-Stokes equations.

1.2 Variational Formulation

FEniCS makes it easy to solve PDEs if finite elements are used for discretiza-
tion in space and the problem is expressed as a variational problem. Readers
who are not familiar with variational problems will get a brief introduction
to the topic in this tutorial, and in Chapter ??, but we encourage getting and
reading a proper book on the finite element method in addition. Chapter 8.4
contains a list of some suitable books.

The core of the recipe for turning a PDE into a variational problem is to
multiply the PDE by a function v, integrate the resulting equation over Ω,
and perform integration by parts of terms with second-order derivatives. The
function v which multiplies the PDE is in the mathematical finite element
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literature called a test function. The unknown function u to be approximated
is referred to as a trial function. The terms test and trial function are used
in FEniCS programs too. Suitable function spaces must be specified for the
test and trial functions. For standard PDEs arising in physics and mechanics
such spaces are well known.

In the present case, we first multiply by the test function v and integrate,

−

∫

Ω

(∆u)v dx =

∫

Ω

fv dx . (3)

Then we apply integration by parts of the integrand with second-order deriva-
tives,

−

∫

Ω

(∆u)v dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds. (4)

The test function v is required to vanish on the parts of the boundary where
u is known, which in the present problem implies that v = 0 on the whole
boundary ∂Ω. The second term on the right-hand side of (4) therefore van-
ishes. From (3) and (4) it follows that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx . (5)

This equation is supposed to hold for all v in some function space V̂ . The
trial function u lies in some (possible other) function space V . We refer to
(5) as the weak form of the original boundary-value problem (1).

The proper statement of our variational problem now goes as follows:
Find u ∈ V such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V̂ . (6)

The test and trial spaces V̂ and V are in the present problem defined as

V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω},

V = {v ∈ H1(Ω) : v = u0 on ∂Ω}.

In short, H1(Ω) is the mathematically well-known Sobolev space contain-
ing functions v such that v2 and ||∇v||2 have finite integrals over Ω. The
solution of the underlying PDE must lie in a function space where also the
derivatives are continuous, but the Sobolev space H1(Ω) allows functions
with discontinuous derivatives. This weaker continuity requirements of u in
the variational statement (6), caused by the integration by parts, have great
practical consequences when it comes to constructing finite elements.

To solve the Poisson equation numerically, we need to transform the con-
tinuous variational problem (6) to a discrete variational problem. This is done
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by introducing finite-dimensional test and trial spaces V̂h ⊂ V̂ and Vh ⊂ V .
The discrete variational problem reads: Find uh ∈ Vh ⊂ V such that

∫

Ω

∇uh · ∇v dx =

∫

Ω

fv dx ∀v ∈ V̂h ⊂ V̂ . (7)

The choice of V̂h and Vh follows directly from the kind of finite elements we
want to apply in our problem. For example, choosing the well-known linear
triangular element with three nodes implies that V̂h and Vh are the spaces of
all piecewise linear functions over a mesh of triangles, where the functions in
V̂h are zero on the boundary and those in Vh equal u0 on the boundary.

The mathematics literature on variational problems applies uh for the
solution of the discrete problem and u for the solution of the continous prob-
lem. To obtain (almost) a one-to-one relationshop between the mathematical
formulation of a problem and the corresponding FEniCS program, we shall
use u for the solution of the discrete problem and ue for the exact solution
of the continuous problem, if we need to explicitly distinguish between the
two. In most cases we will introduce the PDE problem with u as unknown
and then simply let u denote the finite element solution when we come to the
discrete variational problem and the associated program development.

It turns out to be convenient to introduce a unified notation for a weak
form like (7):

a(u, v) = L(v) . (8)

In the present problem we have that

a(u, v) =

∫

Ω

∇u · ∇v dx, (9)

L(v) =

∫

Ω

fv dx . (10)

From the mathematics literature, a(u, v) is known as a bilinear form and L(u)
as a linear form. We shall in every problem we solve identify the terms with
the unknown u and collect them in a(u, v), and similarly collect all terms
with only known functions in L(v). The formulas for a and L are then coded
directly in the program.

To summarize, before making a FEniCS program for solving a PDE, we
must first perform two steps:

1. Turn the PDE problem into a discrete variational problem: Find u ∈ Vh

such that

a(u, v) = L(v) ∀v ∈ V̂h .

2. Specify the choice of discrete spaces, i.e., choice of finite elements.
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1.3 The Implementation

The test problem so far has a general domain Ω and general functions u0 and
f . However, we must specify Ω, u0, and f prior to our first implementation.
It will be wise to construct a specific problem where we can easily check
that the solution is correct. Let us choose u(x, y) = 1 + x2 + 2y2 to be the
solution of our Poisson problem since the finite element method with linear
elements over a uniform mesh of triangular cells should exactly reproduce
a second-order polynomial at the vertices of the cells, regardless of the size
of the elements. This property allows us to verify the code by using very
few elements and checking that the computed and the exact solution equal
to machine precision. Test problems with this property will be frequently
constructed throughout the present tutorial.

Specifying u(x, y) = 1+x2 +2y2 in the problem from Chapter 1.2 implies
u0(x, y) = 1 + x2 + 2y2 and f(x, y) = −6. We let Ω be the unit square for
simplicity. A FEniCS program for solving (1) with the given choices of u0,
f , and Ω may look as follows (the complete code can be found in the file
Poisson2D_D1.py):

from dolfin import *

# Create mesh and define function space
mesh = UnitSquare(6, 4)
V = FunctionSpace(mesh, ’CG’, 1)

# Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, V=V)

class Boundary(SubDomain): # define the Dirichlet boundary
def inside(self, x, on_boundary):

return on_boundary

u0_boundary = Boundary()
bc = DirichletBC(V, u0, u0_boundary)

# Define variational problem
v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, -6.0)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

# Compute solution
problem = VariationalProblem(a, L, bc)
u = problem.solve()

# Plot solution and mesh
plot(u)
plot(mesh)

# Dump solution to file in VTK format
file = File(’poisson.pvd’)
file << u



8 H. P. Langtangen

# Hold plot
interactive()

We shall now dissect this FEniCS program in detail. The program is
written in the Python programming language. You may either take a quick
look at a Python tutorial [17] to pick up the basics of Python if you are
unfamiliar with the language, or you may learn enough Python as you go
along with the examples in this tutorial. The latter strategy has proven to
work for many newcomers to FEniCS1. Chapter 8.5 lists some good Python
books.

The listed FEniCS program defines a finite element mesh, the discrete
function spaces Vh and V̂h over this mesh (i.e., the choice of elements), bound-
ary conditions for u (i.e., the function u0), a(u, v), and L(v). Thereafter, the
unknown trial function u is computed. Then we can investigate u visually or
analyze the computed values.

The first line in the program,

from dolfin import *

imports the key classes UnitSquare, FunctionSpace, Function, and so forth,
from the DOLFIN library. All FEniCS programs for solving PDEs by the fi-
nite element method normally start with this line. DOLFIN is a software
library with efficient and convenient C++ classes for finite element comput-
ing, and dolfin is a Python package providing access to this C++ library
from Python programs. You can think of FEniCS is an umbrella, or project
name, for a set of computational components, where DOLFIN is one impor-
tant component for writing finite element programs. DOLFIN applies other
components in the FEniCS suite under the hood, but newcomers to FEniCS
programming do not need to care about this.

The statement

mesh = UnitSquare(6, 4)

defines a uniform finite element mesh over the unit square [0, 1]× [0, 1]. The
mesh consists of cells, which are triangles with straight sides. The parameters
6 and 4 tell that the square is first divided into 6 ·4 rectangles, and then each
rectangle is divided into two triangles. The total number of triangles then
becomes 48. The total number of vertices in this mesh is 7 · 5 = 35. DOLFIN
offers some classes for creating meshes over very simple geometries. For do-
mains of more complicated shape one needs to use a separate preprocessor

1 The requirement of using Python and an abstract mathematical formulation of
the finite element problem may seem difficult for those who are unfamiliar with
these topics. However, the amount of mathematics and Python that is really
demanded to get you productive with FEniCS is quited limited. And Python is
an easy-to-learn language that you certainly will love and use far beyond FEniCS
programming.
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program to create the mesh. The FEniCS program will then read the mesh
from file.

Having a mesh, we can define a discrete function space V over this mesh:

V = FunctionSpace(mesh, ’CG’, 1)

The second argument reflects the type of element, while the third argument
is the degree of the basis functions on the element. Here, ’CG’ stands for
Continuous Galerkin, implying the standard Lagrange family of elements.
Insted of ’CG’ we could have written ’Lagrange’. With degree 1, we simply
get the standard linear Lagrange element, which is a triangle with nodes at
the three vertices. Some finite element practitioners refer to this element as
the “linear triangle”. The computed u will be continuous and linearly varying
in x and y over each cell in the mesh. Higher-order polynomial approximations
over each cell are trivially obtained by increasing the third parameter to
FunctionSpace.

In the mathematics, we distinguish between the trial and test spaces Vh

and V̂h. The only difference in the present problem is the boundary conditions.
In FEniCS we do not specify the boundary conditions as part of the function
space, so it is sufficient to work with one common space V for the test and
trial functions in the program:

v = TestFunction(V)
u = TrialFunction(V)

The next step is to specify the boundary condition: u = u0 on ∂Ω. This
is done by

bc = DirichletBC(V, u0, u0_boundary)

where u0 is an instance holding the u0 values, and u0_boundary is an instance
describing if a point lies on the boundary where u is specified. The term
instance means a Python object of a particular type (such as Function,
FunctionSpace, etc.). Many use instance and object as interchangable terms.
In other computer programming languages one may also use the term variable

for the same thing. We shall in this tutorial mostly use the term instance, since
that is most common in a Python context, but object will also be occasionally
used where that is more natural.

Boundary conditions of the type u = u0 are known as Dirichlet conditions,
and also as essential boundary conditions in a finite element context. Natu-
rally, the name of the DOLFIN class holding the information about Dirichlet
boundary conditions is DirichletBC.

The u0 variable refers to an Expression instance, which is used to rep-
resent a mathematical function. The typical construction is
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u0 = Expression(formula, V=V)

where V is a FunctionSpace2 and formula is a string containing the math-
ematical expression. This formula written with C++ syntax (the expression
is automatically turned into an efficient, compiled C++ function, see Chap-
ter 8.6 for details on the syntax). The independent variables in the function
expression are supposed to be available as a point vector x, where the first
element x[0] corresponds to the x coordinate, the second element x[1] to
the y coordinate, and (in a three-dimensional problem) x[2] to the z coor-
dinate. With our choice of u0(x, y) = 1 + x2 + 2y2, the formula string must
be written as 1 + x[0]*x[0] + 2*x[1]*x[1]:

u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, V=V)

The information about where to apply the u0 function as boundary con-
dition is coded in a method inside in a subclass of class SubDomain3:

class Boundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

on_boundary = Boundary()

The method inside shall return a boolean value: True if the point x lies on
the Dirichlet boundary and False otherwise. The argument on_boundary is
True if x is on the physical boundary of the mesh, so in the present case
we can just return on_boundary. In later examples we will demonstrate how
to set Dirichlet conditions on parts of the boundary, typically achieved by
some test on the x values inside the inside method (as for the formula in
Expression instances, x in the inside method represents a point in space
with coordinates x[0], x[1], etc.). The inside method is called for every
discrete point in the mesh, which allows us to have boundaries where u are
known also inside the domain, if desired. The choice of class name, here
Boundary, is up to the programmer, but the class must be derived from
SubDomain and it must have an inside method.

Newcomers to Python class programming often face some problems with
understanding the self parameter in the inside function. For now it suffices
to know that self is a required first argument when defining a function
in a class. There is no need to understand the self argument before in
Chapter 7.2.

2 This does not imply that the formula is turned into a finite element function
in that space. The space is just occasionally needed, usually in special cases in
variational forms for providing information about elements and a mesh in an
integration.

3 If you are unfamiliar with classes and class methods in Python, stay cool and
just modify the many examples on boundary specifications found in this tutorial.
It may well suffice to pick up Python class programming at a later stage.



FEniCS Tutorial 11

Before defining a(u, v) and L(v) we have to specify the f function:

f = Expression(’-6’, V=V)

When f is constant over the domain, f can be more efficiently represented
as a Constant instance:

f = Constant(mesh, -6.0)

Now we have all the objects we need in order to specify this problem’s a(u, v)
and L(v):

a = dot(grad(u), grad(v))*dx
L = f*v*dx

In essence, these two lines specify the PDE to be solved. Note the very close
correspondence between the Python syntax and the mathematical formulas
(9)–(10)! This is a key strength of FEniCS: the formulas in the variational
formulation translate directly to very similar Python code, a feature that
makes it easy to specify PDE problems with lots of PDEs and complicated
terms in the equations. The language used to express weak forms is called
UFL (Unified Form Language) and is an integral part of FEniCS.

Having a and L defined, and information about essential (Dirichlet) bound-
ary conditions in bc, we can formulate a VariationalProblem:

problem = VariationalProblem(a, L, bc)

Solving the variational problem for the solution u is just a matter of writing

u = problem.solve()

Unless otherwise stated, a sparse direct solver is used to solve the underlying
linear system implied by the variational formulation. The type of sparse di-
rect solver depends on which linear algebra package that is used by default.
If DOLFIN is compiled with PETSc, that package is the default linear al-
gebra backend, otherwise it is uBLAS. The FEniCS distribution for Ubuntu
Linux contains PETSc, and then the default solver becomes the sparse LU
solver from UMFPACK (which PETSc has an interface to). We shall later
in Chapter 4 demonstrate how to get full control of the choice of solver and
any solver parameters.

The u variable refers to a finite element function, called simply a Function
in FEniCS terminology. Note that we first defined u as a TrialFunction and
used it to specify a. Thereafter, we redefined u to be a Function representing
the computed solution. This redefinition of the variable u is possible in Python
and a programming practice in FEniCS applications.

The simplest way of quickly looking at u and the mesh is to say
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plot(u)
plot(mesh)
interactive()

The interactive() call is necessary for the plot to remain on the screen.
With the left, middle, and right mouse buttons you can rotate, translate, and
zoom (respectively) the plotted surface to better examine how the solution
looks like.

It is also possible to dump the computed solution to file, e.g., in the VTK
format:

file = File(’poisson.pvd’)
file << u

The poisson.pvd file can now be loaded into any front-end to VTK, say
ParaView or VisIt. The plot function from Viper is intended for quick ex-
amination of the solution during program development. More in-depth vi-
sual investigations of finite element solution will normally benefit from using
highly professional tools such as ParaView and VisIt.

1.4 Examining the Discrete Solution

We know that, in the particular boundary-value problem of Chapter 1.3, the
computed solution u should equal the exact solution at the vertices of the
cells. An important extension of our first program is therefore to examine the
computed values of the solution, which is the focus of the present section.

A finite element function like u is expressed as a linear combination of
basis functions φi (spanning the space Vh):

N
∑

j=1

Ujφj . (11)

By writing u = problem.solve() in the program, a linear system will be
formed from a and L, and this system is solved for the U1, . . . , UN values.
The U1, . . . , UN values are known as degrees of freedom of u. For Lagrange
elements (and many other element types) Uk is simply the value of u at the
node with global number k. (The nodes and cell vertices coincide for linear
Lagrange elements, while for higher-order elements there may be additional
nodes at the facets and in the interior of cells.)

Having u represented as a Function object, we can either evaluate u(x)

at any vertex x in the mesh, or we can grab all the values Uj directly by

u_nodal_values = u.vector()

The result is a DOLFIN Vector instance, which is basically an encapsulation
of the vector object used in the linear algebra package that is applied to solve
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the linear system arising form the variational problem. Since we program in
Python it is convenient to convert the Vector instance to a standard numpy

array for further processing:

u_array = u_nodal_values.array()

With numpy arrays we can write “Matlab-like” code to analyze the data.
Indexing is done with square brackets: u_array[i], where the index i always
starts at 0.

The coordinates of the vertices in the mesh can be extracted by

coor = mesh.coordinates()

For a d-dimensional problem, coor is an M × d numpy array, M being the
number of vertices in the mesh. Writing out the solution on the screen can
now be done by a simple loop:

for i in range(len(u_array)):
print ’u(%8g,%8g) = %g’ % \

(coor[i][0], coor[i][1], u_array[i])

The beginning of the output looks like

u( 0, 0) = 1
u(0.166667, 0) = 1.02778
u(0.333333, 0) = 1.11111
u( 0.5, 0) = 1.25
u(0.666667, 0) = 1.44444
u(0.833333, 0) = 1.69444
u( 1, 0) = 2

For Lagrange elements of degree higher than one, the vertices and the nodes
do not coincide, and then the loop above is meaningless.

For verification purposes we want to compare the values of u at the nodes,
i.e., the values of the vector u_array, with the exact solution given by u0. At
each node, the difference between the computed and exact solution should be
less than a small tolerance. The exact solution is given by the Expression

instance u0, which we can evaluate directly as u0(coor[i]) at the vertex with
global number i, or as u0(x) for any spatial point. Alternatively, we can make
a finite element field u_e, representing the exact solution, whose values at
the nodes are given by the u0 function. With mathematics, ue =

∑N
j=1 Ejφj ,

where Ej = u0(xj , yj), (xj , yj) being the coordinates of node no. j. This
process is known as interpolation. FEniCS has a function for performing the
operation:

u_e = interpolate(u0, V)

The maximum error can now be computed as
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u_e_array = u_e.vector().array()
diff = abs(u_array - u_e_array)
print ’Max error:’, diff.max()

# or more compactly:
print ’Max error:’, abs(u_e_array - u_array).max()

The value of the error should be at the level of the machine precision (10−16).
To demonstrate the use of point evaluations of Function instances, we

write out the computed u at the center point of the domain and compare it
with the exact solution:

# Compare numerical and exact solution at (0.5, 0.5)
center = (0.5, 0.5)
u_value = u(center)
u0_value = u0(center)
print ’numerical u at the center point:’, u_value
print ’exact u at the center point:’, u0_value

Trying a 3× 3 mesh, the output from the previous snippet becomes

numerical u at the center point: [ 1.83333333]
exact u at the center point: [ 1.75]

The discrepancy is due to the fact that the center point is not a node in this
particular mesh, but a point in the interior of a cell, and u varies linearly
over the cell while u0 is a quadratic function.

Mesh information can be gathered from the mesh instance, e.g.,

– mesh.num_cells() returns the number of cells (triangles) in the mesh,
– mesh.num_vertices() returns the number of vertices in the mesh (with

our choice of linear Lagrange elements this equals the number of nodes),
– str(mesh) returns a short “pretty print” description of the mesh, e.g.,

<Mesh of topological dimension 2 (triangles) with
16 vertices and 18 cells, ordered>

and print mesh is actually the same as print str(mesh).

All mesh objects are of type Mesh so typing the command pydoc dolfin.Mesh

in a terminal window will give a list of methods that can be called through
any Mesh instance. In fact, pydoc dolfin.X shows the documentation of any
DOLFIN name X (at the time of this writing, some names have missing or
incomplete documentation).

We have seen how to extract the nodal values in a numpy array. If desired,
we can adjust the nodal values too. Say we want to normalize the solution
such that maxj Uj = 1. Then we must divide all Uj values by maxj Uj . The
following snippet performs the task:

max_u = u_array.max()
u_array /= max_u
u.vector()[:] = u_array
print u.vector().array()
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That is, we manipulate u_array as desired, and then we insert this array
into u’s Vector instance. The /= operator implies an in-place modification of
the object on the left-hand side: all elements of the u_array are divided by
the value max_u. Alternatively, one could write u_array = u_array/max_u,
which implies creating a new array on the right-hand side and assigning this
array to the name u_array. We can equally well insert the entries of u_array
into u’s numpy array:

u.vector().array()[:] = u_array

All the code in this subsection can be found in the file Poisson2D_D2.py.

1.5 Formulating a Real Physical Problem

Perhaps you are not particularly amazed by viewing the simple surface of u in
the test problem from Chapters 1.3 and 1.4. However, solving a real physical
problem with a more interesting and amazing solution on the screen is only
a matter of specifying a more exciting domain, boundary condition, and/or
right-hand side f .

One possible physical problem regards the deflection of D(x, y) of an
elastic circular membrane with radius R, subject to a localized perpendicular
pressure force, modeled as a Gaussian function. The appropriate PDE model
is

−T∆D = p(x, y) in Ω = {(x, y) |x2 + y2 ≤ R}, (12)

with

p(x, y) =
A

2πσ
exp

(

−
1

2

(

x− x0

σ

)2

−
1

2

(

y − y0

σ

)2
)

. (13)

Here, T is the tension in the membrane (constant), p is the external pressure
load, A the amplitude of the pressure, (x0, y0) the localization of the Gaussian
pressure function, and σ the “width” of this function. The boundary condition
is D = 0.

Introducing a scaling with R as characteristic length and 8πσT/A as
characteristic size of D, we can derive the equivalent scaled problem on the
unit circle,

−∆w = 4 exp

(

−
1

2

(

Rx− x0

σ

)2

−
1

2

(

Ry − y0

σ

)2
)

, (14)

with w = 0 on the boundary. We have that D = Aw/(8πσT ).

A mesh over the unit circle can be created by

mesh = UnitCircle(n)
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where n is the typical number of elements in the radial direction. You should
now be able to figure out how to modify the Poisson2D_D1.py code to solve
this membrane problem. More specifically, you are recommended to perform
the following extensions:

1. initialize R, x0, y0, σ, T , and A in the beginning of the program,
2. build a string expression for p with correct C++ syntax (use printf for-

matting in Python to build the expression),
3. define the a and L variables in the variational problem for w and compute

the solution,
4. plot the mesh, w, and the scaled pressure function p (the right-hand side

of (14)),
5. write out the maximum real deflection D (i.e., the maximum of the w

values times A/(8πσT )).

Use variable names in the program similar to the mathematical symbols in
this problem.

Choosing a small width σ (say 0.01) and a location (x9, y0) toward the
circular boundary (say (0.6R cos θ, 0.6R sin θ) for any θ ∈ [0, 2π]), may pro-
duce an exciting visual comparison of w and p that demonstrates the very
smoothed elastic response to a peak force (or mathematically, the smoothing
properties of the Laplace operator). You need to experiment with the mesh
resolution to get a smooth visual representation of p.

In the limit σ →∞, the right-hand side p of (14) approaches the constant
4, and then the solution should be w(x, y) = 1 − x2 − y2. Compute the
absolute value of the difference between the exact and the numerical solution
if σ ≥ 50 and write out the maximum difference to provide some evidence
that the implementation is correct.

You are strongly encouraged to spend some time on doing this exercise
and play around with the plots and different mesh resolutions. A suggested
solution to the exercise can be found in the file membrane1.py.

from dolfin import *

# Set pressure function:
T = 10.0 # tension
A = 1.0 # pressure amplitude
R = 0.3 # radius of domain
theta = 0.2
x0 = 0.6*R*cos(theta)
y0 = 0.6*R*sin(theta)
sigma = 0.025
#sigma = 50 # verification
pressure = ’4*exp(-0.5*(pow((%g*x[0] - %g)/%g, 2)) ’\

’ - 0.5*(pow((%g*x[1] - %g)/%g, 2)))’ % \
(R, x0, sigma, R, y0, sigma)

n = 40 # approx no of elements in radial direction
mesh = UnitCircle(n)
V = FunctionSpace(mesh, ’CG’, 1)
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# Define boundary condition w=0

class Boundary(SubDomain): # define the whole boundary
def inside(self, x, on_boundary):

return on_boundary

boundary = Boundary()
bc = DirichletBC(V, Constant(mesh, 0.0), boundary)

# Define variational problem
v = TestFunction(V)
w = TrialFunction(V)
p = Expression(pressure, V=V)
a = dot(grad(w), grad(v))*dx
L = v*p*dx

# Compute solution
problem = VariationalProblem(a, L, bc)
w = problem.solve()

# Plot solution and mesh
plot(mesh, title=’Mesh over scaled domain’)
plot(w, title=’Scaled deflection’)
plot(p, title=’Scaled pressure’)

# Find maximum real deflection
max_w = w.vector().array().max()
max_D = A*max_w/(8*pi*sigma*T)
print ’Maximum real deflection is’, max_D

# Verification for "flat" pressure (big sigma)
if sigma >= 50:

w_exact = Expression(’1 - x[0]*x[0] - x[1]*x[1]’, V=V)
w_e = interpolate(w_exact, V)
w_e_array = w_e.vector().array()
w_array = w.vector().array()
diff_array = abs(w_e_array - w_array)
print ’Verification of the solution, max difference is %.4E’ % \

diff_array.max()

# Create finite element field over V and fill with error values
difference = Function(V)
difference.vector()[:] = diff_array
#plot(difference, title=’Error field for sigma=%g’ % sigma)

# Should be at the end
interactive()

1.6 Computing Derivatives

In many Poisson and other problems the gradient of the solution is of interest.
The computation is in principle simple: since u =

∑N
j=1 Ujφj , we have that

∇u =
N
∑

j=1

Uj∇φj .



18 H. P. Langtangen

Given the solution variable u in the program, grad(u) denotes the gradient.
However, the gradient of a finite element scalar field is a discontinuous vector
field since the φj has discontinuous derivatives at the boundaries of the cells.
For example, using Lagrange elements of degree 1, u is linear over each cell,
and the numerical ∇u becomes a piecewise constant vector field. On the
contrary, the exact gradient is continuous. For visualization and data analysis
purposes we often want the computed gradient to be a continuous vector field.
Typically, we want each component of ∇u to be represented in the same way
as u itself. To this end, we can project the components of ∇u onto the same
function space as we used for u. This means that we solve w = ∇u by a finite
element method4, using the the same elements for the components of w as
we used for u.

The variational problem for w reads: Find w ∈ Vh such that

a(w, v) = L(v) ∀v ∈ V̂
(g)
h , (15)

where

a(w, v) =

∫

Ω

w · v dx, (16)

L(v) =

∫

Ω

∇u · v dx . (17)

The function spaces Vh and V̂
(g)
h are vector versions of the function space for

u, with boundary conditions removed (if Vh is the space we used for u, with no

restrictions on boundary values, V
(g)
h = V̂

(g)
h = [Vh]d, where d is the number

of space dimensions). For example, if we used piecewise linear functions on
the mesh to approximate u, the variational problem for w corresponds to
approximating each component field of w by piecewise linear functions.

The variational problem for the vector field w, called gradu in the code,
is easy to solve in FEniCS:

V_g = VectorFunctionSpace(mesh, ’CG’, 1)
v = TestFunction(V_g)
w = TrialFunction(V_g)

a = dot(w, v)*dx
L = dot(grad(u), v)*dx
problem = VariationalProblem(a, L)
gradu = problem.solve()

plot(gradu, title=’grad(u)’)

4 This process is known as projection. Looking at the component ∂u/∂x of the
gradient, we project the (discrete) derivative

P

j
Uj∂φj/∂x onto another function

space with basis φ̄1, . . . φ̄ such that the derivative in this space is expressed by
the standard sum

P

j
Ūjφ̄j , for suitable (new) coefficients Ūj .
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The new thing is basically that we work with a VectorFunctionSpace, since
the unknown is now a vector field, instead of the FunctionSpace object for
scalar fields.

The scalar component fields of the gradient can be extracted as separated
fields and, e.g., visualized:

gradu_x, gradu_y = gradu.split(deepcopy=True) # extract components
plot(gradu_x, title=’x-component of grad(u)’)
plot(gradu_y, title=’y-component of grad(u)’)

The deepcopy=True argument signifies a deep copy, which is a general term in
computer science implying that a copy of the data is returned. (The opposite,
deepcopy=False, means a shallow copy, where the returned objects are just
pointers to the original data.)

The gradu_x and gradu_y variables behave as Function instances. In
particular, we can extract the underlying arrays of nodal values by

gradu_x_array = gradu_x.vector().array()
gradu_y_array = gradu_y.vector().array()

The degrees of freedom of the gradu vector field can also be reached by

gradu_array = gradu.vector().array()

but this is a flat numpy array where the degrees of freedom for the x compo-
nent of the gradient is stored in the first part, then the degrees of freedom of
the y component, and so on.

The program Poisson2D_D3.py extends the code Poisson2D_D2.py from
Chapter 1.4 with computations and visualizations of the gradient. Examining
the arrays gradu_x_array and gradu_y_array, or looking at the plots of
gradu_x and gradu_y, quickly reveals that the computed gradu field does
not equal the exact gradient (2x, 4y) in this particular test problem where
u = 1 + x2 + y2. There are inaccuracies at the boundaries, arising from the
approximation problem for w. Increasing the mesh resolution shows, however,
that the components of the gradient vary linearly as 2x and 4y in the interior
of the mesh (i.e., as soon as we are one element away from the boundary).
See Chapter 1.8 for illustrations of this phenomenon.

Representing the gradient by the same elements as we used for the solution
is a very common step in finite element programs, so the formation and
solution of a variational problem for w as shown above can be replaced by a
one-line call:

gradu = project(grad(u), VectorFunctionSpace(mesh, ’CG’, 1))

The project function can take an expression involving some finite element
function in some space and project the expression onto another space. The
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applications are many, including turning discontinuous gradient fields into
continuous ones, comparing higher- and lower-order function approximations,
and transforming a higher-order finite element solution down to a first-order
field which is required by many visualization packages.

1.7 Computing Functionals

After the solution u of a PDE is computed, we often want to compute func-
tionals of u, for example,

1

2
||∇u||2 ≡

1

2

∫

Ω

∇u · ∇u dx, (18)

which often reflects the some energy quantity. Another frequently occuring
functional is the error

||u− ue|| =

(∫

Ω

(ue − u)2 dx

)1/2

, (19)

which is of particular interest when studying convergence properties. Some-
times the interst concerns the flux out of a part Γ of the boundary ∂Ω,

F = −

∫

Γ

p∇u · nds, (20)

where n is an outward unit normal at Γ and p is a coefficient (see the problem
in Chapter 1.12 for a specific example). All these functionals are easy to
compute with FEniCS, and this section describes how it can be done.

Energy Functional. The integrand of the energy functional (18) is described
in the UFL language in the same manner as we describe weak forms:

energy = 0.5*dot(grad(u), grad(u))*dx
E = assemble(energy, mesh=mesh)

The assemble call performs the integration. It is possible to restrict the
integration to subdomains, using a mesh function to mark the subdomains
as explained in Chapter 6.3. The program membrane2.py carries out the
computation of the elastic energy 1

2 ||T∇w||2 in the membrane problem from
Chapter 1.5.

Convergence Estimation. To illustrate error computations and convergence
of finite element solutions, we modify the Poisson2D_D3.py program from
Chapter 1.6 and specify a more complicated solution,

u(x, y) = sin(ωπx) sin(ωπy)

on the unit square. It follows that u0 = 0 and that f(x, y) = 2ω2π2u(x, y).
We must define the appropriate boundary conditions, the exact solution, and
the f function:
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class Boundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(mesh, 0.0), Boundary())

omega = 1.0
u_exact = Expression(’sin(%g*pi*x[0])*sin(%g*pi*x[1])’ % \

(omega, omega), V=V)

f = 2*pi**2*omega**2*u_exact

The computation of (19) can be done by

error = (u - u_exact)**2*dx
E = sqrt(assemble(error))

However, u_exact will here be interpolated onto the function space V, i.e.,
the exact solution used in the integral will vary linearly over the cells, and
not as a sine function, if V corresponds to linear Lagrange elements. This
may yield a smaller error u - u_e than what is actually true.

More accurate representation of the exact solution is easily achieved by
interpolating the formula onto a space defined by higher-order elements, say
of third degree:

Ve = FunctionSpace(mesh, ’CG’, degree=3)
u_e = interpolate(u_exact, Ve)
error = (u - u_e)**2*dx
E = sqrt(assemble(error))

The u function will here be automatically interpolated and represented in the
Ve space. When functions in different function spaces enter UFL expressions,
they will be represented in the space of highest order before integrations are
carried out. When in doubt, we should explicitly interpolate u:

u_Ve = interpolate(u, Ve)
error = (u_Ve - u_e)**2*dx

The square in the expression for error will be expanded and lead to a
lot of terms that almost cancel when the error is small, with the potential of
introducing significant round-off errors. The function errornorm is available
for avoiding this effect by first interpolating u and u_exact to a space with
higher-order elements, then subtracting the degrees of freedom, and then
performing the integration of the error field. The usage is simple:

E = errornorm(u_exact, u, normtype=’L2’, degree=3)

A the time of this writing, errornorm does not work with Expression in-
stances for u_exact, making the function inapplicable for most practical pur-
poses. Nevertheless, we can easily express the procedure explicitly:
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def errornorm(u_exact, u, Ve):
u_Ve = interpolate(u, Ve)
u_e_Ve = interpolate(u_exact, Ve)
e_Ve = Function(Ve)
# Subtract degrees of freedom for the error field
e_Ve.vector()[:] = u_e_Ve.vector().array() - \

u_Ve.vector().array()
error = e_Ve**2*dx
return sqrt(assemble(error, mesh=Ve.mesh()))

The errornorm procedure turns out to be identical to computing (u_e - u)**2*dx

directly in the present test case.
Sometimes it is of interest to compute the error of the gradient field:

||∇(u − ue)|| (often referred to as the H1 seminorm of the error). Given the
error field e_Ve above, we simply write

H1seminorm = sqrt(assemble(dot(grad(e_Ve), grad(e_Ve))*dx,
mesh=mesh))

Finally, we remove all plot calls and printouts of u values in the original
program, and collect the computations in a function:

def compute(nx, ny, degree):
mesh = UnitSquare(nx, ny)
V = FunctionSpace(mesh, ’CG’, degree)
...
Ve = FunctionSpace(mesh, ’CG’, degree=3)
E = errornorm(u_exact, u, Ve)
return E

Calling compute for finer and finer meshes enables us to study the con-
vergence rate. Define the element size h = 1/n, where n is the number of
divisions in x and y direction (nx=ny in the code). We perform experiments
with h0 > h1 > h2 · · · and compute the corresponding errors E0, E1, E3 and
so forth. Assuming Ei = Chr

i for unknown constants C and r, we can com-
pare two consecutive experiments, Ei = Chr

i and Ei−1 = Chr
i−1, and solve

for r:

r =
ln(Ei/Ei−1)

ln(hi/hi−1)
.

The r values should approach the expected convergence rate degree+1 as i
increases.

The procedure above can easily be turned into Python code:

# Perform experiments
degree = int(sys.argv[1])
h = [] # element sizes
E = [] # errors
for nx in [4, 8, 16, 32, 64, 128]:

h.append(1.0/nx)
E.append(compute(nx, nx, degree))
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# Convergence rates
from math import log as ln # (log is a dolfin name too)
for i in range(1, len(E)):

r = ln(E[i]/E[i-1])/ln(h[i]/h[i-1])
print ’h=%10.2E r=%.2f’ % (h[i], r)

The resulting program has the name Poisson2D_D4.py. Running this pro-
gram for first-order elements yields the output

h= 1.25E-01 r=1.76
h= 6.25E-02 r=1.94
h= 3.12E-02 r=1.98
h= 1.56E-02 r=2.00
h= 7.81E-03 r=2.00

That is, we approach the expected second-order convergence of linear La-
grange elements as the meshes become sufficiently fine. Running the program
for third-order elements results in the expected value r = 4:

h= 1.25E-01 r=4.09
h= 6.25E-02 r=4.03
h= 3.12E-02 r=4.01
h= 1.56E-02 r=4.00
h= 7.81E-03 r=4.00

Checking convergence rates is the next best method for verifying PDE codes
(the best being exact recovery of a solution as in Chapter 1.4 and many other
places in this tutorial).

Flux Functionals. To compute flux integrals like (20) we need to define the n

vector, referred to as facet normal in FEniCS. If Γ is the complete boundary
we can perform the flux computation by

n = FacetNormal(mesh)
flux = -p*dot(grad(u), n)*ds
total_flux = assemble(flux)

It is possible to restrict the integration to a part of the boundary using a mesh
function to mark the relevant part, as explained in Chapter 6.3. Assuming
that the part corresponds to subdomain no. 0, the relevant form for the flux
is -p*dot(grad(u), n)*ds(0).

1.8 Quick Visualization with VTK

As we go along with examples it is fun to play around with plot commands
and visualize what is computed. This section explains some useful visualiza-
tion features.

The plot(u) command launches a FEniCS component called Viper, which
applies the VTK package to visualize finite element functions. Viper is not
a full-fledged, easy-to-use front-end to VTK (like ParaView or VisIt), but
rather a thin layer on top of VTK’s Python interface, allowing us to quickly
visualize a DOLFIN function or mesh, or data in plain Numerical Python
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arrays, within a Python program. Viper is ideal for debugging, teaching, and
initial scientific investigations. The visualization can be interactive, or you
can steer and automate it through program statements. More advanced and
professional visualizations are usually better done with advanced tools like
ParaView, VisIt, or MayaVi2.

We have made a program membrane1v.py for the membrane deflection
problem in Chapter 1.5 and added various demonstrations of Viper capabil-
ities. You are encouraged to play around with membrane1v.py and modify
the code as you read about various features. The membrane1v.py program
solves the two-dimensional Poisson equation for a scalar field w (the mem-
brane deflection).

The plot function can take additional arguments, such as a title of the
plot, or a specification of a wireframe plot (elevated mesh) instead of a colored
surface plot:

plot(mesh, title=’Finite element mesh’)
plot(w, wireframe=True, title=’solution’)

The three mouse buttons can be used to rotate, translate, and zoom
the surface. Pressing h in the plot window makes a printout of several key
bindings that are available in such windows. For example, pressing m in the
mesh plot window dumps the plot of the mesh to an Encapsulated PostScript
(.eps) file, while pressing i saves the plot in PNG format. All plotfile names
are automatically generated as simulationX.eps, where X is a counter 0000,
0001, 0002, etc., being increased every time a new plot file in that format is
generated (the extension of PNG files is .png instead of .eps). Pressing ’o’

adds a red outline of a bounding box around the domain.
One can alternatively control the visualization from the program code

directly. This is done through a Viper instance returned from the plot com-
mand. Let us grab this object and use it to 1) tilt the camera −65 degrees
in latitude direction, 2) add some simple x and y axis, 3) change the default
name of the plot files (generated by typing m and i in the plot window), 4)
change the color scale, and 5) write the plot to a PNG and an EPS file. Here
is the code:

viz1 = plot(w,
wireframe=False,
title=’Scaled membrane deflection’,
rescale=False,
axes=True, # include axes
basename=’deflection’, # default plotfile name
)

viz1.elevate(-65) # tilt camera -65 degrees (latitude dir)
viz1.set_min_max(0, 0.5*max_w) # color scale
viz1.update(w) # bring settings above into action
viz1.write_png(’deflection.png’)
viz1.write_ps(’deflection’, format=’eps’)
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The format argument in the latter line can also take the values ’ps’ for
a standard PostScript file and ’pdf’ for a PDF file. Note the necessity of
the viz.update(w) call – without it we will not see the effects of tilting
the camera and changing the color scale. Figure 1 shows the resulting scalar
surface.

1.9 Combining Dirichlet and Neumann Conditions

Let us make a slight extension of our two-dimensional Poisson problem from
Chapter 1.1 and add a Neumann boundary condition. The domain is still the
unit square, but now we set the Dirichlet condition u = u0 at the left and
right sides, x = 0 and x = 1, while the Neumann condition

−
∂u

∂n
= g

is applied to the remaining sides y = 0 and y = 1. The Neumann condition
is also known as a natural boundary condition (in contrast to an essential
boundary condition).

Let ΓD and ΓN denote the parts of ∂Ω where the Dirichlet and Neumann
conditions apply, respectively. The complete boundary-value problem can be
written as

−∆u = f in Ω, (21)

u = u0 on ΓD, (22)

−
∂u

∂n
= g on ΓN (23)

Again we choose u = 1 + x2 + 2y2 as the exact solution and adjust f , g, and
u0 accordingly:

f = −6,

g =

{

−4, y = 1
0, y = 0

u0 = 1 + x2 + 2y2 .

For ease of programming we may introduce a g function defined over the
whole of Ω such that g takes on the right values at y = 0 and y = 1. One
possible extension is

g(x, y) = −4y .

The first task is to derive the variational problem. This time we cannot
omit the boundary term arising from the integration by parts, because v is
only zero at the ΓD. We have

−

∫

Ω

(∆u)v dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds,
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Fig. 1. Plot of the deflection of a membrane.
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and since v = 0 on ΓD,

−

∫

∂Ω

∂u

∂n
v ds = −

∫

ΓN

∂u

∂n
v ds =

∫

ΓN

gv ds,

by applying the boundary condition at ΓN . The resulting weak form reads

∫

Ω

∇u · ∇v dx +

∫

ΓN

gv ds =

∫

Ω

fv dx . (24)

Expressing (24) in the standard notation a(u, v) = L(v) is straightforward
with

a(u, v) =

∫

Ω

∇u · ∇v dx, (25)

L(v) =

∫

Ω

fv dx−

∫

ΓN

gv ds . (26)

How does the Neumann condition impact the implementation? The code
in the file Poisson2D_D2.py remains almost the same. Only two adjustments
are necessary:

1. The class describing the boundary where Dirichlet conditions apply must
be modified.

2. The new boundary term must be added to the expression in L.

Step 1 can be coded as

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

if on_boundary:
if x[0] == 0 or x[0] == 1:

return True
else:

return False
else:

return False

A more compact implementation reads

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and (x[0] == 0 or x[0] == 1)

We remark that testing for an exact match of real numbers, as in x[0] == 1,
is not good programming practice, because small round-off errors in the com-
putation of the x values could make the outcome False even though x lies
on the Dirichlet boundary. A better test is to check for equality with a toler-
ance:
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class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and \

(abs(x[0]) < tol or abs(x[0] - 1) < tol)

The second adjustment of our program concerns the definition of L, where
we have to add a boundary integral and a definition of the g function to be
integrated:

g = Expression(’-4*x[1]’, V=V)
L = f*v*dx - g*v*ds

The ds variable implies a boundary integral, while dx implies an intergral over
the domain Ω. No more modifications are necessary. Running the resulting
program, found in the file Poisson2D_DN1.py, shows a successful verification
– u equals the exact solution at all the nodes, regardless of how many elements
we use.

1.10 Multiple Dirichlet Conditions

The PDE problem from the previous section applies a function u0(x, y) for
setting Dirichlet conditions at two parts of the boundary. Having a single
function to set multiple Dirichlet conditions is seldom possible. The more
general case is to have m functions for setting Dirichlet conditions at m parts
of the boundary. The purpose of this section is to explain how such multiple
conditions are treated in FEniCS programs.

Let us return to the case from Chapter 1.9 and define two separate func-
tions for the two Dirichlet conditions:

−∆u = −6 in Ω,

u = uL on Γ0,

u = uR on Γ1,

−
∂u

∂n
= g on ΓN .

Here, Γ0 is the boundary x = 0, while Γ1 corresponds to the boundary
x = 1. We have that uL = 1 + 2y2, uR = 2 + 2y2, and g = −4y. For
the left boundary Γ0 we define the usual triple of a function for the boundary
value, a subclass of SubDomain for defining the boundary of interest, and a
DirichletBC instance:

u_L = Expression(’1 + 2*x[1]*x[1]’, V=V)

class LeftDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = DirichletBC(V, u_L, LeftDirichletBoundary())
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For the boundary x = 1 we define a similar code:

u_R = Expression(’2 + 2*x[1]*x[1]’, V=V)

class RightDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = DirichletBC(V, u_R, RightDirichletBoundary())

The various essential conditions are then collected in a list and passed onto
our problem object of type VariationalProblem:

bc = [Gamma_0, Gamma_1]
...
problem = VariationalProblem(a, L, bc)

If the u values are constant at a part of the boundary, we may use a simple
Constant instance instead of an Expression instance.

The file Poisson2D_DN2.py contains a complete program which demon-
strates the constructions above. An extended example with multiple Neu-
mann conditions would have been quite natural now, but this requires mark-
ing various parts of the boundary using the mesh function concept and is
therefore left to Chapter 6.3.

1.11 A Linear Algebra Formulation

Given a(u, v) = L(v), the discrete solution u is computed by inserting u =
∑N

j=1 Ujφj into a(u, v) and demanding a(u, v) = L(v) to be fulfilled for N

test functions φ̂1, . . . , φ̂N . This implies

N
∑

j=1

a(φj , φ̂i) = L(φ̂i), i = 1, . . . , N,

which is nothing but a linear system,

AU = b,

where the entries in A and b are given by

Aij = a(φj , φ̂i),

bi = L(φ̂i) .

The examples so far have constructed a VariationalProblem instance
and called its solvemethod to compute the solution u. The VariationalProblem
instance creates a linear system AU = b and calls an appropriate solution
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method for such systems. An alternative is dropping the use of a VariationalProblem
instance and instead asking FEniCS to create the matrix A and right-hand
side b, and then solve for the solution vector U of the linear system. The
relevant statements read

A = assemble(a)
b = assemble(L)
bc.apply(A, b)
u = Function(V)
solve(A, u.vector(), b)

The variables a and L are as before, i.e., a refers to the bilinear form involving
a TrialFunction instance (say u) and a TestFunction instance (v), and L

involves a TestFunction instance (v). From a and L the assemble function
can compute the matrix elements Ai,j and the vector elements bi.

The matrix A and vector b are first assembled without incorporating
essential (Dirichlet) boundary conditions. Thereafter, the bc.apply(A, b)

call performs the necessary modifications to the linear system. The first three
statements above can alternatively be carried out by5

A, b = assemble_system(a, L, bc)

When we have multiple Dirichlet conditions stored in a list bc, as ex-
plained in Chapter 1.10, we must apply each condition in bc to the system:

# bc is a list of DirichletBC instances
for condition in bc:

condition.apply(A, b)

Alternatively, we can make the call

A, b = assemble_system(a, L, bc)

Note that the solution u is, as before, a Function instance. The degrees
of freedom, U = A−1b, are filled into u’s Vector instance (u.vector()) by
the solve function.

The object A is of type Matrix, while b and u.vector() are of type
Vector. We may convert the matrix and vector data to numpy arrays by
calling the array() method as shown before. If you wonder how essential
boundary conditions are incorporated in the linear system, you can print out
A and b before and after the bc.apply(A, b) call:

if mesh.numCells() < 16: # print for small meshes only
print A.array()
print b.array()

5 The essential boundary conditions are now applied to the element matrices and
vectors prior to assembly.
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bc.apply(A, b)
if mesh.numCells() < 16:

print A.array()
print b.array()

You will see that A is modified in a symmetric way: for each degree of freedom
that is known, the corresponding row and column is zero’ed out and 1 is
placed on the main diagonal. The right-hand side b is modified accordingly
(the column times the value of the degree of freedom is subtracted from b,
and then the corresponding entry in b is replaced by the known value of the
degree of freedom).

Sometimes it can be handy to transfer the linear system to Matlab or
Octave for futher analysis, e.g., computation of eigenvalues of A. This is
easily done by opening a File instance with a filename extension .m and
dump the Matrix and Vector instances as follows:

mfile = File(’A.m’); mfile << A
mfile = File(’b.m’); mfile << b

The data files A.m and b.m can be loaded directly into Matlab or Octave.
The complete code where our Poisson problem is solved by forming the

linear system AU = b explicitly, is stored in the files Poisson2D_DN_la1.py

(one common Dirichlet condition) and Poisson2D_DN_la2.py (two separate
Dirichlet conditions).

Creating the linear system explicitly in the user’s program, as an alterna-
tive to using a VariationalProblem instance, can have some advantages in
more advanced problem settings. For example, A may be constant through-
out a time-dependent simulation, so we can avoid recalculating A at every
time level and save a significant amount of simulation time. Chapters 3.2 and
3.3 deal with this topic in detail.

1.12 A Variable-Coefficient Poisson Problem

Suppose we have a variable coefficient p(x, y) in the Laplace operator, as in
the boundary-value problem

−∇ · [p(x, y)∇u(x, y)] = f(x, y) in Ω,
u(x, y) = u0(x, y) on ∂Ω .

(27)

We shall quickly demonstrate that this simple extension of our model problem
only requires an equally simple extension of the FEniCS program.

Let us continue to use our favorite solution u(x, y) = 1 + x + 2y2 and
then prescribe p(x, y) = x + y. It follows that u0(x, y) = 1 + x2 + 2y2 and
f(x, y) = −8x− 10y.

What are the modifications we need to do in the Poisson2D_D2.py pro-
gram from Chapter 1.4?
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1. f must be an Expression since it is no longer a constant,
2. a new Expression p must be defined for the variable coefficient,
3. the variational problem is slightly changed.

First we address the modified variational problem. Multiplying the PDE in
(27) and integrating by parts now results in

∫

Ω

p∇u · ∇v dx−

∫

∂Ω

p
∂u

∂n
v ds =

∫

Ω

fv dx .

The function spaces for u and v are the same as in Chapter 1.2, implying that
the boundary integral vanishes since v = 0 on ∂Ω where we have Dirichlet
conditions. The weak form a(u, v) = L(v) then has

a(u, v) =

∫

Ω

p∇u · ∇v dx, (28)

L(v) =

∫

Ω

fv dx . (29)

In the code from Chapter 1.3 we must replace

a = dot(grad(u), grad(v))*dx

by

a = p*dot(grad(u), grad(v))*dx

The definitions of p and f read

p = Expression(’x[0] + x[1]’, V=V)
f = Expression(’-8*x[0] - 10*x[1]’, V=V)

No additional modifications are necessary. The complete code can be found
in in the file Poisson2D_Dvc.py. You can run it and confirm that it recovers
the exact u at the nodes.

The flux −p∇u may be of particular interest in variable-coefficient Pois-
son problems. As explained in Chapter 1.6, we normally want the piecewise
discontinuous flux or gradient to be approximated by a continuous vector
field, using the same elements as used for the numerical solution u. The ap-
proximation now consists of solving w = −p∇u by a finite element method:

find w ∈ V
(g)
h such that

a(w, v) = L(vg) ∀v ∈ V̂
(g)
h , (30)

where

a(w, v) =

∫

Ω

w · v dx, (31)

L(vg) =

∫

Ω

(−p∇u) · v dx . (32)
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This problem is identical to the one in Chapter 1.6, except that p enters the
integral in L.

The relevant Python statements for computing the flux field take the
form

V_g = VectorFunctionSpace(mesh, ’CG’, 1)
v = TestFunction(V_g)
w = TrialFunction(V_g)

a = dot(w, v)*dx
L = dot(-p*grad(u), v)*dx
problem = VariationalProblem(a, L)
flux = problem.solve()

The convenience function project was made to condense the frequently oc-
curing statements above:

flux = project(-p*grad(u),
VectorFunctionSpace(mesh, ’CG’, 1))

Plotting the flux vector field is naturally as easy as plotting the gradient
in Chapter 1.6:

plot(flux, title=’flux field’)

flux_x, flux_y = flux.split(deepcopy=True) # extract components
plot(flux_x, title=’x-component of flux (-p*grad(u))’)
plot(flux_y, title=’y-component of flux (-p*grad(u))’)

Data analysis of the nodal values of the flux field may conveniently apply
the underlying numpy arrays:

flux_x_array = flux_x.vector().array()
flux_y_array = flux_y.vector().array()

The program Poisson2D_Dvc.py contains in addition some plots, includ-
ing a curve plot comparing flux_x and the exact counterpart along the line
y = 1/2. The associated programming details related to this visualization are
explained in Chapter 1.13.

1.13 Visualization of Structured Mesh Data

When finite element computations are done on a structured rectangular mesh,
maybe with uniform partitioning, VTK-based tools for completely unstruc-
tured 2D/3D meshes are not required. Instead we can use visualization tools
for structured data, like the data appearing in finite difference simulations
and image analysis. We shall demonstrate the potential of such tools.

A necessary first step is to transform our mesh instance to an object
representing a rectangle with equally-shaped rectangular cells. The Python
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package scitools has this type of structure, called a UniformBoxGrid. The
second step is to transform the one-dimensional array of nodal values to
a two-dimensional array holding the values at the corners of the cells in the
structured grid. In such grids, we want to access a value by its i and j indices,
i counting cells in the x direction, and j counting cells in the y direction.
This transformation is in principle straiightforward, yet it frequently leads to
obscure indexing errors. The BoxField object in scitools takes conveniently
care of the details of the transformation. With a BoxField defined on a
UniformBoxGrid it is very easy to call up more standard plotting packages
to visualize the solution along lines in the domain or as 2D contours or lifted
surfaces.

Let us go back to the Poisson2D_Dvc.py code from Chapter 1.12 and
map u onto a BoxField instance:

from scitools.BoxField import *
u_box = dolfin_function2BoxField(u, mesh, (nx,ny), uniform_mesh=True)

Here, nx and ny are the number of divisions in each space direction that
were used when calling UnitSquare to make the mesh instance. The result
u_box is a BoxField instance that supports “finite difference” indexing and
an underlying grid suitable for numpy operations on 2D data. Also 1D and
3D functions in DOLFIN can be turned into BoxField instances.

The ability to access a finite element field in the way one can access a finite
difference-type of field is handy in many occasions, including visualization
and data analysis. Here is an example of writing out the coordinates and the
field value at a grid point with indices i and j (going from 0 to nx and ny,
respectively, from lower left to upper right corner):

i = nx; j = ny # upper right corner
print ’u(%g,%g)=%g’ % (u_box.grid.coor[X][i],

u_box.grid.coor[Y][j],
u_box.values[i,j])

For instance, the x coordinates are reached by u_box.grid.coor[X], where
X is an integer (0) imported from scitools.BoxField. The grid attribute
is an instance of class UniformBoxGrid.

Many plotting programs can be used to visualize the data in u_box. Mat-
plotlib is now a very popular plotting program in the Python world and could
be used to make contour plots of u_box. However, other programs like Gnu-
plot, VTK, and Matlab have better support for surface plots. Our choice in
this tutorial is to use the Python package scitools.easyviz, which offers
a uniform Matlab-like syntax to various plotting packages such as Gnuplot,
Matplotlib, VTK, OpenDX, Matlab, and others. With scitools.easyvizwe
write one set of statements, close to what one would do in Matlab or Octave,
and then it is easy to switch between different plotting programs, at a later
stage, through a command-line option, a line in a configuration file, or an
import statement in the program. By default, scitools.easyviz employs



FEniCS Tutorial 35

Gnuplot as plotting program, and this is a highly relevant choice for scalar
fields over two-dimensional, structured meshes, or for curve plots along lines
through the domain.

A contour plot is made by the following scitools.easyviz command:

from scitools.easyviz import contour, title, hardcopy
contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels=’on’)
title(’Contour plot of u’)
hardcopy(’u_contours.eps’)

# or more compact syntax:
contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels=’on’,
hardcopy=’u_contours.eps’, title=’Contour plot of u’)

The resulting plot can be viewed in Figure 3a. The contour function needs
arrays with the x and y coordinates expanded to 2D arrays (in the same
way as demanded when making vectorized numpy calculations of arithmetic
expressions over all grid points). The correctly expanded arrays are stored
in grid.coorv. The above call to contour creates 5 equally spaced contour
lines, and with clabels=’on’ the contour values can be seen in the plot.

Other functions for visualizing 2D scalar fields are surf and mesh as
known from Matlab. Because the from dolfin import * statement imports
several names that are also present in scitools.easyviz (e.g., plot, mesh,
and figure), we use functions from the latter package through a module
prefix ev (for easyviz) from now on:

import scitools.easyviz as ev
ev.figure()
ev.surf(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

shading=’interp’, colorbar=’on’,
title=’surf plot of u’, hardcopy=’u_surf.eps’)

ev.figure()
ev.mesh(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

title=’mesh plot of u’, hardcopy=’u_mesh.eps’)

Figure 2 exemplifies the surfaces arising from the two plotting commands
above. You can type pydoc scitools.easyviz in a terminal window to get
a full tutorial.

A handy feature of BoxField is the ability to give a start point in the
grid and a direction, and then extract the field and corresponding coordinates
along the nearst grid line. In 3D fields one can also extract data in a plane.
Say we want to plot u along the line y = 1/2 in the grid. The grid points, x,
and the u values along this line, uval, are extracted by

start = (0, 0.5)
x, uval, y_fixed, snapped = u_box.gridline(start, direction=X)
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The variable snapped is true if the line had to be snapped onto a gridline and
in that case y_fixed holds the snapped (altered) y value. Plotting u versus
the x coordinate along this line, using scitools.easyviz, is now a matter
of

ev.figure() # new plot window
ev.plot(x, uval, ’r-’) # ’r--: red solid line
ev.title(’Solution’)
ev.legend(’finite element solution’)

# or more compactly:
ev.plot(x, uval, ’r-’, title=’Solution’,

legend=’finite element solution’)

A more exciting plot compares the projected numerical flux in x direction
along the line y = 1/2 with the exact flux:

ev.figure()
flux_x_box = dolfin_function2BoxField(flux_x, mesh, (nx,ny),

uniform_mesh=True)
x, fluxval, y_fixed, snapped = \

flux_x_box.gridline(start, direction=X)
y = y_fixed
flux_x_exact = -(x + y)*2*x
ev.plot(x, fluxval, ’r-’,

x, flux_x_exact, ’b-’,
legend=(’numerical (projected) flux’, ’exact flux’),
title=’Flux in x-direction (at y=%g)’ % y_fixed,
hardcopy=’flux.eps’)

As seen from Figure 3b, the numerical flux is accurate except in the elements
closest to the boundaries.

It should be easy with the information above to a transform finite element
field over a uniform rectangular or box-shaped mesh to the corresponding
BoxField instance and perform Matlab-style visualizations of the whole field
or the field over planes or along lines through the domain. By the transforma-
tion to a regular grid we have some more flexibility than what Viper offers.
(It should be added that comprehensive tools like VisIt, MayaVi2, or Par-
aView also have the possibility for plotting fields along lines and extracting
planes in 3D geometries, though usually with less degree of control compared
to Gnuplot, Matlab, and Matplotlib.)

1.14 Parameterizing the Number of Space Dimensions

FEniCS makes it is easy to write a unified simulation code that can operate in
1D, 2D, and 3D. We will conveniently make use of this feature in forthcoming
examples. The relevant technicalities are therefore explained below.

Consider the simple problem

u′′(x) = 2 in [0, 1], u(0) = 0, u(1) = 0, (33)
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Fig. 2. Examples on plots created by transforming the finite element field to a field
on a uniform, structured 2D grid: (a) a surface plot of the solution; (b) lifted mesh
plot of the solution.
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Fig. 3. Examples on plots created by transforming the finite element field to a field
on a uniform, structured 2D grid: (a) contour plot of the solution; (b) curve plot of
the exact flux −p∂u/∂x against the corresponding projected numerical flux.



FEniCS Tutorial 39

with exact solution u(x) = x2. Our aim is to formulate and solve this problem
in a 2D and a 3D domain as well. We may generalize the domain [0, 1] to a
box of any size in the y and z directions and pose homogeneous Neumann
conditions ∂u/∂n = 0 at all additional boundaries y = const and z = const to
ensure that u only varies with x. For example, let us choose a unit hypercube
as domain: Ω = [0, 1]d, where d is the number of space dimensions. The
generalized d-dimensional Poisson problem then reads

∆u = 2 in Ω,
u = 0 on Γ0,
u = 1 on Γ1,

∂u
∂n = 0 on ∂Ω ∩ (Γ0 ∪ Γ1) ,

(34)

where Γ0 is the side of the hypercube where x = 0, and where Γ1 is the side
where x = 1.

Implementing (34) for any d is no more complicated than solving a dimension-
specific problem. The only non-trivial part of the code is actually to define
the mesh. We use the command line to provide user-input to the program.
The first argument can be the degree of the polynomial in the finite element
basis functions. Thereafter, we supply the cell divisions in the various spatial
directions. The number of command-line arguments will then imply the num-
ber of space dimensions. For example, writing 3 10 3 4 on the command-line
means that we want to approximate u by piecewise polynomials of degree 3,
and that the domain is a three-dimensional cube with 10× 3× 4 divisions in
the x, y, and z directions, respectively. Each of the 10× 3 × 4 = 120 boxes
will be divided into six tetrahedras. The Python code can be quite compact:

degree = int(sys.argv[1])
divisions = [int(arg) for arg in sys.argv[2:]]
d = len(divisions)
domain_type = [UnitInterval, UnitSquare, UnitCube]
mesh = domain_type[d-1](*divisions)
V = FunctionSpace(mesh, ’CG’, degree)

First note that although sys.argv[2:] holds the divisions of the mesh, all
elements of the list sys.argv[2:] are string objects, so we need to explicitly
convert each element to an integer. The construction domain_type[d-1]will
pick the right name of the object used to define the domain and generate
the mesh. Moreover, the argument *divisions sends each component of the
list divisions as a separate argument. For example, in a 2D problem where
divisions has two elements, the statement

mesh = domain_type[d-1](*divisions)

is equivalent to
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mesh = UnitSquare(divisions[0], divisions[1])

The next part of the program is to set up the boundary conditions. Since
the Neumann conditions have ∂u/∂n = 0 we can omit the boundary integral
from the weak form. We then only need to take care of Dirichlet conditions
at two sides:

tol = 1E-14 # tolerance for coordinate comparisons
class DirichletBoundary0(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0]) < tol

class DirichletBoundary1(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[0] - 1) < tol

bc0 = DirichletBC(V, Constant(mesh, 0), DirichletBoundary0())
bc1 = DirichletBC(V, Constant(mesh, 1), DirichletBoundary1())
bc = [bc0, bc1]

Note that this code is independent of the number of space dimensions. So are
the statements defining and solving the variational problem:

v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, -2)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

problem = VariationalProblem(a, L, bc)
u = problem.solve()

The complete code is found in Poisson123D_DN1.py.
Observe that if we actually want to test variations in one selected space

direction, parameterized by e, we only need to replace x[0] in the code
by x[e] (!). The parameter e could be given as the second command-line
argument. This extension appears in the file Poisson123D_DN2.py. You can
run a 3D problem with this code where u varies in, e.g., z direction and
is approximated by, e.g., a 5-th degree polynomial. For any legal input the
numerical solution coincides with the exact solution at the nodes (because
the exact solution is a second-order polynomial).

2 Nonlinear Problems

Now we shall address how to solve nonlinear PDEs in FEniCS. Our sample
PDE for implementation is taken as a nonlinear Poisson equation:

−∇ · (q(u)∇u) = f . (35)

The coefficient q(u) makes the equation nonlinear (unless q(u) is a constant).
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To be able to easily verify our implementation, we choose the domain,
q(u), f , and the boundary conditions such that we have a simple, exact
solution u. Let Ω is the unit hypercube [0, 1]d in d dimensions, q(u) = (1 +
u)m, f = 0, u = 0 for x0 = 0, u = 1 for x0 = 1, and ∂u/∂n = 0 at all other
boundaries xi = 0 and xi = 1, i = 1, . . . , d − 1. The coordinates are now
represented by the symbols x0, . . . , xd−1. The exact solution is then

u(x0, . . . , xd) =
(

(2m+1 − 1)x0 + 1
)1/(m+1)

− 1 . (36)

The variational formulation of our model problem reads: Find u ∈ V such
that

F (u; v) = 0 ∀v ∈ V̂ , (37)

where

F (u; v) =

∫

Ω

q(u)∇u · ∇v dx, (38)

and

V̂ = {v ∈ H1(Ω) : v = 0 on x0 = 0 and x0 = 1},

V = {v ∈ H1(Ω) : v = 0 on x0 = 0 and v = 1 on x0 = 1}.

The discrete problem arises as usual by restricting V and V̂ to a pair of
discrete spaces: Find uh ∈ Vh such that

F (uh; v) = 0 ∀v ∈ V̂h, (39)

with uh =
∑N

j=1 Ujφj . Since F is a nonlinear function of uh, (39) gives rise to
a system of nonlinear algebraic equations. From now on the interest is only
in the discrete problem, and as mentioned in Chapter 1.2, we simply write
u instead of uh to get a closer notation between the mathematics and the
Python code. When the exact solution needs to be distinguished, we denote
it by ue.

FEniCS can be used in alternative ways for solving a nonlinear PDE prob-
lem. We shall in the following subsections go through four solution strategies:
1) a simple Picard-type iteration, 2) a Newton method at the algebraic level,
3) a Newton method at the PDE level, and 4) an automatic approach where
FEniCS attacks the nonlinear variational problem directly. The “black box”
strategy 4) is definitely the simplest one from a programmer’s point of view,
but the others give more control of the solution process for nonlinear equa-
tions (which also has some pedagogical advantages).

2.1 Picard Iteration

Picard iteration is an easy way of handling nonlinear PDEs: we simply use
a known, previous solutions in the nonlinear terms such that these terms
become linear in the unknown u. For our particular problem, this means that
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we use a known, previous solution in the coefficient q(u). More precisely, given
a solution uk from iteration k, we seek a new (hopefully improved) solution
uk+1 in iteration k + 1 such that uk+1 solves the linear problem

∇ ·
(

q(uk)∇uk+1
)

= 0, k = 0, 1, . . . (40)

The iterations require an initial guess u0. The hope is that uk → u as k →∞,
and that uk+1 is sufficiently close to the exact solution u of the discrete
problem after just a few iterations.

We can easily formulate a variational problem for uk+1 from Equation (40).
Equivalently, we can use uk in q(u) in the nonlinear variational problem (38)
to obtain the same linear variational problem. In both cases, the problem
consists of seeking uk+1 ∈ V such that

F (uk+1; v) = 0 ∀v ∈ V̂ , k = 0, 1, . . . , (41)

with

F (uk+1; v) =

∫

Ω

q(uk)∇uk+1 · ∇v dx . (42)

Since this is a linear problem in the unknown uk+1, we can equivalently use
the formulation

a(uk+1, v) = L(v), (43)

with

a(u, v) =

∫

Ω

q(uk)∇u · ∇v dx (44)

L(v) = 0 . (45)

The iterations can be stopped when ǫ ≡ ||uk+1 − uk|| < tol, where tol is
small, say 10−5, or when the number of iterations exceed some critical limit.
The latter case will pick up divergence of the method or unacceptable slow
convergence.

In the solution algorithm we only need to store uk and uk+1, called uk

and u in the code below. The algorithm can then be expressed as follows:

def q(u):
return (1+u)**m

# Define variational problem
v = TestFunction(V)
u = TrialFunction(V)
uk = interpolate(Expression(’0.0’, V=V), V) # previous (known) u
a = dot(q(uk)*grad(u), grad(v))*dx
f = Constant(mesh, 0.0)
L = f*v*dx

# Picard iterations
u = Function(V) # new unknown function
eps = 1.0 # error measure ||u-uk||
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tol = 1.0E-5 # tolerance
iter = 0 # iteration counter
maxiter = 25 # max no of iterations allowed
while eps > tol and iter < maxiter:

iter += 1
problem = VariationalProblem(a, L, bc)
u = problem.solve()
diff = u.vector().array() - uk.vector().array()
eps = numpy.linalg.norm(diff, ord=numpy.Inf)
print ’Norm, iter=%d: %g’ % (iter, eps)
uk.assign(u) # update for next iteration

We need to define the previous solution in the iterations, uk, as a finite
element function so that uk can be updated with u at the end of the loop.
We may create the initial Function uk by interpolating an Expression or a
Constant to the same vector space as u lives in (V).

In the code above we demonstrate how to use numpy functionality to
compute the norm of the difference between the two most recent solutions.
Here we apply the maximum/infinity norm on the difference of the solution
vectors (ord=1 and ord=2 give the ℓ1 and ℓ2 vector norms – other norms are
possible for numpy arrays, see pydoc numpy.linalg.norm).

The file nlPoisson_Picard.py contains the complete code for this prob-
lem. The implementation is d dimensional, with mesh construction and set-
ting of Dirichlet conditions as explained in Chapter 1.14. For a 33× 33 grid
with m = 2 we need 9 iterations for convergence when the tolerance is 10−5.

2.2 A Newton Method at the Algebraic Level

After having discretized our nonlinear PDE problem, we may use New-
ton’s method to solve the system of nonlinear algebraic equations. From the
continuous variational problem (38), the discrete version (39) results in a
system of equations for the unknown parameters U1, . . . , UN (by inserting

u =
∑N

j=1 Ujφj and v = φ̂i in (39)):

Fi(U1, . . . , UN) ≡
N
∑

j=1

∫

Ω

∇φ̂i ·

(

q(
N
∑

ℓ=1

Uℓφℓ)∇φjUj

)

dx = 0, i = 1, . . . , N .

(46)
Newton’s method for the system Fi(U1, . . . , Uj) = 0, i = 1, . . . , N can be
formulated as

N
∑

j=1

∂

∂Uj
Fi(U

k
1 , . . . , Uk

N )δUj = −Fi(U
k
1 , . . . , Uk

N), (47)

Uk+1
j = Uk

j + ωδUj, (48)

where ω ∈ [0, 1] is a relaxation parameter, and k is an iteration index. An
initial guess u0 must be provided to start the algorithm. The original Newton
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method has ω = 1, but in problems where it is difficult to obtain convergence,
so-called under-relaxation with ω < 1 may help.

We need, in a program, to compute the Jacobian matrix ∂Fi/∂Uj and the
right-hand side vector −Fi. Our present problem has Fi given by (46). The
derivative ∂Fi/∂Uj becomes

∫

Ω



∇φ̂i · ((q
′(

N
∑

ℓ=1

Uk
ℓ φℓ)φj∇(

N
∑

j=1

Uk
j φj)) +∇φ̂i · (q(

N
∑

ℓ=1

Uk
ℓ φℓ)∇φj)



 dx .

(49)
The following results were used to obtain (49):

∂u

∂Uj
=

∂

∂Uj

N
∑

j=1

Ujφj = φj ,
∂

∂Uj
∇u = ∇φj ,

∂

∂Uj
q(u) = q′(u)φj . (50)

We can reformulate the Jacobian matrix in (49) by introducing the short

notation uk =
∑N

j=1 Uk
j φj :

∂Fi

∂Uj
=

∫

Ω

[

q′(uk)φj∇uk · ∇φ̂i + q(uk)∇φj · ∇φ̂i

]

dx . (51)

In order to make FEniCS compute this matrix, we need to formulate a cor-
responding variational problem. Looking at the linear system of equations in
Newton’s method,

N
∑

j=1

∂Fi

∂Uj
δUj = −Fi, i = 1, . . . , N,

we can introduce v as a general test function replacing φ̂i, and we can identify
the unknown δu =

∑N
j=1 δUjφj . From the linear system we can now go

“backwards” to construct the corresponding discrete weak form

∫

Ω

[

q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v
]

dx = −

∫

Ω

q(uk)∇uk · ∇v dx . (52)

Equation (52) fits the standard form a(u, v) = L(v) with

a(u, v) =

∫

Ω

[

q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v
]

dx

L(v) = −

∫

Ω

q(uk)∇uk · ∇v dx .

Note the important feature in Newton’s method that the previous solution uk

replaces u in the formulas when computing the matrix ∂Fi/∂Uj and vector
Fi for the linear system in each Newton iteration.
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We now turn to the implementation. To obtain a good initial guess u0, we
can solve a simplified, linear problem, typically with q(u) = 1, which yields
the standard Laplace equation ∆u0 = 0. The receipe for solving this problem
appears in Chapters 1.2, 1.3, and 1.9. The code for computing u0 becomes
as follows:

tol = 1E-14
class LeftDirichletBoundary(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0]) < tol

class RightDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[0]-1) < tol

Gamma_0 = DirichletBC(V, Constant(mesh, 0.0),
LeftDirichletBoundary())

Gamma_1 = DirichletBC(V, Constant(mesh, 1.0),
RightDirichletBoundary())

bc_u = [Gamma_0, Gamma_1]

# Define variational problem for initial guess (q(u)=1, i.e., m=0)
v = TestFunction(V)
u = TrialFunction(V)
a = dot(grad(u), grad(v))*dx
f = Constant(mesh, 0.0)
L = f*v*dx
A, b = assemble_system(a, L, bc_u)
uk = Function(V)
solve(A, uk.vector(), b)

Here, uk denotes the solution function for the previous iteration, so that
solution after each Newton iteration is u = uk + omega*du. Initially, uk is
the initial guess we call u0 in the mathematics.

The Dirichlet boundary conditions for the problem to be solved in each
Newton iteration are somewhat different than the conditions for u. Assuming
that uk fulfills the Dirichlet conditions for u, δu must be zero at the bound-
aries where the Dirichlet conditions apply, in order for uk+1 = uk + ωδu
to fulfill the right Dirichlet values. We therefore define an additional list of
Dirichlet boundary conditions instances for δu:

Gamma_0_du = DirichletBC(V, Constant(mesh, 0.0),
LeftDirichletBoundary())

Gamma_1_du = DirichletBC(V, Constant(mesh, 0.0),
RightDirichletBoundary())

bc_du = [Gamma_0_du, Gamma_1_du]

The nonlinear coefficient and its derivative must be defined before coding the
weak form of the Newton system:

def q(u):
return (1+u)**m
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def Dq(u):
return m*(1+u)**(m-1)

du = TrialFunction(V) # u = uk + omega*du
a = dot(q(uk)*grad(du), grad(v))*dx + \

dot(Dq(uk)*du*grad(uk), grad(v))*dx
L = -dot(q(uk)*grad(uk), grad(v))*dx

The Newton iteration loop is very similar to the Picard iteration loop in
Chapter 2.1:

du = Function(V)
u = Function(V) # u = uk + omega*du
omega = 1.0 # relaxation parameter
eps = 1.0
tol = 1.0E-5
iter = 0
maxiter = 25
while eps > tol and iter < maxiter:

iter += 1
A, b = assemble_system(a, L, bc_du)
solve(A, du.vector(), b)
eps = numpy.linalg.norm(du.vector().array(), ord=numpy.Inf)
print ’Norm:’, eps
u.vector()[:] = uk.vector() + omega*du.vector()
uk.assign(u)

There are other ways of implementing the update of the solution as well:

u.assign(uk) # u = uk
u.vector().axpy(omega, du.vector())

# or
u.vector()[:] += omega*du.vector()

The axpy(a, y) operation adds a scalar a times a Vector y to a Vector

instance. It is usually a fast operation calling up an optimized BLAS routine
for the calculation.

Mesh construction for a d-dimensional problem with arbitrary degree of
the Lagrange elements can be done as explained in Chapter 1.14. The com-
plete program appears in the file nlPoisson_algNewton.py.

2.3 A Newton Method at the PDE Level

Although Newton’s method in PDE problems is normally formulated at the
linear algebra level, i.e., as a solution method for systems of nonlinear alge-
braic equations, we can also formulate the method at the PDE level. This
approach yields a linearization of the PDEs before they are discretized. FEn-
iCS users will probably find this technique simpler to apply than the more
standard method of Chapter 2.2.
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Given an approximation to the solution field, uk, we seek a perturbation
δu so that

uk+1 = uk + δu (53)

fulfills the nonlinear PDE. However, the problem for δu is still nonlinear and
nothing is gained. The idea is therefore to assume that δu is sufficiently small
so that we can linearize the problem with respect to δu. Inserting uk+1 in
the PDE, linearizing the q term as

q(uk+1) = q(uk) + q′(uk)δu +O((δu)2) ≈ q(uk) + q′(uk)δu, (54)

and dropping other nonlinear terms in δu, we get

∇ ·
(

q(uk)∇uk
)

+∇ ·
(

q(uk)∇δu
)

+∇ ·
(

q′(uk)δu∇uk
)

= 0 .

We may collect the terms with the unknown δu on the left-hand side,

∇ ·
(

q(uk)∇δu
)

+∇ ·
(

q′(uk)δu∇uk
)

= −∇ ·
(

q(uk)∇uk
)

, (55)

The weak form of this PDE is derived by multiplying by a test function v
and integrating over Ω, integrating the second-order derivatives by parts:

∫

Ω

(

q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v
)

dx =

∫

Ω

q(uk)∇uk · ∇v dx . (56)

The variational problem reads: Find δu ∈ V such that a(δu, v) = L(v) for all
v ∈ V̂ , where

a(δu, v) =

∫

Ω

(

q(uk)∇δu · ∇v + q′(uk)∇uk · ∇v
)

dx, (57)

L(v) =

∫

Ω

q(uk)∇uk · ∇v dx . (58)

The continuous function spaces V and V̂ , and their discrete counterparts, Vh

and V̂h, are as in the linear Poisson problem from Chapter 1.2.
We must provide some initial guess, e.g., the solution of the PDE with

q(u) = 1. The corresponding weak form a0(u
0, v) = L0(v) has a0(u, v) =

∫

Ω
∇u ·∇v dx and L(v) = 0. Thereafter, we enter a loop and solve a(δu, v) =

L(v) for δt and compute a new approximation uk+1 = uk + δu. Looking at
(58) and (58), we see that the variational form is the same as for the Newton
method at the algebraic level in Chapter 2.2. Since Newton’s method at the
algebraic level required some “backward” construction of the underlying weak
forms, FEniCS users may prefer Newton’s method at the PDE level, which
is more straightforward. There is seemingly no need for differentiations to
derive a Jacobian matrix, but a mathematically equivalent derivation is done
when nonlinear terms are linearized using the first two Taylor series terms
and when products in the perturbation δu are neglected.
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The implementation is identical to the one in Chapter 2.2 and is found in
the file nlPoisson_pdeNewton.py (for the fun of it we use a VariationalProblem
instance instead of assembling a matrix and vector and calling solve). The
reader is encouraged to go through this code to be convinced that the present
method actually ends up with the same program as needed for the Newton
method at the linear algebra level (Chapter 2.2).

2.4 Solving the Nonlinear Variational Problem Directly

DOLFIN has a built-in Newton solver and is able to automate the compu-
tation of nonlinear, stationary boundary-value problems. The automation is
demonstrated next. A nonlinear variational problem (37) can be solved by

VariationalProblem(a, L, nonlinear=True)

where L corresponds to the form F (u; v) in (37) and a is a form for the
derivative of L.

The L form is straightforwardly defined (assuming q(u) is coded):

v = TestFunction(V)
u = Function(V) # the unknown
L = dot(q(u)*grad(u), grad(v))*dx

The derivative a of L is formally the Gateaux derivative of F (u; v) in the
direction of the trial function. Technically, this Gateaux derivative is derived
by computing

lim
ǫ→0

d

dǫ
Fi(u

k + ǫδu; v) (59)

The δu is now the trial function and uk is as usual the previous approximation
to the solution u. We start with

d

dǫ

∫

Ω

∇v ·
(

q(uk + ǫδu)∇(uk + ǫδu)
)

dx

and obtain
∫

Ω

∇v ·
[

q′(uk + ǫδu)δu∇(uk + ǫδu) + q(uk + ǫδu)∇δu
]

dx,

which leads to
∫

Ω

∇v ·
[

q′(uk)δu∇(uk) + q(uk)∇δu
]

dx, (60)

as ǫ→ 0. This last expression is the Gateaux derivative of F and is denoted
by a(δu, v). The corresponding implementation goes as
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du = TrialFunction(V)
a = dot(q(u)*grad(du), grad(v))*dx + \

dot(Dq(u)*du*grad(u), grad(v))*dx

The UFL language we use to specify weak forms supports differentiation
of forms. This means that when L is given as above, we can simply compute
the Gateaux derivative by

a = derivative(L, u, du)

The differentiation is done symbolically so no numerical approximation for-
mulas are involved. The derivative function is obviously very convenient in
problems where differentiating L by hand implies lengthy calculations.

The solution of the nonlinear problem is now a question of two state-
ments:

problem = VariationalProblem(a, L, bc, nonlinear=True)
u = problem.solve(u)

The u we feed to problem.solve is filled with the solution and returned,
implying that the u on the left-hand side actually refers to the same u as
provided on the right-hand side6. The file nlPoisson_vp1.py contains the
complete code, where a is calculated manually, while nlPoisson_vp2.py is a
counterpart where a is computed by derivative(L, u, du). The latter file
represents clearly the most automated way of solving the present nonlinear
problem in FEniCS.

3 Time-Dependent Problems

The examples in Chapter 1 illustrate that solving linear, stationary PDE
problems with the aid of FEniCS is easy and requires little programming.
That is, FEniCS automates the spatial discretization by the finite element
method. The solution of nonlinear problems, as we showed in Chapter 37, can
also be automated (cf. Chapter 2.4), but many scientists will prefer to code
the solution strategy of the nonlinear problem themselves and experiment
with various combination of strategies in difficult problems. Time-dependent
problems are somewhat similar in this respect: we have to add a time dis-
cretization scheme, which is often quite simple, making it natural to explicitly
code the details of the scheme so that the programmer have full control. We
shall explain how easily this is accomplished through examples.

6 Python has a convention that all input data to a function or class method are
represented as arguments, while all output data are returned to the calling code.
Data used as both input and output, as in this case, will then be arguments
and returned. It is not necessary to have a variable on the left-hand side, as the
function instance is modified correctly anyway, but it is convention that we follow
here.
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3.1 A Diffusion Problem and Its Discretization

Our time-dependent model problem for teaching purposes is naturally the
simplest extension of the Poisson problem into the time domain, i.e., the
diffusion problem

∂u

∂t
= ∆u + f in Ω, (61)

u = u0 on ∂Ω, (62)

u = I for t = 0 . (63)

Here, u varies with space and time, e.g., u = u(x, y, t) if the spatial domain Ω
is two-dimensional. The source function f and the boundary values u0 may
also vary with space and time. The initial condition I is a function of space
only.

A straightforward approach to solving time-dependent PDEs by the finite
element method is to first discretize the time derivative by a finite difference
approximation, which yields a recursive set of stationary problems, and then
turn each stationary problem into a variational formulation.

Let superscript k denote a quantity at time tk, where k is an integer
counting time levels. For example, uk means u at time level k. A finite differ-
ence discretization in time first consists in sampling the PDE at some time
level, say k:

∂

∂t
uk = ∆uk + fk . (64)

The time-derivative can be approximated by a finite difference. For simplicity
and stability reasons we choose a simple backward difference:

∂

∂t
uk ≈

uk − uk−1

∆t
, (65)

where ∆t is the time discretization parameter. Inserting (65) in (64) yields

uk − uk−1

∆t
= ∆uk + fk . (66)

This is our time-discrete version of the diffusion PDE (61). Reordering (66)
so that uk appears on the left-hand side only, shows that (66) is a recursive
set of spatial (stationary) problems for uk (assuming uk−1 is know from
compuations at the previous time level):

u0 = I, (67)

uk −∆uk = uk−1 + ∆tfk, k = 1, 2, . . . (68)

Given I, we can solve for u0, u1, u2, and so on.
We use a finite element method to solve the equations (67) and (68). This

requires turning the equations into weak forms. As usual, we multiply by a
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test function v ∈ V̂ and integrate second-derivatives by parts. Introducing
the symbol u for uk (which is natural in the program too), the resulting weak
forms can be conveniently written in the standard notation: a0(u, v) = L0(v)
for (67) and a(u, v) = L(v) for (68), where

a0(u, v) =

∫

Ω

uv dx, (69)

L0(v) =

∫

Ω

Iv dx, (70)

a(u, v) =

∫

Ω

(uv + ∆t∇u · ∇v) dx, (71)

L(v) =

∫

Ω

(

uk−1 + ∆tfk
)

v dx . (72)

The continuous variational problem is to find u0 ∈ V such that a0(u
0, v) =

L0(v) holds for all v ∈ V̂ , and then find uk ∈ V such that a(uk, v) = L(v) for
all v ∈ V̂ , k = 1, 2, . . ..

Approximate solutions in space are found by restricting the functional
spaces V and V̂ to finite-dimensional spaces Vh and V̂h, exactly as we have
done in the Poisson problems. We shall use the symbol u for the finite element
approximation at time tk. In case we need to distinguish this space-time
discrete approximation from the exact solution of the continuous diffusion
problem, we use ue for the latter. With uk−1 we mean, from now on, the
finite element approximation of the solution at time tk−1.

Note that the forms a0 and L0 are identical to the forms met in Chap-
ter 1.6, except that the unknown now is a scalar field and not a vector field.
Instead of solving (67) by a finite element method, i.e., projecting I onto Vh

via the problem a0(u, v) = L0(v), we could simply interpolate u0 from I.

That is, if u0 =
∑N

j=1 U0
j φj , we simply set Uj = I(xj , yj), where (xj , yj) are

the coordinates of node no. j. We refer to these two strategies as computing
the initial condition by either projecting I or interpolating I. Both opera-
tions are easy to compute through one statement, using either the project

or interpolate function.

3.2 Implementation

Our program needs to perform the time stepping explicitly, but can rely on
FEniCS to easily compute a0, L0, a, and L, and solve the linear systems
for the unknowns. We realize that a does not depend on time, which means
that its associated matrix also will be time independent. Therefore, it is wise
to explicitly create matrices and vectors as in Chapter 1.11. The matrix A
arising from a can be computed prior to the time stepping, so that we only
need to compute the right-hand side b, corresponding to L, in each pass in the
time loop. Let us express the solution procedure in algorithmic form, writing
u for uk and uprev for the previous solution uk−1:



52 H. P. Langtangen

define Dirichlet boundary condition (u0, Dirichlet boundary, etc.)
if uprev is to be computed by projecting I:

define a0 and L0

assemble matrix M from a0 and vector b from L0

solve MU = b and store U in uprev

else: (interpolation)
let uprev interpolate I

define a and L
assemble matrix A from a
set some stopping time T
t = ∆t
while t ≤ T

assemble vector b from L
apply essential boundary conditions
solve AU = b for U and store in u
t← t + ∆t
uprev ← u (be ready for next step)

Before starting the coding, we shall construct a problem where it is easy to
determine if the calculations are correct. The simple backward time difference
is exact for linear functions, so we decide to have a linear variation in time.
Combining a second-order polynomial in space with a linear term in time,

u = 1 + x2 + αy2 + βt, (73)

yields a function whose computed values at the nodes may be exact, regard-
less of the size of the elements and ∆t, as long as the mesh is uniformly
partitioned. Inserting (73) in the PDE problem (61), it follows that u0 must
be given as (73) and that f(x, y, t) = β − 2− 2α and I(x, y) = 1 + x2 + αy2.

A new programming issue is how to deal with functions that vary in space
and time, such as the boundary condition u0 given by (73). Given a mesh and
an associated function space V, we can specify the u0 function as

alpha = 3; beta = 1.2
u0 = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,

{’alpha’: alpha, ’beta’: beta},
V=V)

u0.t = 0

This function expression has the components of x as independent variables,
while alpha, beta, and t are parameters. The parameters can either be set
through a dictionary at construction time, as demonstrated for alpha and
beta, or anytime through attributes in the function instance, as shown for
the t parameter.

The essential boundary conditions, along the whole boundary in this case,
are set in the usual way,
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class Boundary(SubDomain): # define the Dirichlet boundary
def inside(self, x, on_boundary):

return on_boundary

boundary = Boundary()
bc = DirichletBC(V, u_exact, boundary)

The initial condition can be computed by either projecting or interpolat-
ing I. The I(x, y) function is available in the program through u0, as long as
u0.t is zero. We can then do

u_prev = interpolate(u0, V)
# or
u_prev = project(u0, V)

Note that we could, as an equivalent alternative to using project, define a0

and L0 as we did in Chapter 1.6 and form a VariationalProblem instance.
To actually recover (73) to machine precision, it is important not to compute
the discrete initial condition by projecting I, but by interpolating I so that
the nodal values are exact at t = 0 (projection will imply approximative
values at the nodes).

The definition of a and L goes as follows:

dt = 0.3 # time step

v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, beta - 2 - 2*alpha)

a = u*v*dx + dt*dot(grad(u), grad(v))*dx
L = (u_prev + dt*f)*v*dx

A = assemble(a) # assemble only once, before the time stepping

Finally, we perform the time stepping in a loop:

u = Function(V) # the unknown at a new time level
T = 2 # total simulation time
t = dt

while t <= T:
b = assemble(L)
u0.t = t
bc.apply(A, b)
solve(A, u.vector(), b)

t += dt
u_prev.assign(u)

Observe that u0.t must be updated before bc applies it to enforce the Dirich-
let conditions at the current time level.

The time loop above does not contain any examination of the numerical
solution, which we must include in order to verify the implementation. As
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in many previous examples, we compute the difference between the array
of nodal values of u and the array of the interpolated exact solution. The
following code is to be included inside the loop, after u is found:

u_e = interpolate(u0, V)
maxdiff = (u_e.vector().array() - u.vector().array()).max()
print ’Max error, t=%.2f: %-10.3f’ % (t, maxdiff)

The right-hand side vector b must obviously be recomputed at each time
level. With the construction b = assemble(L), a new vector for b is allo-
cated in memory in every pass of the time loop. It would be much more
memory friendly to reuse the storage of the b we already have. This is easily
accomplished by

b = assemble(L, tensor=b)

That is, we send in our previous b, which is then filled with new values and
returned from assemble. Now there will be only a single memory allocation
of the right-hand side vector. Before the time loop we set b = None such that
b is defined in the first call to assemble.

The complete program code for this time-dependent case is stored in the
file diffusion2D_D1.py.

3.3 Avoiding Assembly

The purpose of this section is to present a technique for speeding up FEniCS
simulators for time-dependent problems where it is possible to perform all
assembly operations prior to the time loop. There are two costly operations
in the time loop: assembly of the right-hand side b and solution of the linear
system via the solve call. The assembly process involves work proportional
to the number of degrees of freedom N , while the solve operation has a work
estimate of O(N1+p), where p ≥ 0. As N → ∞, the solve operation will for
p > 0 dominate, but for the values of N typically used on smaller computers,
the assembly step may still represent a considerable part of the total work
at each time level. Avoiding repeated assembly can therefore contribute to a
significant speed-up of a finite element code in time-dependent problems.

To see how repeated assembly can be avoided, we look at the L(v) form
in (72), which in general varies with time through uk−1, fk, and possibly also
with ∆t if the time step is adjusted during the simulation. The technique for
avoiding repeated assembly consists in expanding the finite element functions
in sums over the basis functions φi, as explained in Chapter 1.11, to identify
matrix-vector products that build up the complete system. We have uk−1 =
∑N

j=1 Uk−1
j φj , and we can expand fk as fk =

∑N
j=1 F k

j φj . Inserting these
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expressions in L(v) and using v = φ̂i result in

∫

Ω

(

uk−1 + ∆tfk
)

v dx =

∫

Ω





N
∑

j=1

Uk−1
j φj + ∆t

N
∑

j=1

F k
j φj



 φ̂i dx,

=
∑

j=1

(∫

Ω

φ̂iφj dx

)

Uk−1
j + ∆t

∑

j=1

(∫

Ω

φ̂iφj dx

)

F k
j .

Introducing Mij =
∫

Ω
φ̂iφj dx, we see that the last expression can be written

∑

j=1

MijU
k−1
j + ∆t

∑

j=1

MijF
k
j ,

which is nothing but two matrix-vector products,

MUk−1 + ∆tMF k,

if M is the matrix with entries Mij and

Uk−1 = (Uk−1
1 , . . . , Uk−1

N ),

and

F k = (F k
1 , . . . , F k

N ) .

We have immediate access to Uk−1 in the program since that is the vector
in the u_prev function. The F k vector can easily be computed by interpolat-
ing the prescribed f function (at each time level if f varies with time). Given
M , Uk−1, and F k, the right-hand side b can be calculated as

b = MUk−1 + ∆tMF k .

That is, no assembly is necessary to compute b.
The coefficient matrix A can also be split into two terms. We insert v = φ̂i

and uk =
∑N

j=1 Uk
j φj in the expression (71) to get

N
∑

j=1

(∫

Ω

φ̂iφj dx

)

Uk
j + ∆t

N
∑

j=1

(∫

Ω

∇φ̂i · ∇φj dx

)

Uk
j ,

which can be written as a sum of matrix-vector products,

MUk + ∆tKUk = (M + ∆tK)Uk,

if we identify the matrix M with entries Mij as above and the matrix K with
entries

Kij =

∫

Ω

∇φ̂i · ∇φj dx . (74)
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The matrix M is often called the “mass matrix” while “stiffness matrix” is
a common nickname for K. The associated bilinear forms for these matrices,
as we need them for the assembly process in a FEniCS program, become

aK(u, v) =

∫

Ω

∇u · ∇v dx, (75)

aM (u, v) =

∫

Ω

uv dx, . (76)

The linear system at each time level, written as AUk = b, can now be
computed by first computing M and K, and then forming A = M + ∆tK at
t = 0, while b is computed as b = MUk−1 + ∆tMF k at each time level.

The following modifications are needed in the diffusion2D_D1.py pro-
gram from the previous section in order to implement the new strategy of
avoiding assembly at each time level:

1. Define separate forms aM and aK

2. Assemble aM to M and aK to K
3. Compute A = M + ∆K
4. Define f as an Expression

5. Interpolate the formula for f to a finite element function F k

6. Compute b = MUk−1 + ∆tMF k

The relevant code segments become

# 1.
a_K = dot(grad(u), grad(v))*dx
a_M = u*v*dx

# 2. and 3.
M = assemble(a_M)
K = assemble(a_K)
A = M + dt*K

# 4.
f = Expression(’beta - 2 - 2*alpha’,

{’beta’: beta, ’alpha’: alpha},
V=V)

# 5. and 6.
while t <= T:

fk = interpolate(f, V)
Fk = fk.vector()
b = M*u_prev.vector() + dt*M*Fk

The complete program appears in the file diffusion2D_D2.py..

3.4 A Physical Example

With the basic programming techniques for time-dependent problem from
Chapters 3.3–3.2 we are ready to attack more physically realistic examples.
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The next example concerns the question: How is the temperature in the
ground affected by day and night variations at the earth’s surface? We con-
sider some box-shaped domain Ω in d dimensions with coordinates x0, . . . , xd−1

(the problem is meaningful in 1D, 2D, and 3D). At the top of the domain,
xd−1 = 0, we have an oscillating temperature

T0(t) = TR + TA sin(ωt),

where TR is some reference temperature, TA is the amplitude of the temper-
ature variations at the surface, and ω is the frequency of the temperature
oscillations. At all other boundaries we assume that the temperature does
not change anymore when we move away from the boundary, i.e., the normal
derivative is zero. Initially, the temperature can be taken as TR everywhere.
The heat conductivity properties of the soil in the ground may vary with
space so we introduce a variable coefficient κ reflecting this property. Fig-
ure 4 shows a sketch of the problem, with a small region where the heat
conductivity is much lower.

∂u/∂n = 0∂u/∂n = 0

y

x

T0(t) = TR + TA sin(ωt)

D

W

κ≪ κ0

̺, c, κ0

∂u/∂n = 0

Fig. 4. Sketch of a (2D) problem involving heating and cooling of the ground due
to an oscillating surface temperature.
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The initial-boundary value problem for this problem reads

̺c
∂T

∂t
= ∇ · (k∇T ) in Ω × (0, T ], (77)

T = T0(t) on Γ0, (78)

∂T

∂n
= 0 on ∂Ω ∩ Γ0, (79)

T = TR at t = 0 . (80)

Here, ̺ is the density of the soil, c is the heat capacity, κ is the thermal
conductivity (heat conduction coefficient) in the soil, and Γ0 is the surface
boundary xd−1 = 0.

We use a θ-scheme in time, i.e., the evolution equation ∂P/∂t = Q(t) is
discretized as

P k − P k−1

∆t
= θQk + (1− θ)Qk−1,

where θ ∈ [0, 1] is a weighting factor: θ = 1 corresponds to the backward
difference scheme, θ = 1/2 to the Crank-Nicolson scheme, and θ = 0 to a
forward difference scheme. The θ-scheme applied to our PDE results in

̺c
T k − T k−1

∆t
= θ∇ ·

(

k∇T k
)

+ (1− θ)∇ ·
(

k∇T k−1
)

.

Bringing this time-discrete PDE on weak form follows the technique shown
many times earlier in this tutorial. In the standard notation a(T, v) = L(v)
the weak form has

a(T, v) =

∫

Ω

(̺cTv + θ∆tκ∇T · ∇v) dx, (81)

L(v) =

∫

Ω

(

̺cvT k−1 − (1 − θ)∆tκ∇T · ∇v
)

dx . (82)

Observe that boundary integrals vanish because of the Neumann boundary
conditions.

The size of a 3D box is taken as W × W × D, where D is the depth
and W = D/2 is the width. We give the degree of the basis functions at the
command line, then D, and then the divisions of the domain in the various
directions. To make a box, rectangle, or interval of arbitrary (not unit) size,
we have the DOLFIN classes Box, Rectangle, and Interval at our disposal.
The mesh and the function space can be created by the following code:

degree = int(sys.argv[1])
D = float(sys.argv[2])
divisions = [int(arg) for arg in sys.argv[3:]]
d = len(divisions) # no of space dimensions
if d == 1:

mesh = Interval(divisions[0], -D, 0)
elif d == 2:
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mesh = Rectangle(0, -D, D/2, 0, divisions[0], divisions[1])
elif d == 3:

mesh = Box(0, 0, -D, D/2, D/2, 0,
divisions[0], divisions[1], divisions[2])

V = FunctionSpace(mesh, ’CG’, degree)

The Rectangle and Box instances are defined by the coordinates of the “min-
imum” and “maximum” corners.

Setting Dirichlet conditions at the upper boundary can be done by

T_R = 0; T_A = 1.0; omega = 2*pi
T_0 = Expression(’T_R + T_A*sin(omega*t)’,

{’T_R’: T_R, ’T_A’: T_A, ’omega’: omega, ’t’: 0.0},
V=V)

class Surface(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[d-1]) < 1E-14

surface = Surface()
bc = DirichletBC(V, T_0, surface)

Quite simple values (non-physical for soil and real temperature variations)
are chosen for the initial testing.

The κ function can be defined as a constant κ1 inside the particular
rectangular area with a special soil composition, as indicated in Figure 4.
Outside this area κ is a constant κ0. The domain of the rectangular area are
taken as

[−W/4, W/4]× [−W/4, W/4]× [−D/2,−D/2 + D/4]

in 3D, with [−W/4, W/4]× [−D/2,−D/2+ D/4] in 2D and [−D/2,−D/2+
D/4] in 1D. Since we need some testing in the definition of the κ(x) function,
the most straightforward approach is to define a subclass of Expression,
where we can use a full Python method instead of just a C++ string formula
for specifying a function. The method that defines the function is called
eval:

class Kappa(Function):
def eval(self, value, x):

"""x: spatial point, value[0]: function value."""
d = len(x) # no of space dimensions
material = 0 # 0: outside, 1: inside
if d == 1:

if -D/2. < x[d-1] < -D/2. + D/4.:
material = 1

elif d == 2:
if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4.:
material = 1

elif d == 3:
if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4. and -W/4. < x[1] < W/4.:
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material = 1
value[0] = kappa_0 if material == 0 else kappa_1

The eval method gives great flexibility in defining functions, but a down-
side is that C++ calls up eval in Python for each point x, which is a slow
process, and the number of calls is proportional to the number of nodes in
the mesh. Function expressions in terms of strings are compiled to efficient
C++ functions, being called from C++, so we should try to express func-
tions as string expressions if possible. (The eval method can also be defined
through C++ code, but this is much more involved and not covered here.)
Using inline if-tests in C++, we can make string expressions for κ:

kappa_0 = 0.2
kappa_1 = 0.001
kappa_str = {}
kappa_str[1] = ’x[0] > -%s/2 && x[0] < -%s/2 + %s/4 ? %g : %g’ % \

(D, D, D, kappa_1, kappa_0)
kappa_str[2] = ’x[0] > -%s/4 && x[0] < %s/4 ’\

’&& x[1] > -%s/2 && x[1] < -%s/2 + %s/4 ? %g : %g’ % \
(W, W, D, D, D, kappa_1, kappa_0)

kappa_str[3] = ’x[0] > -%s/4 && x[0] < %s/4 ’\
’x[1] > -%s/4 && x[1] < %s/4 ’\

’&& x[2] > -%s/2 && x[2] < -%s/2 + %s/4 ? %g : %g’ % \
(W, W, W, W, D, D, D, kappa_1, kappa_0)

kappa = Expression(kappa_str[d], V=V)

For example, in 2D kappa_str[1] becomes

x[0] > -0.5/4 && x[0] < 0.5/4 && x[1] > -1.0/2 &&
x[1] < -1.0/2 + 1.0/4 ? 1e-07 : 0.2

for D = 1 and W = D/2 (the string is one line, but broken into two here
to fit the page width). It is very important to have a D that is float and
not int, otherwise one gets integer divisions in the C++ expression and a
completely wrong κ function.

We are now ready to define the initial condition and the a and L forms of
our problem:

T_prev = interpolate(Constant(mesh, T_R), V)

rho = 1
c = 1
period = 2*pi/omega
T_stop = 5*period
dt = period/20 # 20 time steps per period
theta = 1

v = TestFunction(V)
T = TrialFunction(V)
f = Constant(mesh, 0)
a = rho*c*T*v*dx + theta*dt*kappa*dot(grad(T), grad(v))*dx
L = (rho*c*T_prev*v + dt*f*v -

(1-theta)*dt*kappa*dot(grad(T), grad(v)))*dx
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A = assemble(a)
b = None # variable used for memory savings in assemble calls

We could, alternatively, break a and L up in subexpressions and assemble
a mass matrix and stiffness matrix, as exemplified in Chapter 3.3, to avoid
assembly of b at every time level. This modification is straightforward and
left as an exercise. The speed-up can be significant in 3D problems.

The time loop is very similar to what we have displayed in Chapter 3.2:

T = Function(V) # unknown at the current time level
t = dt
while t <= T_stop:

b = assemble(L, tensor=b)
T_0.t = t
bc.apply(A, b)
solve(A, T.vector(), b)
# visualization statements
t += dt
T_prev.assign(T)

The complete code in diffusion123D_sin.py contains several statements
related to visualization of the solution, both as a finite element field (plot
calls) and as a curve in the vertical direction. The code also plots the exact
analytical solution,

T (x, t) = TR + TAeax sin(ωt + ax), a =

√

ω̺c

2κ
,

which is valid when κ is constant throughout Ω. The reader is encouraged to
play around with the code and test out various parameter sets:

– TR = 0, TA = 1, κ0 = κ1 = 0.2, ̺ = c = 1, ω = 2π

– TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.01, ̺ = c = 1, ω = 2π

– TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.001, ̺ = c = 1, ω = 2π

– TR = 10 C, TA = 10 C, κ0 = 1.1 K−1Ns−1, κ0 = 2.3 K−1Ns−1, ̺ =
1500 kg/m

3
, c = 1600 Nmkg−1K−1, ω = 2π/24 1/h = 7.27 · 10−5 1/s,

D = 1.5 m

The latter set of data is relevant for real temperature variations in the ground.

4 Controlling the Solution of Linear Systems

Several linear algebra packages, referred to as linear algebra backends, can be
used in FEniCS to solve linear systems: PETSc, uBLAS, Epetra (Trilinos),
or MTL4. Which backend to apply can be controlled by setting
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parameters[’linear algebra backend’] = backendname

where backendname is a string, either ’PETSc’, ’uBLAS’, ’Epetra’, or ’MTL4’.
These backends offer high-quality implementations of both iterative and di-
rect solvers for linear systems of equations.

The backend determines the specific data structures that are used in the
Matrix and Vector classes. For example, with the PETSc backend, Matrix
encapsulates a PETSc matrix storage structure, and Vector encapsulates
a PETSc vector storage structure. The underlying PETSc objects can be
fetched by

A_PETSc = down_cast(A).mat()
b_PETSc = down_cast(b).vec()
U_PETSc = down_cast(u.vector()).vec()

Here, u is a Function, A is a Matrix, and b is a Vector. The same syntax
applies if we want to fetch the underlying Epetra, uBLAS, or MTL4 matrices
and vectors.

4.1 Variational Problem Objects

Let us explain how one can choose between direct and iterative solvers. We
have seen that there are two ways of solving linear systems, either we call the
solve() method in a VariationalProblem instance or we call the solve(A,
U, b) function with the assembled coefficient matrix A, right-hand side vector
b, and solution vector U.

In case we use a VariationalProblem instance, named problem, it has a
parameters instance that behaves like a Python dictionary, and we can use
this object to choose between a direct or iterative solver:

problem.parameters[’linear_solver’] = ’direct’
# or
problem.parameters[’linear_solver’] = ’iterative’

Another parameter ’symmetric’ can be set to True if the coefficient matrix
is symmetric so that a method exploiting symmetry can be utilized. For
example, the default iterative solver is GMRES, but when solving a Poisson
equation, the iterative solution process will be more efficient by setting the
’symmetry’ parameter so that a Conjugate Gradient is applied.

Having chosen an interative solver, we can invoke a submenu ’krylov_solver’

in the parameters object for setting various parameters for the iterative
solver (GMRES or Conjugate Gradients, depending on whether the matrix
is symmetric or not):
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itsolver = problem.parameters[’krylov_solver’] # short form
itsolver[’absolute_tolerance’] = 1E-10
itsolver[’relative_tolerance’] = 1E-6
itsolver[’divergence_limit’] = 1000.0
itsolver[’gmres_restart’] = 50
itsolver[’monitor_convergence’] = True
itsolver[’report’] = True

Here, ’divergence_limit’ governs the maximum allowable number of iter-
ations, the ’gmres_restart’ parameter tells how many iterations GMRES
performs before it restarts, ’monitor_convergence’ prints detailed infor-
mation about the development of the residual of a solver, ’report’ governs
whether a one-line report about the solution method and the number of it-
erations is written on the screen or not. The absolute and relative tolerances
enter (usually residual-based) stopping criteria, which are dependent on the
implementation of the underlying iterative solver in the actual backend.

When direct solver is chosen, there is similarly a submenu ’lu_solver’

to set parameters, but here only the ’report’ parameter is available (since
direct solvers very soldom have any adjustable parameters). For nonlinear
problems there is also submenu ’newton_solver’ where tolerances, maxi-
mum iterations, and so on, for a the Newton solver in VariationalProblem

can be set.
A complete list of all parameters and their default values is printed to the

screen by

info(problem.parameters, True)

4.2 Solve Function

For the solve(A, x, b) approach, a 4th argument to solve determines the
type of method:

– ’lu’ for a sparse direct (LU decomposition) method,
– ’cg’ for the Conjugate Gradient (CG) method, which is applicable if A

is symmetric and positive definite,
– ’gmres’ for the GMRES iterative method, which is applicable when A is

nonsymmetric,
– ’bicgstab’ for the BiCGStab iterative method, which is applicatble

when A is nonsymmetric.

The default solver is ’lu’.
Good performance of an iterative method requires preconditioning of the

linear system. The 5th argument to solve determines the preconditioner:

– ’none’ for no preconditioning.
– ’jacobi’ for the simple Jacobi (diagonal) preconditioner,
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– ’sor’ for SOR preconditioning,
– ’ilu’ for incomplete LU factorization (ILU) preconditioning,
– ’icc’ for incomplete Cholesky factorization preconditioning (requires A

to be symmetric and positive definite),
– ’amg_hypre’ for algebraic multigrid (AMG) preconditioning with the

Hypre package (if available),
– ’mag_ml’ for algebraic multigrid (AMG) preconditioning with the ML

package from Trilinos (if available),
– ’default_pc’ for a default preconditioner, which depends on the linear

algebra backend (’ilu’ for PETSc).

If the 5th argument is not provided, ’ilu’ is taken as the default precondi-
tioner.

Here are some sample calls to solve demonstrating the choice of solvers
and preconditioners:

solve(A, u.vector(), b) # ’lu’ is default solver
solve(A, u.vector(), cg) # CG with ILU prec.
solve(A, u.vector(), ’gmres’, ’amg_ml’) # GMRES with ML prec.

4.3 Setting the Start Vector

The choice of start vector for the iterations in a linear solver is often impor-
tant. With the solve(A, U, b) function the start vector is the vector we
feed in for the solution. A start vector with random numbers in the interval
[−1, 1] can be computed as

n = u.vector().array().size
u.vector()[:] = numpy.random.uniform(-1, 1, n)
solve(A, u.vector(), b, cg, ilu)

Or if a VariationalProblem instance is used, its solve method may take an
optional u function as argument (which we can fill with the right values):

problem = VariationalProblem(a, L, bc)
n = u.vector().array().size
u.vector()[:] = numpy.random.uniform(-1, 1, n)
u = problem.solve(u)

The program Poisson2D_DN_laprm.py demonstrates the various control
mechanisms for steering linear solvers as described above.

4.4 Using a Backend-Specific Solver

Here is a demo where we operate on Trilinos-specific vectors, matrices, itera-
tive solvers, and preconditioners. Given a linear system AU = b, represented
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by a Matrix instance A, and two Vector instances U and b, the purpose is
to set up a solver using the Aztec Conjugate Gradient method from Trilinos’
Aztec library and combine that solver with the algebraic multigrid precondi-
tioner ML from the ML library in Trilinos.

try:
from PyTrilinos import Epetra, AztecOO, TriUtils, ML

except:
print ’’’You Need to have PyTrilinos with’

Epetra, AztecOO, TriUtils and ML installed
for this demo to run’’’

exit()

from dolfin import *

if not has_la_backend(’Epetra’):
print ’Warning: Dolfin is not compiled with Trilinos’
exit()

parameters[’linear_algebra_backend’] = ’Epetra’

# create matrix A and vector b in the usual way
# u is a Function

# Fetch underlying Epetra objects
A_epetra = down_cast(A).mat()
b_epetra = down_cast(b).vec()
U_epetra = down_cast(u.vector()).vec()

# Sets up the parameters for ML using a python dictionary
ML_param = {"max levels" : 3,

"output" : 10,
"smoother: type" : "ML symmetric Gauss-Seidel",
"aggregation: type" : "Uncoupled",
"ML validate parameter list" : False

}

# Create the preconditioner
prec = ML.MultiLevelPreconditioner(A_epetra, False)
prec.SetParameterList(ML_param)
prec.ComputePreconditioner()

# Create solver and solve system
solver = AztecOO.AztecOO(A_epetra, U_epetra, b_epetra)
solver.SetPrecOperator(prec)
solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_cg)
solver.SetAztecOption(AztecOO.AZ_output, 16)
solver.Iterate(MaxIters=1550, Tolerance=1e-5)

plot(u)

5 Creating More Complex Domains

Up to now we have been very fond of the unit square as domain, which is an
appropriate choice for initial versions of a PDE solver. The strength of the
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finite element method, however, is its ease of handling domains with complex
shapes. This section shows some methods that can be used to create different
types of domains and meshes.

Domains of complex shape must normally be constructed in separate pre-
processor programs. Two relevant preprocessors are Triangle for 2D domains
and Netgen for 3D domains.

5.1 Built-In Mesh Generation Tools

DOLFIN has a few tools for creating various types of meshes over domains
with simple shape: UnitInterval,UnitSphere, UnitSquare, Interval, Rectangle,
Box, UnitCircle, and UnitCube. Some of these names have been briefly met
in previous sections. The hopefully self-explanatory code snippet below sum-
marizes typical constructions of meshes with the aid of these tools:

# 1D domains
mesh = UnitInterval(20) # 20 cells, 21 vertices
mesh = Interval(20, -1, 1) # domain [-1,1]

# 2D domains (6x10 divisions, 120 cells, 77 vertices)
mesh = UnitSquare(6, 10) # ’right’ diagonal is default
# The diagonals can be right, left or crossed
mesh = UnitSquare(6, 10, ’left’)
mesh = UnitSquare(6, 10, ’crossed’)

# Domain [0,3]x[0,2] with 6x10 divisions and left diagonals
mesh = Rectangle(0, 0, 3, 2, 6, 10, ’left’)

# 6x10x5 boxes in the unit cube, each box gets 6 tetrahedra:
mesh = UnitCube(6, 10, 5)

# Domain [-1,1]x[-1,0]x[-1,2] with 6x10x5 divisions
mesh = Box(-1, -1, -1, 1, 0, 2, 6, 10, 5)

# 10 divisions in radial directions
mesh = UnitCircle(10)
mesh = UnitSphere(10)

5.2 Transforming Mesh Coordinates

A mesh that is denser toward a boundary is often desired to increase accuracy
in that region. Given a mesh with uniformly spaced coordinates x0, . . . , xM−1

in [a, b], the coordinate transformation ξ = (x − a)/(b − a) maps x onto
ξ ∈ [0, 1]. A new mapping η = ξs, for some s > 1, stretches the mesh
toward ξ = 0 (x = a), while η = ξ1/s makes a stretching toward ξ = 1
(x = b). Mapping the η ∈ [0, 1] coordinates back to [a, b] gives new, stretched
x coordinates,

x̄ = a + (b− a)

(

x− a

b− a

)s

(83)
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toward x = a, or

x̄ = a + (b − a)

(

x− a

b− a

)1/s

(84)

toward x = b
One way of creating more complex geometries is to transform the vertex

coordinates in a rectangular mesh according to some formula. Say we want
to create a part of a hollow cylinder of Θ degrees, with inner radius a and
outer radius b. A standard mapping from polar coordinates to Cartesian
coordinates can be used to generate the hollow cylinder. Given a rectangle
in (x̄, ȳ) space such that a ≤ x̄ ≤ b and 0 ≤ ȳ ≤ 1, the mapping

x̂ = x̄ cos(Θȳ), ŷ = x̄ sin(Θȳ),

takes a point in the rectangular (x̄, ȳ) geometry and maps it to a point (x̂, ŷ)
in a hollow cylinder.

The corresponding Python code for first stretching the mesh and then
mapping it onto a hollow cylinder looks as follows:

Theta = pi/2
a, b = 1, 5.0
nr = 10 # divisions in r direction
nt = 20 # divisions in theta direction
mesh = Rectangle(a, 0, b, 1, nr, nt, ’crossed’)

# First make a denser mesh towards r=a
x = mesh.coordinates()[:,0]
y = mesh.coordinates()[:,1]
s = 1.3

def denser(x, y):
return [a + (b-a)*((x-a)/(b-a))**s, y]

x_bar, y_bar = denser(x, y)
xy_bar_coor = numpy.array([x_bar, y_bar]).transpose()
mesh.coordinates()[:] = xy_bar_coor
plot(mesh, title=’stretched mesh’)

def cylinder(r, s):
return [r*cos(Theta*s), r*sin(Theta*s)]

x_hat, y_hat = cylinder(x_bar, y_bar)
xy_hat_coor = numpy.array([x_hat, y_hat]).transpose()
mesh.coordinates()[:] = xy_hat_coor
plot(mesh, title=’hollow cylinder’)
interactive()

The result of calling denser and cylinder above is a list of two vectors,
with the x and y coordinates, respectively. Turning this list into a numpy

array object results in a 2×M array, M being the number of vertices in the
mesh. However, mesh.coordinates() is by convention an M ×2 array so we
need to take the transpose. The resulting mesh is displayed in Figure 5.
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Fig. 5. Hollow cylinder generated by mapping a rectangular mesh, stretched toward
the left side.

Setting boundary conditions in meshes created from mappings like the
one illustrated above is most conveniently done by using a mesh function to
mark parts of the boundary. The marking is easiest to perform before the
mesh is mapped since one can then

5.3 Separate Preprocessor Applications

6 Handling Domains with Different Materials

Solving PDEs in domains made up of different materials is a frequently en-
countered task. In FEniCS, this kind of problems are handled by defining
subdomains inside the domain. The subdomains may represent the various
materials. We can thereafter define material properties through functions,
known in FEniCS as mesh functions, that are piecewise constant in each
subdomain. A simple example with two materials (subdomains) in 2D will
demonstrate the basic steps in the process. Later, a multi-material problem
in d space dimensions is addressed.

6.1 Working with Two Subdomains

Suppose we want to solve

∇ · [k(x, y)∇u(x, y)] = 0, (85)



FEniCS Tutorial 69

in a domain Ω consisting of two subdomains where k takes on a different
value in each subdomain. For simplicity, yet without loss of generality, we
choose for the current implementation the domain Ω = [0, 1] × [0, 1] and
divide it into two equal subdomains, as depicted in Figure 6,

Ω0 = [0, 1]× [0, 1/2], Ω1 = [0, 1]× (1/2, 1] .

We define k(x, y) = 1 in Ω0 and k(x, y) = 10 in Ω1. As boundary conditions,
we choose u = 0 at x = 0, u = 1 at x = 1, and ∂u/∂n = 0 at y = 0 and
y = 1. This choice implies the simple solution u(x, y) = x, which we should
recover exactly with linear or higher order finite elements.

6

-
x

y

∂u/∂n = 0

∂u/∂n = 0

Ω1

Ω0

u = 0 u = 1

Fig. 6. Sketch of a Poisson problem with a variable coefficient that is constant in
each of the two subdomains Ω0 and Ω1.

Physically, the present problem may correspond to heat conduction, where
the heat conduction in Ω1 is ten times more efficient than in Ω0. An alterna-
tive interpretation is flow in porous media with two geological layers, where
the layers’ ability to transport the fluid differs by a factor of 10.

6.2 The Implementation

The new functionality in this subsection regards how to to define the sub-
domains Ω0 and Ω1. Defining a subdomain is done by creating a subclass of
SubDomain and implementing the inside function. In the present case we
define
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class Omega0(SubDomain):
def inside(self, x, on_boundary):

return True if x[1] <= 0.5 else False

class Omega1(SubDomain):
def inside(self, x, on_boundary):

return True if x[1] >= 0.5 else False

The next task is to introduce a MeshFunction to mark all cells in Ω0 with
the subdomain number 0 and all cells in Ω1 with the subdomain number 1.
Our convention is to number subdomains as 0, 1, 2, . . ..

A MeshFunction is a discrete function that can be evaluated at a set of
so-called mesh entities. Three mesh entities are cells, facets, and vertices.
A MeshFunction over cells is suitable to represent subdomains (materials),
while a MeshFunction over facets is used to represent pieces of external or
internal boundaries. Mesh functions over vertices can be used to describe
continuous fields.

Since we need to define subdomains of Ω in the present example, we must
make use of a MeshFunction over cells. The MeshFunction constructor is
fed with three arguments: 1) the type of value: ’int’ for integers, ’uint’
for positive (unsigned) integers, ’double’ for real numbers, and ’bool’ for
logical values; 2) a Mesh instance, and 3) the topological dimension of the
mesh entity in question: cells have topological dimension equal to the number
of space dimensions in the PDE problem, and facets have one dimension
lower. Alternatively, the constructor can take just a filename and initialize
the MeshFunction from data in a file. We shall demonstrate this functionality
in the next multi-material problem in Chapter 7.

We start with creating a MeshFunction whose values are non-negative
integers (’uint’) for numbering the subdomains. The mesh entities of inter-
est are the cells, which have dimension 2 in a two-dimensional problem (1 in
1D, 3 in 3D). The appropriate code for defining the MeshFunction for two
subdomains then reads

subdomains = MeshFunction(’uint’, mesh, 2)
# Mark subdomains with numbers 0 and 1
subdomain0 = Omega0()
subdomain0.mark(subdomains, 0)
subdomain1 = Omega1()
subdomain1.mark(subdomains, 1)

Calling subdomains.values() returns a numpy array of the subdomain
values. That is, subdomain.values()[i] is the subdomain value of cell no. i.
This array is used to look up the subdomain or material number of a specific
element.

Now we want a function k that is piecewise constant in each subdomain
Ω0 and Ω1. Since we want k to be a finite element function, it is natural to
choose a space of functions that are constant over each element. The family
of discontinuous Galerkin methods, in FEniCS denoted by ’DG’, is suitable
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for this purpose. Since we want functions that are piecewise constant, the
value of the degree parameter is zero:

V0 = FunctionSpace(mesh, ’DG’, 0)
k = Function(V0)

To fill k with the right values in each element, we loop over all cells (i.e., in-
dices in subdomain.values()), extract the corresponding subdomain number
of a cell, and assign the corresponding k value to the k.vector() array:

k_values = [1.5, 50] # values of k in the two subdomains
for cell_no in range(len(subdomains.values())):

subdomain_no = subdomains.values()[cell_no]
k.vector()[cell_no] = k_values[subdomain_no]

Long loops in Python are known to be slow, so for large meshes the it
is preferable to avoid such loops and instead use vectorized code. Normally
this implies that the loop must be replaced by calls to functions from the
numpy library that operate on complete arrays (in efficient C code). The
functionality we want in the present case is to compute an array of the
same size as subdomain.values(), but where the value i of an entry in
subdomain.values() is replaced by k_values[i]. Such an operation is car-
ried out by the numpy function choose:

help = numpy.asarray(subdomains.values(), dtype=numpy.int32)
k.vector()[:] = numpy.choose(help, k_values)

The help array is required since choose cannot work with subdomain.values()

because this array has elements of type uint32. We must therefore transform
this array to an array help with standard int32 integers.

Having the k function ready for finite element computations, we can pro-
ceed in the normal manner with defining essential boundary conditions, as
in Chapter 1.10, and the a(u, v) and L(v) forms, as in Chapter 1.12. All the
details can be found in the file Poisson2D_2mat.py.

6.3 Multiple Neumann, Robin, and Dirichlet Conditions

Let us go back to the model problem from Chapter 1.10 where we had both
Dirichlet and Neumann conditions. The term v*g*ds in the expression for L
implies a boundary integral over the complete boundary, or in FEniCS terms,
an integral over all exterior cell facets. However, the contributions from the
parts of the boundary where we have Dirichlet conditions are erased when the
linear system is modified by the Dirichlet conditions. We would like, from an
efficiency point of view, to integrate v*g*ds only over the parts of the bound-
ary where we actually have Neumann conditions. And more importantly, in
other problems one may have different Neumann conditions or other condi-
tions like the Robin type condition. With the mesh function concept we can
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mark different parts of the boundary and integrate over specific parts. The
same concept can also be used to treat multiple Dirichlet conditions. The
forthcoming text illustrates how this is done.

Essentially, we still stick to the model problem from Chapter 1.10, but
replace the Neumann condition at y = 0 by a Robin condition7:

−
∂u

∂n
= p(u− q),

where p and q are specified functions. Since we have prescribed a simple
solution in our model problem, u = 1 + x2 + y4, we adjust p and q such that
the condition holds at y = 0. This implies that q = 1 + x2 + 2y2 and p can
be arbitrary (the normal derivative at y = 0: ∂u/∂n = −∂u/∂y = −4y = 0).

Now we have four parts of the boundary: ΓN which corresponds to the
upper side y = 1, ΓR which corresponds to the lower part y = 0, Γ0 which
corresponds to the left part x = 0, and Γ1 which corresponds to the right
part x = 1. The complete boundary-value problem reads

−∆u = −6 in Ω, (86)

u = uL on Γ0, (87)

u = uR on Γ1, (88)

−
∂u

∂n
= p(u− q) on ΓR, (89)

−
∂u

∂n
= 4y on ΓN . (90)

The involved prescribed functions are uL == 1 + 2y2, uR = 2 + 2y2, q =
1 + x2 + 2y2, p is arbitrary, and g = −4y.

Integration by parts of −
∫

Ω
v

Deltau dx becomes as usual

−

∫

Ω

v∆u dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds .

The boundary integral vanishes on Γ0 ∪ Γ1, and we split the parts over ΓN

and ΓR since we have different conditions at those parts:

−

∫

∂Ω

v
∂u

∂n
ds = −

∫

ΓN

v
∂u

∂n
ds−

∫

ΓR

v
∂u

∂n
ds =

∫

ΓN

vg ds+

∫

ΓR

vp(u− q) ds .

The weak form then becomes
∫

Ω

∇u · ∇v dx +

∫

ΓN

gv ds +

∫

ΓR

p(u− q)v ds =

∫

Ω

fv dx,

7 The Robin condition is most often used to model heat transfer to the surroundings
and arise naturally from Newton’s cooling law.
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We want to write this weak form in the standard notation a(u, v) = L(v),
which requires that we indentify all integrals with both u and v, and collect
these in a(u, v), while the remaining integrals with v and not u go into L(v).
The integral from the Robin condition must of this reason be split in two
parts:

∫

ΓR

vp(u − q) ds =

∫

ΓR

vpu ds−

∫

ΓR

vpq ds .

We then have

a(u, v) =

∫

Ω

∇u · ∇v dx +

∫

ΓR

puv ds, (91)

L(v) =

∫

Ω

fv dx−

∫

ΓN

gv ds +

∫

ΓR

pqv ds . (92)

A natural starting point for implementation is the Poisson2D_DN2.py

program, which we now copy to Poisson2D_DNR.py. The new aspects are

1. definition of a mesh function over the boundary,
2. marking each side as a subdomain, using the mesh function,
3. splitting a boundary integral into parts.

Task 1 makes use of the MeshFunction object, but contrary to Chap-
ter 6.2, this is not a function over cells, but a function over cell facets. The
topological dimension of cell facets is one lower than the cell interiors, so in a
two-dimensional problem the dimension becomes 1. In general, the facet di-
mension is given as mesh.topology().dim()-1, which we use in the code for
ease of direct reuse in other problems. The construction of a MeshFunction

instance to mark boundary parts now reads

boundary_parts = \
MeshFunction("uint", mesh, mesh.topology().dim()-1)

As in Chapter 6.2 we use a subclass of SubDomain to identify the various
parts of the mesh function. Problems with domains of more complicated may
set the mesh function for marking boundaries as part of the mesh generation.
In our case, the y = 0 boundary can be marked by

class LowerRobinBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[1]) < tol

Gamma_R = LowerRobinBoundary()
Gamma_R.mark(boundary_parts, 0)

The code for the y = 1 boundary is similar and is seen in Poisson2D_DNR.py.
The Dirichlet boundaries are marked similarly, using subdomain number

2 for Γ0 and 3 for Γ1:
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class LeftDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = LeftDirichletBoundary()
Gamma_0.mark(boundary_parts, 2)

class RightDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = RightDirichletBoundary()
Gamma_1.mark(boundary_parts, 3)

Specifying the DirichletBC instances may now make use of the mesh func-
tion (instead of a SubDomain subclass object) and an indicator for which
subdomain each condition should be applied to:

u_L = Expression(’1 + 2*x[1]*x[1]’, V=V)
u_R = Expression(’2 + 2*x[1]*x[1]’, V=V)
bc = [DirichletBC(V, u_L, boundary_parts, 2),

DirichletBC(V, u_R, boundary_parts, 3)]

Some functions need to be defined before we can go on with the a and L

of the variational problem:

q = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, V=V)
p = Constant(mesh, 100) # arbitrary function can go here
v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, -6.0)

The new aspect of the variational problem is the two distinct boundary in-
tegrals. Having a mesh function over exterior cell facets (i.e., our boundary_parts
object), where subdomains (boundary parts) are numbered as 0, 1, 2, . . ., the
special symbol ds(0) implies integration over subdomain (part) 0, ds(1) de-
notes integration over subdomain (part) 1, and so on. The idea of multiple
ds-type objects generalizes to volume integrals too: dx(0), dx(1), etc., are
used to integrate over subdomain 0, 1, etc., inside Ω.

The variational problem can be defined as

a = dot(grad(u), grad(v))*dx + p*u*v*ds(0)
L = f*v*dx - g*v*ds(1) + p*q*v*ds(0)

For the ds(0) and ds(1) symbols to work we must obviously connect them
(or a and L) to the mesh function marking parts of the boundary. This is
done by a certain keyword argument to the assemble function:
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A = assemble(a, exterior_facet_domains=boundary_parts)
b = assemble(L, exterior_facet_domains=boundary_parts)

Then essential boundary conditions are enforced, and the system can be
solved in the usual way:

for condition in bc: condition.apply(A, b)
u = Function(V)
solve(A, u.vector(), b)

At the time of this writing, it is not possible to perform integrals over dif-
ferent parts of the domain or boundary using the assemble_system function
or the VariationalProblem instance.

7 A General d-Dimensional Multi-Material Test
Problem

This section is in a preliminary state!

The purpose of the present section is to generalize the basic ideas from
the previous section to a problem involving an arbitrary number of materials
in 1D, 2D, or 3D domains. The example also highlights how to build more
general and flexible FEniCS applications.

7.1 The PDE Problem

We generalize the problem in Chapter 6.1 to the case where there are s ma-
terials Ω0, . . . , Ωs−1, with associated constant k values k0, k1, . . . , ks−1, as
illustrated in Figure 7. Although the sketch of the domain is in two dimen-
sions, we can easily define this problem in any number of dimensions, using
the ideas of Chapter 1.14, but the layer boundaries are planes x0 = const
and u varies with x0 only.

The PDE reads
∇ · (k∇u) = 0 . (93)

To construct a problem where we can find an analytical solution that can
be computed to machine precision regardless of the element size, we choose
Ω as a hypercube [0, 1]d, and the materials as layers in the x0 direction, as
depicted in Figure 7 for a 2D case with four materials. The boundaries x0 = 0
and x0 = 1 have Dirichlet conditions u = 0 and u = 1, respectively, while
Neumann conditions ∂u/∂n = 0 are set on the remaining boundaries. The
complete boundary-value problem is then

∇ · (k(x0)∇u(x0, . . . , xd−1)) = 0 in Ω,
u = 0 on Γ0,
u = 1 on Γ1,

∂u
∂n = 0 on ΓN .

(94)
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∂u/∂n = 0

∂u/∂n = 0

u = 0 u = 1

Ω3Ω2Ω1

k1

Ω0

y

x

k0 k2 k3

Fig. 7. Sketch of a multi-material problem.

The domain Ω is divided into s materials Ωi, i = 0, . . . , s− 1, where

Ωi = {(x0, . . . , xd−1 |Li ≤ x0 < Li+1}

for given x0 values 0 = L0 < L1 < · · · < Ls = 1 of the material (subdomain)
boundaries. The k(x0) function takes on the value ki in Ωi.

The exact solution of the basic PDE in (94) is

u(x0, . . . , xd−1) =

∫ x0

0
(k(τ))−1dτ

∫ 1

0 (k(τ))−1dτ
.

For a piecewise constant k(x0) as explained, we get

u(x0, . . . , xd−1) =
(x0 − Li)k

−1
i +

∑i−1
j=0(Lj+1 − Lj)k

−1
j

∑s−1
j=0(Lj+1 − Lj)k

−1
j

, Li ≤ x0 ≤ Li+1 .

(95)
That is, u(x0, . . . , xd−1) is piecewise linear in x0 and constant in all other
directions. If Li coincides with the element boundaries, any standard finite
element method will reproduce this exact solution to machine precision, which
is ideal for a test case.
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7.2 Preparing a Mesh with Subdomains

Our first task is to generate a mesh for Ω = [0, 1]d and divide it into subdo-
mains

Ωi = {(x0, . . . , xd−1) |Li < x0 < Li+1}

for given subdomain boundaries x0 = Li, i = 0, . . . , s, L0 = 0, Ls = 1. Note
that the boundaries x0 = Li are points in 1D, lines in 2D, and planes in 3D.

Let us, on the command line, specify the polynomial degree of Lagrange
elements and the number of element divisions in the various space directions,
as explained in detail in Chapter 1.14. This results in an instance mesh rep-
resenting the interval [0, 1] in 1D, the unit square in 2D, or the unit cube in
3D.

The subdomains Ωi must be defined through subclasses of SubDomain.
Would could, in principle, introduce one subclass of SubDomain for each sub-
domain, and this would be feasible if one has a small and fixed number of
subdomains as in the example in Chapter 6.1 with two subdomains. Our
present case is more general as we have s subdomains. It then makes sense to
create one subclass Material of SubDomain and have an attribute to reflect
the subdomain (material) number. We use this number in the test whether
a spatial point x is inside a subdomain or not:

class Material(SubDomain):
"""Define material (subdomain) no. i."""
def __init__(self, subdomain_number, subdomain_boundaries):

self.number = subdomain_number
self.boundaries = subdomain_boundaries
SubDomain.__init__(self)

def inside(self, x, on_boundary):
i = self.number
L = self.boundaries # short form (cf. the math)
if L[i] <= x[0] <= L[i+1]:

return True
else:

return False

The <= in the test if a point is inside a subdomain is important as x will
equal vertex coordinates in the elements, and many of these will lie on the
subdomain boundaries. All vertices x in a cell must be lead to a True return
value from inside for the cell to be a part of a subdomain.

The marking and numbering of all subdomains goes as follows:

cell_entity_dim = mesh.topology().dim() # = d
subdomains = MeshFunction(’uint’, mesh, cell_entity_dim)
# Mark subdomains with numbers i=0,1,\ldots,s (=len(L)-1)
for i in range(s):

material_i = Material(i, L)
material_i.mark(subdomains, i)
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We have now all the geometric information about subdomains in a MeshFunction
instance subdomains. The subdomain number of mesh entity number e, here
cell e, is given by subdomains.values()[e].

The code presented so far had the purpose of preparing a mesh and a mesh
function defining the subdomain. It is smart to put this code in a separate file,
say define_layers.py, and view the code as a preprocessing step. We must
then store the computed mesh and mesh function in files. Another program
may load the files and perform the actually actually solve the boundary-value
problem.

Storing the mesh itself and the mesh function in XML format is done by

file = File(’hypercube_mesh.xml.gz’)
file << mesh
file = File(’layers.xml.gz’)
file << subdomains

This preprocessing code knows about the layer geometries and the corre-
sponding k, which must be propagated to the solver code. One idea is to let
the preprocessing code write a Python module containing the L and k lists
as well as an implementation of a function that evaluates the exact solution.
The solver code can import this module to get access to L, k, and the exact
solution (for comparison). The relevant Python code for generating a Python
module may take the form

f = open(’u_layered.py’, ’w’)
f.write("""
import numpy
L = numpy.array(%s, float)
k = numpy.array(%s, float)
s = len(L)-1

def u_exact(x):
# First find which subdomain x0 is located in
for i in range(len(L)-1):

if L[i] <= x <= L[i+1]:
break

# Vectorized implementation of summation:
s2 = sum((L[1:s+1] - L[0:s])*(1.0/k[:]))
if i == 0:

u = (x - L[i])*(1.0/k[0])/s2
else:

s1 = sum((L[1:i+1] - L[0:i])*(1.0/k[0:i]))
u = ((x - L[i])*(1.0/k[i]) + s1)/s2

return u

if __name__ == ’__main__’:
# Plot the exact solution
from scitools.std import linspace, plot, array
x = linspace(0, 1, 101)
u = array([u_exact(xi) for xi in x])
print u
plot(x, u)
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""" % (L, k))
f.close()

7.3 Solving the PDE Problem

The solver program starts with loading a prepared mesh with a mesh function
representing the subdomains:

mesh = Mesh(’hypercube_mesh.xml.gz’)
subdomains = MeshFunction(’uint’, mesh, ’layers.xml.gz’)

The next task is to define the k function as a finite element function. As
we recall from Chapter 6.2, a k that is constant in each element is suitable.
We then follow the recipe from Chapter 6.2 to compute k:

V0 = FunctionSpace(mesh, ’DG’, 0)
k = Function(V0)

# Vectorized calculation
help = numpy.asarray(subdomains.values(), dtype=numpy.int32)
k.vector()[:] = numpy.choose(help, k_values)

The essential boundary conditions are defined in the same way is in
Poisson2D_DN2.py from Chapter 1.10 and therefore not repeated here. The
variational problem is defined and solved in a standard manner,

v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, 0)
a = k*dot(grad(u), grad(v))*dx
L = f*v*dx

problem = VariationalProblem(a, L, bc)
u = problem.solve()

Plotting the discontinuous k is often desired. Just a plot(k) makes a con-
tinuous function out of k, which is not what we want. Making a MeshFunction
over cells and filling in the right k values results in an object that can be dis-
played as a discontinuous field. A relevant code is

k_meshfunc = MeshFunction(’double’, mesh, mesh.topology().dim())

# Scalar version
for i in range(len(subdomains.values())):

k_meshfunc.values()[i] = k_values[subdomains.values()[i]]

# Vectorized version
help = numpy.asarray(subdomains.values(), dtype=numpy.int32)
k_meshfunc.values()[:] = numpy.choose(help, k_values)

plot(k_meshfunc, title=’k as mesh function’)

The file Poisson_layers.py contains the complete code.
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8 Miscellaneous Topics

8.1 Glossary

Below we explain some key terms used in this tutorial.

FEniCS: name of a software suite composed of many individual software
components (see fenics.org). Some components are DOLFIN and Viper,
explicitly referred to in this tutorial. Others are FFC and FIAT, heavily used
by the programs appearing in this tutorial, but never explicitly used from
the programs.

DOLFIN: a FEniCS component, more precisely a C++ library, with a
Python interface, for performing important actions in finite element pro-
grams. DOLFIN makes use of many other FEniCS components and many
external software packages.

Viper: a FEniCS component for quick visualization of finite element meshes
and solutions.

UFL: a FEniCS component implementing the unified form language for
specifying finite element forms in FEniCS programs. The definition of the
forms, typically called a and L in this tutorial, must have legal UFL syntax.
The same applies to the definition of functionals (see Chapter 1.7).

Class (Python): a programming construction for creating objects contain-
ing a set of variables and functions. Most types of FEniCS objects are defined
through the class concept.

Instance (Python): an object of a particular type, where the type is im-
plemented as a class. For instance, mesh = UnitInterval(10) creates an
instance of class UnitInterval, which is reached by the the name mesh.
(Class UnitInterval is actually just an interface to a corresponding C++
class in the DOLFIN C++ library.)

Class method (Python): a function in a class, reached by dot notation:
instance_name.method_name

self parameter (Python): required first parameter in class methods, rep-
resenting a particular instance of the class. Used in method definitions, but
never in calls to a method For example, if method(self, x) is the defini-
tion of method in a class Y, method is called as y.method(x), where y is
an instance of class X. In a call like y.method(x), method is invoked with
self=y.

Class attribute (Python): a variable in a class, reached by dot notation:
instance_name.attribute_name
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8.2 Overview of Objects and Functions

Most objects in FEniCS have a explanation of the purpose and usuage that
can be seen by using the general documentation command pydoc for Python
objects. You can type

pydoc dolfin.X

to look up documentation of a Python class X from the DOLFIN library
(X can be UnitSquare, Function, Viper, etc.). Below is an overview of the
most important classes and functions in FEniCS programs, in the order they
typically appear within programs.

UnitSquare(nx, ny): generate mesh over the unit square [0, 1] × [0, 1]
using nx divisions in x direction and ny divisions in y direction. Each of the
nx*ny squares are divided into two cells of triangular shape.

UnitInterval,UnitCube, UnitCircle, UnitSphere, Interval, Rectangle,
and Box: generate mesh over domains of simple geometric shape, see Chap-
ter 5.

FunctionSpace(mesh, element_type, degree): a function space defined
over a mesh, with a given element type (e.g., ’CG’ or ’DG’), with basis func-
tions as polynomials of a specified degree.

Expression(formula, V=W): a scalar- or vector-valued function, given as
a mathematical expression formula (string) written in C++ syntax. The key-
word argument V is used to specify a function space, here called W, sometimes
needed when an Expression enters a variational form.

Function(V): a scalar- or vector-valued finite element field in the function
space V.

SubDomain: class for defining a subdomain, either a part of the boundary,
an internal boundary, or a part of the domain. The programmer must sub-
class SubDomain and implement the inside(self, x, on_boundary) func-
tion (see Chapter 1.3) for telling whether a point x is inside the subdomain
or not.

MeshFunction: tool for marking parts of the domain or the boundary.
Used for variable coefficients (“material properties”, see Chapter 6.1) or for
boundary conditions (see Chapter 6.3).

DirichletBC(V, value, where): specification of Dirichlet (essential) bound-
ary conditions via a function space V, a function value(x) for computing
the value of the condition at a point x, and a specification where of the
boundary, either as a SubDomain subclass instance, a plain function, or as
a MeshFunction instance. In the latter case, a 4th argument is provided to
describe which subdomain number that describes the relevant boundary.

TestFunction(V): define a test function on a space V to be used in a
variational form.
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TrialFunction(V): define a trial function on a space V to be used in a
variational form to represent the unknown in a finite element problem.

assemble(X): assemble a matrix, a right-hand side, or a functional, given
a from X written with UFL syntax.

assemble_system(a, L, bc): assemble the matrix and the right-hand
side from a bilinear (a) and linear (L) form written with UFL syntax. The
bc parameter holds one or more DirichletBC instances.

VariationalProblem(a, L, bc): define and solve a variational problem,
given a bilinear (a) and linear (L) form, written with UFL syntax, and one or
more DirichletBC instances stored in bc. A 4th argument, nonlinear=True,
can be given to define and solve nonlinear variational problems (see Chap-
ter 2.4).

solve(A, U, b): solve a linear system with A as coefficient matrix (Matrix
instance), U as unknown (Vector instance), and b as right-hand side (Vector
instance). Usually, U is replaced by u.vector(), where u is a Function in-
stance representing the unknown finite element function of the problem, while
A and b are computed by calls to assemble or assemble_system.

plot(q): quick visualization of a mesh, function, or mesh function q, using
the Viper component in FEniCS.

interpolate(func, V): interpolate a formula or finite element function
func onto the function space V.

project(func, V): project a formula or finite element function func onto
the function space V.

8.3 Installing FEniCS

The FEniCS software components are available for Linux, Windows and Mac
OS X platforms. Detailed information on how to get FEniCS running on such
machines are available at the fenics.org website. Here are just some quick
descriptions and recommendations by the author.

To make the installation of FEniCS as painless and reliable as possible,
the reader is strongly recommended to use Ubuntu Linux. Any standard PC
can easily be equipped with Ubuntu Linux, which may live side by side with
either Windows or Mac OS X or another Linux installation. Basically, you
download Ubuntu from www.ubuntu.com/getubuntu/download, burn the file
on a CD, reboot the machine with the CD, and answer some usually straight-
forward questions (if necessary). Ubuntu is quite similar to both Windows
7 and Mac OS X, but to be efficient when doing science with FEniCS this
author recommends to run programs in a terminal window and write them
in a text editor like Emacs or Vim. You can employ integrated development
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environment such as Eclipse, but intensive FEniCS developers and users tend
to find terminal windows and plain text editors more user friendly.

Instead of making it possible to boot your machine with the Linux Ubuntu
operating system, you can run Ubuntu in a separate window in your exist-
ing operation system. On Mac, you can use the VirtualBox software avail-
able from http://www.virtualbox.org to run Ubuntu. On Windows, Wubi
makes a tool that automatically installs Ubuntu on the machine. Just give a
username and password for the Ubuntu installation, and Wubi performs the
rest. You can also use VirtualBox on Windows machines.

Once the Ubuntu window is up and running, go to the fenics.org cite
and paste in the five few lines that are needed to install what you need.

8.4 Books on the Finite Element Method

There are a large number of books on the finite element method. The books
typically fall in either of two categories: the abstract mathematical version of
the method and the engineering “structural analysis” formulation. FEniCS
builds heavily on concepts in the abstract mathematical exposition. An easy-
to-read book that provides a good general background for using FEniCS,
is Gockenbach [7]. The book by Donea and Huerta [5] has a similar style,
but aims at readers with interest in fluid flow problems. Hughes [9] is also
highly recommended, especially for those interested in solid mechanics and
heat transfer applications.

Readers with background in the engineering “structural analysis” version
of the finite element method may find Bickford [1] as an attractive bridge
over to the abstract mathematical formulation that FEniCS builds upon.
Those who have a weak background in differential equations in general should
consult a more fundamental book, and Eriksson et al. [?] is a very good choice.
On the other hand, FEniCS users with a strong background in mathematics
and interest in the mathematical properties of the finite element method, will
appreciate the texts by Brenner and Scott [3], Braess and Dietrich [2], Ern
and Guermond [6], Quarteroni and Valli [16], or Ciarlet [4].

8.5 Books on Python

Two very popular introductory books on Python are “Learning Python” by
Lutz [13] and “Practical Python” by Hetland [8]. More advanced and com-
prehensive books include “Programming Python” by Lutz [12], and “Python
Cookbook” [15] and “Python in a Nutshell” [14] by Martelli. The web page
http:://python.org/... lists numerous additional books. Very few texts
teach Python in a mathematical and numerical context, but the references
[11,10,?] are exceptions.
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8.6 User-Defined Functions

When defining a function in terms of a mathematical expression inside a
string formula, e.g.,

myfunc = Expression(’sin(x[0])*cos(x[1])’, V=V)

the expression contained in the first argument will be turned into a C++
function and compiled to gain efficiency. Therefore, the syntax used in the
expression must be valid C++ syntax. Most Python syntax for mathemat-
ical expressions are also valid C++ syntax, but power expressions make an
exception: p**a must be written as pow(p,a) in C++ (this is also an alter-
native Python syntax). The following mathematical functions can be used
directly in C++ expressions when defining Expression objects: cos, sin,
tan, acos, asin, atan, atan2, cosh, sinh, tanh, exp, frexp, ldexp, log,
log10, modf, pow, sqrt, ceil, fabs, floor, and fmod. Moreover, the number
π is available as the symbol pi. All the listed functions are taken from the
cmath C++ header file, and one may hence consult documentation of cmath
for more information on the various functions.
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