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Abstract. Assembling stiffness matrices represents a significant cost in many finite element
computations. We address the question of optimizing the evaluation of these matrices. By finding
redundant computations, we are able to significantly reduce the cost of building local stiffness ma-
trices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator
in two space dimensions, we have developed a heuristic graph algorithm that searches for such re-
dundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able
to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to
sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and
Navier-Stokes operators in three dimensions are also promising.
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1. Introduction. It has often been observed that the formation of the matrices
arising from finite element methods over unstructured meshes takes a substantial
amount of time and is one of the primary disadvantages of finite elements over finite
differences. Here, we will show that the standard algorithm for computing finite
element matrices by integration formulae is far from optimal and present a technique
that can generate algorithms with considerably fewer operations even than well-known
precomputation techniques.

From fairly simple examples with Lagrangian finite elements, we will present
a novel optimization problem and present heuristics for the automatic solution of
this problem. We demonstrate that the stiffness matrix for the Laplace operator
can be computed in about one multiply-add pair per entry in two-dimensions for up
to cubics, and about two multiply-add pairs up to degree 6. Low order examples in
three dimensions suggest similar possibilities, which we intend to explore in the future.
More importantly, the techniques are not limited to linear problems - in fact, we show
the potential for significant optimizations for the nonlinear term in the Navier-Stokes
equations. These results seem to have lower flop counts than even the best quadrature
rules for simplices.

Our long-term goal is to develop a “form compiler” for finite element methods.
Such a compiler will map high-level descriptions of the variational problem and finite
element spaces into low-level code for building the algebraic systems. Currently, the
Sundance project [21, 20] and the DOLFIN project [10] are developing run-time C++
systems for the assembly variational forms. Recent work in the PETSc project [18]
is leading to compilation of variational forms into C code for building local matrices.
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Our work here complements these ideas by suggesting compiler optimizations for such
codes that would greatly enhance the run-time performance of the matrix assembly.

Automating tedious but essential tasks has proven remarkably successful in many
areas of scientific computing. Automatic differentiation of numerical code has allowed
complex algorithms to be used reliably [5]. Indeed the family of automatic differen-
tiation tools [1] that automatically produce efficient gradient, adjoint, and Hessian
algorithms for existing code have been invaluable in enabling optimal control calcu-
lations and Newton-based nonlinear solvers.

2. Matrix Evaluation by Assembly. Finite element matrices are assembled
by summing the constituent parts over each element in the mesh. This is facilitated
through the use of a numbering scheme called the local-to-global index. This index,
ι(e, λ), relates the local (or element) node number, λ ∈ L, on a particular element, in-
dexed by e, to its position in the global node ordering [4]. This local-to-global indexing
works for Lagrangian finite elements, but requires generalizations for other families
of elements. While this generalization is required for assembly, our techniques for
optimizing the computation over each element can still be applied in those situations.

We may write a finite element function f in the form∑
e

∑
λ∈L

fι(e,λ)φ
e
λ (2.1)

where fi denotes the “nodal value” of the finite element function at the i-th node in
the global numbering scheme and {φe

λ : λ ∈ L} denotes the set of basis functions on
the element domain Te. By definition, the element basis functions, φe

λ, are extended
by zero outside Te. In many important cases, we can relate all of the “element” basis
functions φe

λ to a fixed set of basis functions on a “reference” element, T , via some
mapping of T to Te. This mapping could involve changing both the “x” values and
the “φ” values in a coordinated way, as with the Piola transform [2], or it could be
one whose Jacobian is non-constant, as with tensor-product elements or isoparametric
elements [4]. But for a simple example, we assume that we have an affine mapping,
ξ → Jξ + xe, of T to Te:

φe
λ(x) = φλ

(
J−1(x− xe)

)
.

The inverse mapping, x → ξ = J−1(x− xe) has as its Jacobian

J−1
mj =

∂ξm

∂xj
,

and this is the quantity which appears in the evaluation of the bilinear forms. Of
course, detJ = 1/ det J−1.

The assembly algorithm utilizes the decomposition of a variational form as a sum
over “element” forms

a(v, w) =
∑

e

ae(v, w)

where the “element” bilinear form for Laplace’s equation is defined (and evaluated)
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via

ae(v, w) :=
∫

Te

∇v(x) · ∇w(x) dx

=
∫
T

d∑
j=1

∂

∂xj
v(Jξ + xe)

∂

∂xj
w(Jξ + xe) det(J) dξ

=
∫
T

d∑
j,m,m′=1

∂ξm

∂xj

∂

∂ξm

(∑
λ∈L

vι(e,λ)φλ(ξ)

)
×

∂ξm′

∂xj

∂

∂ξm′

∑
µ∈L

wι(e,µ)φµ(ξ)

det(J) dξ

=


vι(e,1)

·
·

vι(e,|L|)


t

Ke


wι(e,1)

·
·

wι(e,|L|)

 .

(2.2)

Here, the element stiffness matrix, Ke, is given by

Ke
λ,µ :=

d∑
j,m,m′=1

∂ξm

∂xj

∂ξm′

∂xj
det(J)

∫
T

∂

∂ξm
φλ(ξ)

∂

∂ξm′
φµ(ξ) dξ

=
d∑

j,m,m′=1

∂ξm

∂xj

∂ξm′

∂xj
det(J)Kλ,µ,m,m′

=
d∑

m,m′=1

Ge
m,m′Kλ,µ,m,m′

(2.3)

where

Kλ,µ,m,m′ =
∫
T

∂

∂ξm
φλ(ξ)

∂

∂ξm′
φµ(ξ) dξ (2.4)

and

Ge
m,m′ := det(J)

d∑
j=1

∂ξm

∂xj

∂ξm′

∂xj
(2.5)

for λ, µ ∈ L and m,m′ = 1, . . . , d.
The matrix associated with a bilinear form is

Aij := a(φi, φj) =
∑

e

ae(φi, φj) (2.6)

for all i, j, where φi denotes a global basis function. We can compute this again by
assembly.
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Table 3.1
The tensor K for quadratics represented as a matrix of two by two matrices.

3 0 0 -1 1 1 -4 -4 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 3 1 1 0 0 4 0 -4 -4
1 0 0 1 3 3 -4 0 0 0 0 -4
1 0 0 1 3 3 -4 0 0 0 0 -4
-4 0 0 0 -4 -4 8 4 0 -4 0 4
-4 0 0 0 0 0 4 8 -4 -8 4 0
0 0 0 4 0 0 0 -4 8 4 -8 -4
4 0 0 0 0 0 -4 -8 4 8 -4 0
0 0 0 -4 0 0 0 4 -8 -4 8 4
0 0 0 -4 -4 -4 4 0 -4 0 4 8

First, set all the entries of A to zero. Then loop over all elements e and local
element numbers λ and µ and compute

Aι(e,λ),ι(e,µ)+ =Ke
λ,µ =

∑
m,m′

Ge
m,m′Kλ,µ,m,m′ (2.7)

where Ge
m,m′ are defined in (2.5). One can imagine trying to optimize the computation

of each

Ke
λ,µ =

∑
m,m′

Ge
m,m′Kλ,µ,m,m′ (2.8)

but each such term must be computed separately. We consider this optimization in
Section 3.

3. Computing the Laplacian stiffness matrix with general elements.
The tensor Kλ,µ,m,n can be presented as an |L| × |L| matrix of d × d matrices, as
presented in Table 3.1 for the case of quadratics in two dimension. The entries of
resulting matrix Ke can be viewed as the dot (or Frobenius) product of the entries of
K and Ge. That is,

Ke
λ,µ = Kλ,µ : Ge (3.1)

The key point is that certain dependencies among the entries of K can be used to
significantly reduce the complexity of building each Ke. For example, the four 2× 2
matrices in the upper-left corner of Table 3.1 have only one nonzero entry, and six
others in K are zero. There are significant redundancies among the rest. For example,
K3,1 = −4K4,1, so once K4,1 : Ge is computed, K3,1 : Ge may be computed by only
one additional operation.

By taking advantage of these simplifications, we see that each Ke for quadratics in
two dimensions can be computed with at most 18 floating point operations (see Section
3.2) instead of 288 floating point operations using the straightforward definition, an
improvement of a factor of sixteen in computational complexity.

The tensor Kλ,µ,m,n for the case of linears in three dimensions is presented in
Table 3.2. Each Ke can be computed by computing the three row sums of Ge, the
three column sums, and the sum of one of these sums. We also have to negate all of
the column and row sums, leading to a total of 20 floating point operations instead
of 288 floating point operations using the straightforward definition, an improvement
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Table 3.2
The tensor K (multiplied by four) for piecewise linears in three dimensions represented as a

matrix of three by three matrices.

1 0 0 0 1 0 0 0 1 -1 -1 -1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 -1 -1 -1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 -1 -1 -1
-1 0 0 0 -1 0 0 0 -1 1 1 1
-1 0 0 0 -1 0 0 0 -1 1 1 1
-1 0 0 0 -1 0 0 0 -1 1 1 1

of a factor of nearly fifteen in computational complexity. Using symmetry of Ge (row
sums equal column sums) we can reduce the computation to only 10 floating point
operations, leading to a improvement of nearly 29.

We leave as an exercise to work out the reductions in computation that can be
done for the case of linears in two dimensions.

3.1. Algorithms for determining reductions. Obtaining reductions in com-
putation can be done systematically as follows. It may be useful to work in rational
arithmetic and keep track of whether terms are exactly zero and determine common
divisors. However, floating point representations may be sufficient in many cases. We
can start by noting which sub-matrices are zero, which ones have only one non-zero
element and so forth. Next, we find arithmetic relationships among the sub-matrices,
as follows.

Determining whether

Kλ,µ = cKλ′,mu′ (3.2)

requires just simple linear algebra. We think of these as vectors in d2-dimensional
space and just compute the angle between the vectors. If this angle is zero, then (3.2)
holds. Again, if we assume that we are working in rational arithmetic then c could
be determined as a rational number.

Similarly, a third vector can be written in terms of two others by considering its
projection on the first two. That is,

Kλ,µ = c1Kλ1,µ1 + c2Kλ2,µ2 (3.3)

if and only if the projection of Kλ,µ onto the plane spanned by Kλ1,µ1 and Kλ2,µ2 is
equal to Kλ,µ.

Higher-order relationships can be determined similarly by linear algebra as well.
Note that any d2 + 1 entries Kλ,µ will be linearly dependent, since they are in d2-
dimensional space. Thus we might only expect lower-order dependences to be useful
in reducing the computational complexity.

We can then form graphs that represent the computation of Ke in (3.1). The
graphs have d2 nodes representing Ge as inputs and |L| × |L| nodes representing
the entries of Ke as outputs. Internal edges and nodes represent computations and
temporary storage. The inputs to a given computation come directly from Ge or
indirectly from other internal nodes in the graph.
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The computation represented in (2.7) would correspond to a dense graph in which
each of the input nodes is connected directly to all |L| × |L| output nodes. It will be
possible to attempt to reduce the complexity of the computation by finding sparse
graphs that represent equivalent computations.

We can generate interesting graphs by analyzing the entries of Kλ,µ for relation-
ships as described above. It would appear useful to consider

• entries Kλ,µ which have only one non-zero element
• entries Kλ,µ which have 2 ≤ k << d2 non-zero elements
• entries Kλ,µ which are scalar multiples of other elements
• entries Kλ,µ which are linear combinations of other elements

and so forth. For each graph representing the computation of Ke, we have a precise
count of the number of floating point operations, and we can simply minimize the
total number over all graphs generated by the above heuristics. Our examples indicate
that computational simplications consisting of an order of magnitude or more can be
achieved.

We have developed a code called FErari (for Finite Element ReARrangemnts of
Integrals) to carry out such optimizations automatically. We describe this in detail
in Section 4.3. This code linearizes the graph representation discussed above, tak-
ing a particular evaluation path that is based on heuristics chosen to approximate
optimal evaluation. We have used it to show that for classes of elements, significant
improvements in computational efficiency are available.

3.2. Computing K for quadratics. Here we give a detailed algorithm for
computing K for quadratics. Thus we have 6 ∗Ke =


3G11 −G12 γ11 γ0 4G12 0
−G21 3G22 γ22 0 4G21 γ1

γ11 γ22 3(γ11 + γ22) γ0 0 γ1

γ0 0 γ0 γ2 −γ3 − 8G22 γ3

4G21 4G12 0 −γ3 − 8G22 γ2 −γ3 − 8G11

0 γ1 γ1 γ3 −γ3 − 8G11 γ2

 (3.4)

where the Gij ’s are the inputs and the intermediate quantities γi are defined and
computed from

γ0 =− 4γ11,

γ1 =− 4γ22,

γ2 =4G1221 + 8G1122 = γ3 + 8γ12 = 8(G12 + γ12),
γ3 =4G1221 = 4γ21 = 8G12

(3.5)

where we use the notation Gijk` := Gij + Gk`, and finally the γij ’s are(
γ11 = G11 + G12 = G1112 γ12 = G11 + G22 = G1122

γ21 = G12 + G21 = G1221 γ22 = G12 + G22 = G1222

)
(3.6)

Let us distinguish different types of operations. The above formulas involve (a)
negation, (b) multiplication of integers and floating-point numbers, and (c) additions
of floating-point numbers. Since the order of addition is arbitrary, we may assume
that the operations (c) are commutative (although changing the order of evaluation
may change the result). Thus we have G1222 = G2212 and so forth. The symmetry of
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G implies that G1112 = G1121 and G2122 = G1222. The symmetry of G implies that
Ke is also symmetric, by inspection, as it must be from the definition.

The computation of the entries of Ke procees as follows. The computations in
(3.6) are done first and require only four (c) operations, or three (c) operations and
one (b) operation (γ21 = 2G12). Next, the γi’s are computed via (3.5), requiring four
(b) operations and one (c) operation. Finally, the matrix Ke is completed, via three
(a) operations, seven (b) operations, and three (c) operations. This makes a total
of three (a) operations, twelve (b) operations, and three (c) operations. Thus only
eighteen operations are required to evaluate Ke, compared with 288 operations via
the formula (2.8).

It is clear that there may be other algorithms with the same amount of work
(or less) since there are many ways to decompose some of the sub-matrices in terms
of others. Finding (or proving) the absolute minimum may be difficult. Moreover,
the metric for minimization should be run time, not some arbitrary way of counting
operations. Thus the right way to utilize the ideas we are presenting may be to
identify sets of ways to evaluate finite element matrices. These could then be tested
on different systems (architectures plus compilers) to see which is the best. It is
amusing that it takes fewer operations to compute Ke than it does to write it down,
so it may be that memory traffic should be considered in an optimization algorithm
that seems the most efficient algorithm.

4. Evaluation of general multi-linear forms. General multi-linear forms can
appear in finite element calculations. As an example of a trilinear form, we consider
that arising from the first order term in the Navier-Stokes equations. Though ad-
ditional issues arise over bilinear forms, many techniques carry over to give efficient
algorithms.

The local version of the form is defined by

ce(u;v,w) :=
∫

Te

u · ∇v(x) ·w(x) dx

=
∫

Te

d∑
j,k=1

uj(x)
∂

∂xj
vk(x)wk(x) dx

=
∫
T

d∑
j,k=1

uj(Jξ + xe)
∂

∂xj
vk(Jξ + xe)wk(Jξ + xe) det(J) dξ

=
∫
T

d∑
j,k,m=1

(∑
λ∈L

u
ι(e,λ)
j φλ(ξ)

)
∂ξm

∂xj

∑
µ∈L

v
ι(e,µ)
k

∂

∂ξm
φµ(ξ)

×

∑
ρ∈L

w
ι(e,ρ)
k φρ(ξ)

det(J) dξ

=
d∑

j,k,m=1

∑
λ,µ,ρ∈L

u
ι(e,λ)
j

∂ξm

∂xj
v

ι(e,µ)
k w

ι(e,ρ)
k det(J)×∫

T
φλ(ξ)

∂

∂ξm
φµ(ξ)φρ(ξ) dξ

(4.1)
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Thus we have found that

ce(u,v,w) =
d∑

j,k=1

∑
λ,µ,ρ∈L

u
ι(e,λ)
j v

ι(e,µ)
k w

ι(e,ρ)
k ×

d∑
m=1

∂ξm

∂xj
det(J)

∫
T

φλ(ξ)
∂

∂ξm
φµ(ξ)φρ(ξ) dξ

=
d∑

j,k=1

∑
λ,µ,ρ∈L

u
ι(e,λ)
j v

ι(e,µ)
k w

ι(e,ρ)
k

d∑
m=1

∂ξm

∂xj
det(J)Nλ,µ,ρ,m

(4.2)

where

Nλ,µ,ρ,m :=
∫
T

φλ(ξ)
∂

∂ξm
φµ(ξ)φρ(ξ) dξ (4.3)

To summarize, we have

ce(u,v,w) =
d∑

j,k=1

∑
λ,µ,ρ∈L

u
ι(e,λ)
j v

ι(e,µ)
k w

ι(e,ρ)
k Ne

λ,µ,ρ,j

=
d∑

k=1

∑
µ,ρ∈L

v
ι(e,µ)
k w

ι(e,ρ)
k

d∑
j=1

∑
λ∈L

u
ι(e,λ)
j Ne

λ,µ,ρ,j

(4.4)

where the element coefficients Ne
λ,µ,ρ,j are defined by

Ne
λ,µ,ρ,j :=

d∑
m=1

∂ξm

∂xj
det(J)Nλ,µ,ρ,m. =:

d∑
m=1

G̃mjNλ,µ,ρ,m (4.5)

where G̃mj := ∂ξm

∂xj
det(J). Recall that J is the Jacobian above, and J−1 is its inverse,

and (
J−1

)
m,j

=
∂ξm

∂xj
.

Note that both Nλ,µ,ρ,(·) and Ne
λ,µ,ρ,(·) can be thought of as d-vectors. Moreover

Ne
λ,µ,ρ,(·) = det(J)Nλ,µ,ρ,(·)J

−1.

Also note that Nλ,µ,ρ,(·) = Nρ,µ,λ,(·), so that considerable storage reduction could be
made if desired.

The matrix C defined by Cij = c(u, φi, φj) can be computed using the assembly
algorithm as follows. First, note that C can be written as a matrix of dimension
|L| × |L| with entries that are d× d diagonal blocks. In particular, let Id denote the
d × d identity matrix. Now set C to zero, loop over all elements and up-date the
matrix by

Cι(e,µ),ι(e,ρ)+ =Id

d∑
j=1

∑
λ∈L

u
ι(e,λ)
j Ne

λ,µ,ρ,j

=Id

d∑
m,j=1

G̃mj

(∑
λ∈L

u
ι(e,λ)
j Nλ,µ,ρ,m

)
=Id

∑
m,λ∈L

γmλNλ,µ,ρ,m

(4.6)
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for all µ and ρ, where

γmλ =
d∑

j=1

G̃mju
ι(e,λ)
j . (4.7)

It thus appears that the computation of C can be viewed as similar in form to (3.1),
and similar optimization techniques applied. In fact, we can introduce the notation
Ke,u where

Ke,u
µ,ρ =

∑
m,λ∈L

γmλNλ,µ,ρ,m (4.8)

Then the update of C is done in the obvious way with Ke,u.

4.1. Trilinear Forms with Piecewise Linears. For simplicity, we may con-
sider the piecewise linear case. Here, the standard mixed formulations are not inf-sup
stable, but the trilinear form is still an essential part of the well-known family of
stabilized methods [8, 11] that do admit equal order piecewise linear discretizations.
Moreover, our techniques could as well be used with the nonconforming linear ele-
ment [6], which does admit an inf-sup condition when paired with piecewise constant
pressures.

In the piecewise linear case, (4.3) simplifies to

Nλ,µ,ρ,m :=
∂φµ

∂ξm

∫
T

φλ(ξ)φρ(ξ) dξ (4.9)

We can think of Nλ,µ,ρ,m defined from two matrices: Nλ,µ,ρ,m = Dµ,mFλ,ρ where

Dµ,m :=
∂φµ

∂ξm
=

1 0
0 1
1 1

 (d = 2) and


1 0 0
0 1 0
0 0 1
1 1 1

 (d = 3) (4.10)

and

Fλ,ρ :=
∫
T

φλ(ξ)φρ(ξ) dξ (4.11)

The latter matrix is easy to determine. In the piecewise linear case, we can compute
integrals of products using the quadrature rule that is based on edge mid-points (with
equal weights given by the area of the simplex divided by the number of edges). Thus
the weights are ω = 1/6 for d = 2 and ω = 1/24 for d = 3. Each of the values φλ(ξ)
is either 1

2 or zero, and the products are equal to 1
4 or zero. For the diagonal terms

λ = ρ, the product is non-zero on d edges, so Fλ,λ = 1/12 for d = 2 and 1/32 for
d = 3. If λ 6= ρ, then the product φλ(ξ)φρ(ξ) is non-zero for exactly one edge (the one
connecting the corresponding vertices), so Fλ,ρ = 1/24 for d = 2 and 1/96 for d = 3.
Thus we can describe the matrices F in general as having d on the diagonals, 1 on
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Table 4.1
The tensor N (multiplied by ninety-six) for piecewise linears in three dimensions represented

as a matrix of four by three matrices.

3 1 1 1 0 0 0 0 0 0 0 0 3 1 1 1
0 0 0 0 3 1 1 1 0 0 0 0 3 1 1 1
0 0 0 0 0 0 0 0 3 1 1 1 3 1 1 1
1 3 1 1 0 0 0 0 0 0 0 0 1 3 1 1
0 0 0 0 1 3 1 1 0 0 0 0 1 3 1 1
0 0 0 0 0 0 0 0 1 3 1 1 1 3 1 1
1 1 3 1 0 0 0 0 0 0 0 0 1 1 3 1
0 0 0 0 1 1 3 1 0 0 0 0 1 1 3 1
0 0 0 0 0 0 0 0 1 1 3 1 1 1 3 1
1 1 1 3 0 0 0 0 0 0 0 0 1 1 1 3
0 0 0 0 1 1 1 3 0 0 0 0 1 1 1 3
0 0 0 0 0 0 0 0 1 1 1 3 1 1 1 3

the off-diagonals, and scaled by 1/24 for d = 2 and 1/96 for d = 3. Thus

F =
1

4(d + 1)!


d 1 · · · 1
1 d · · · 1
· · · · · ·
1 1 · · · d



=
d− 1

4(d + 1)!
Id+1 +

1
4(d + 1)!


1 1 · · · 1
1 1 · · · 1
· · · · · ·
1 1 · · · 1


(4.12)

for d = 2 or 3, where Id denotes the d × d identity matrix. Note that for a given d,
the matrices in (4.12) are d + 1× d + 1 in dimension.

The tensor N for linears in three dimensions is presented in Table 4.1. We see
now a new ingredient for computing the entries of Ke,u from the matrix γm,λ. Define
γm =

∑4
λ=1 γm,λ for m = 1, 2, 3, and then γ̃m,λ = 2γm,λ + γm for m = 1, 2, 3 and

λ = 1, 2, 3, 4. Then

Ke,u =


γ̃11 γ̃21 γ̃31 γ̃11 + γ̃21 + γ̃31

γ̃12 γ̃22 γ̃32 γ̃12 + γ̃22 + γ̃32

γ̃13 γ̃23 γ̃33 γ̃13 + γ̃23 + γ̃33

γ̃14 γ̃24 γ̃34 γ̃14 + γ̃24 + γ̃34

 (4.13)

However, note that the γm’s are not computations that would have appeared directly
in the formulation of Ke,u but are intermediary terms that we have defined for con-
venience and efficiency. This requires 39 operations, instead of 384 operations using
(4.8).

4.2. Algorithmic implications. The example in Section 4 provides guidance
for the general case. First of all, we see that the “vector” space of the evaluation
problem (4.8) can be arbitrary in size. In the case of the trilinear form in Navier-Stokes
considered there, the dimension is the spatial dimension times the dimension of the
approximation (finite element) space. High-order finite element approximations [14]
could lead to very high-dimensional problems. Thus we need to think about looking
for relationship among the “computational vectors” in high-dimensional spaces, e.g.,
up to several hundred in extreme cases. The example in Section 4.1 is the lowest
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Table 4.2
Summary of results for FErari on triangular Lagrange elements

Order Entries Base MAPs FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867

order case in three space dimensions, and it requires a twelve-dimensional space for
the complexity analysis.

Secondly, it will not be sufficient just to look for simple combinations to deter-
mine optimal algorithms, as discussed in Section 3.1. The example in Section 4.1
shows that we need to think of this as an approximation problem. We need to look
for vectors (matrices) which closely approximate a set of vectors that we need to com-
pute. The vectors V1 = (1, 1, 1, 1, 0, . . . , 0),V2 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),V3 =
(0, . . . , 0, 1, 1, 1, 1) are each edit-distance one from four vectors we need to compute.
The quantities γm represent the computations (dot-product) with Vm. The quanti-
ties γ̃mλ are simple perturbations of γ which require only two operations to evaluate.
A simple rescaling can reduce this to one operation.

Edit-distance is a useful measure to approximate the computational complexity
distance, since it provides an upper-bound on the number of computations it takes to
get from one vector to another. Thus we need to add this type of optimization to the
techniques listed in Section 3.1.

4.3. The FErari system. The algorithms discussed in Sections 3.1 and 4.2
have been implemented in a prototype system which we call FErari, for Finite Ele-
ment Re-arrangement Algorithm to Reduce Instructions. We have used it to build
optimized code for the local stiffness matrices for the Laplace operator using Lagrange
polynomials of up to degree six. While there is no perfect metric to predict efficiency
of implementations due to differences in architecture, we have taken a simple model to
measure improvement due to FErari. A particular algorithm could be tuned by hand,
common divisors in rational arithmetic could be sought, and more care could be taken
to order the operations to maximize register usage. Before discussing the implemen-
tation of FErari more precisely, we point to Table 4.2 to see the levels of optimization
detected. In the table, “Entries” refers to the number of entries in the upper triangle
of the (symmetric) matrix. “Base MAPs” refers to the number of multiply add pairs
if we were not to detect dependencies at all, and “FErari MAPs” is the number of
multiply-add pairs in the generated algorithm. Although we only gain about a factor
of two for the higher order cases, we are automatically generating algorithms with
fewer multiply-add pairs than entries for linears, quadratics, and cubics.

FErari builds a graph of dependencies among the tensors Kλ,µ in several stages.
We now describe each of these stages, what reductions they produce in assembling
Ke, and how much they cost to perform. We start by building the tensors {Kλ,µ}
for 1 ≤ λ ≤ dim Pk and λ ≤ µ ≤ dim Pk using FIAT [15]. In discussing algorithmic
complexity of our heuristics below, we shall let n be the size of this set. Throughout,
we are typically using “greedy” algorithms that quit when they find a dependency.
Also, the order in which these stages are performed matters, as if a dependency for a
tensor is found at one stage, will not mark it again later.



12 R. C. KIRBY AND M. KNEPLEY AND A. LOGG AND L. R. SCOTT

Table 4.3
Results of FErari on Lagrange elements of degree 1 through 6

Order Entries Zero Eq Eq t 1 Entry Col Ed1 Ed2 LC Default Cost
1 6 0 0 0 3 0 2 0 1 0 7
2 21 3 2 3 4 2 5 1 1 0 15
3 55 3 17 0 5 8 12 5 5 0 45
4 120 0 23 0 7 2 25 30 25 8 176
5 231 0 18 0 13 5 41 71 45 38 443
6 406 0 27 0 17 7 59 139 61 96 867

As we saw earlier, sometimes Kλ,µ = 0. In this case, (Ke)λ,µ = 0 as well for any
e, so these entries cost nothing to build. Searching for uniformly zero tensors can be
done in n operations. While we found that three tensors vanish for quadratics and
cubics, none do for degrees four through six.

Next, if two tensors Kλ,µ and Kλ′,µ′ are equal, then their dot product into Ge

will also be equal. So, we mark Kλ′,µ′ as depending on Kλ,µ. Naively, searching
through the nonzero tensors is an O(n2) process, but can be reduced to O(n log(n))
operations by inserting the tensors into a binary tree using lexicographic ordering of
the entries of the tensors. The fourth column of Table 4.3, titled “Eq”, shows the
number of such dependencies that FErari found.

As a variation on this theme, if Kλ,µ = (Kλ′,µ′)t, then Kλ,µ : Ge = (Kλ′,µ′ : Ge

since Ge is symmetric. Hence, once (Ke)λ,µ is computed, (Ke)λ′,µ′ is free. We may
also search for these dependencies among nonzero tensors that are not already marked
as equal to another tensor in O(n log(n)) time by building a binary tree. In this case,
we compare by lexicographically ordering the components of the symmetric part of
each tensor (recall the symmetric part of K is K+Kt

2 ). Equality of symmetric parts is
necessary but not sufficient for two matrices to be trasposes of each other. So, if our
insertion into the binary tree reveals an entry with the same symmetric part, we then
perform an additional check to see if the two are indeed transposes. Unfortunately, we
only found such dependencies for quadratics, where we found three. This is indicated
in the fifth column of Table 4.3, titled “Eq t.”

So far, we have focused on finding and marking tensors that can be dotted into Ge

with no work (perhaps once some other dot product has been performed). Now, we
turn to ways of finding tensors whose dot product with Ge can be computed cheaply.
The first such way is to find unmarked tensors Kλ,µ with only one nonzero entry.
This may be trivially performed in O(n) time. The sixth column of Table 4.3, titled
“1 Entry,” shows the number of such tensors for each polynomial degree.

If there is a constant α such that Kλ′,µ′ = αKλ,µ, then Kλ′,µ′ : Ge = αKλ,µ : Ge

and hence may be computed in a single multiply. Moreover, colinearity among the
remaining tensors may be found in O(n log(n)) time by a binary tree and lexicographic
ordering of an appropriate normalization. To this end, we divide each (nonzero) tensor
by its Frobenius norm and ensure that its first nonzero entry is positive. If insertion
into the binary tree gives equality under this comparison, then we mark the tensors
as colinear. The numbers of such dependencies found for each degree is see in the
“Col” column Table 4.3

Next, we seek things that are close together in edit distance, differing only in
one or two entries. Then, the difference between the dot products can be computed
cheaply. For each unmarked tensor, we look for a marked tensor that is edit distance
one away. We iterate this process until no more dependencies are found, then search
for dependencies among the remainders. We repeat this process for things that are
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Fig. 4.1. Generated code for computing the stiffness matrix for linear basis functions

from Numeric import zeros
G=zeros(4,"d")
def K(K,jinv):

detinv = 1.0/(jinv[0,0]*jinv[1,1] - jinv[0,1]*jinv[1,0])
G[0] = ( jinv[0,0]**2 + jinv[1,0]**2 ) * detinv
G[1] = ( jinv[0,0]*jinv[0,1]+jinv[1,0]*jinv[1,1] ) * detinv
G[2] = G[1]
G[3] = ( jinv[0,1]**2 + jinv[1,1]**2 ) * detinv
K[1,1] = 0.5 * G[0]
K[1,0] = -0.5 * G[1]- K[1,1]
K[2,1] = 0.5 * G[2]
K[2,0] = -0.5 * G[3]- K[2,1]
K[0,0] = -1.0 * K[1,0] + -1.0 * K[2,0]
K[2,2] = 0.5 * G[3]
K[0,1] = K[1,0]
K[0,2] = K[2,0]
K[1,2] = K[2,1]
return K

edit distance two apart. In general, this process seems to be O(n2). Table 4.3 has
two columns, titled “Ed1” and “Ed2,” showing the number of tensors we were able
to mark in such a way.

If a tensor is a linear combination of two other tensors, then its dot product can be
computed in two multiply-add pairs. This is an expensive search to perform (O(n3)),
since we have to search through pairs of tensors for each unmarked tensor. However,
we do seem to find quite a few linear combinations, as seen in the “LC” column of
4.3. Any remaining tensors are marked as “Default” in which case they are computed
by the standard four multiply-add pairs.

After building the graph of dependencies, we topologically sort the vertices. This
gives an ordering for which if vertex u depends on vertex v, then v occurs before
u, an essential feature to generate code. We currently generate Python code for
ease in debugging and integrating with the rest of our computational system, but we
could just as easily generate C or Fortran. In fact, future work holds generating not
particular code, but abstract syntax as in PETSc 3.0 [18] as to enable code generation
into multiple languages from the same graph. One interesting feature of the generated
code is that it is completely unrolled – no loops are done. This leads to relatively
large functions, but sets up the code to a point where the compiler really only needs to
handle register allocation. In Figure 4.1, we present the generated code for computing
linears.

4.4. Code verification. In general, the question of verifying a code’s correct-
ness is difficult. In this case, we have taken an existing Poisson solver and replaced
the function to evaluate the local stiffness matrix with FErari-generated code. The
correct convergence rates are still observed, and the stiffness matrices and computed
solutions agree to machine precision. However, in the future, we hope to generate
optimized code for new, complicated forms where we do not have an existing verified
implementation, and the general question of verifying such codes is beyond the scope
of this present work.
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5. Computing a matrix via quadrature. The computations in equations
(2.6–2.7) can be computed via quadrature as

Aι(e,λ),ι(e,µ)+ =
∑
ξ∈Ξ

ωξ∇φλ(ξ) · (Ge∇φµ(ξ))

=
∑
ξ∈Ξ

ωξ

d∑
m,n=1

φλ,m(ξ)Ge
m,nφµ,n(ξ)

=
d∑

m,n=1

Ge
m,n

∑
ξ∈Ξ

ωξφλ,m(ξ)φµ,n(ξ)

=
d∑

m,n=1

Ge
m,nKλ,µ,m,n

(5.1)

where the coefficients Kλ,µ,m,n are analogous to those defined in (2.3), but here they
are defined by quadrature:

Kλ,µ,m,n =
∑
ξ∈Ξ

ωξφλ,m(ξ)φµ,n(ξ) (5.2)

(The coefficients are exactly those of (2.3) if the quadrature is exact.)
The right strategy for computing a matrix via quadrature would thus appear to be

to compute the coefficients Kλ,µ,m,n first using (5.2), and then proceeding as before.
However, there is a different strategy associated with quadrature when we want only
to compute the action of the linear operator associated with the matrix and not the
matrix itself (cf. [16]).

6. Other approaches. We have presented one approach to optimize the com-
putation of finite element matrices. Other approaches have been suggested for op-
timizing code for scientific computation. The problem that we are solving can be
represented as a sparse-matrix–times–full-matrix multiply, KG, where the dimensions
of K are, for example, |L|2× d2 for Laplace’s equation in d-dimensions using a (local)
finite-element space L. For the non-linear term in Navier-Stokes, the dimensions of
K become |L|2 × d|L|. The first dimension of G of course matches the second of K,
but the second dimension of G is equal to the number of elements in the mesh. Thus
it is worthwhile to do significant precomputation on K.

At a low level, ATLAS [26] works with operations such as loop unrolling, cache
blocking, etc. This type of optimization would not find the reductions in computation
that FErari does, since the latter identifies more complex algebraic structures. In this
sense, our work is more closely aligned with that of FLAME [7] which works with
operations such as rank updates, triangular solves, etc. The BeBOP group has also
worked on related issues in sparse matrix computation [22, 24, 23, 25, 12]. Our work
could be described as utilizing a sparsity structure in a matrix representation, and
it can be written as multiplying a sparse matrix times a very large set of (relatively
small) vectors (the columns of G). This is the reverse of the case considered in the
SPARSITY system [13], where multiplying a sparse matrix times a small number of
large vectors is considered.

Clearly the ideas we present here could be coupled with these approaches to
generate improved code. The novelty of our work resides in the precomputation that
is applied to evaluate the action of K. In this way, it resembles the reorganization of
computation done for evaluation of polynomials or matrix multiply [17].
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Quadrature Tensor FFC FErari Assemble Matvec
Linear 0.3802 0.0725 0.0535 0.0513 0.4762 0.0177

Quadratic 2.0000 0.3367 0.1517 0.1506 1.9342 0.1035
Table 7.1

Seconds to process one million triangles: local stiffness matrices, global matrix insertion, and
matrix-vector product

7. Timing results. We performed several experiments for the Poisson problem
with piecewise linear and piecewise quadratic elements. We set up a series of meshes
using the mesh library in DOLFIN [10]. These meshes contained between 2048 and
524288 triangles. We timed computation of local stiffness matrices by several tech-
niques, their insertion into a sparse PETSc matrix [3], multiplying the matrix onto
a vector, and solving the linear system. All times were observed to be linear in the
number of triangles, so we report all data as time per million triangles. All computa-
tions were performed on a Linux workstation with a 3 GHz Pentium 4 processor with
2GB of RAM. All our code was compiled using gcc with “-O3” optimization.

Our goal is to assess the efficacy and relevance of our proposed optimizations.
Solver technology has been steadily improving over the last several decades, with
multigrid and other optimal strategies being found for wider classes of problems.
When such efficient solvers are available, the cost of assembling the matrices (both
computing local stiffness matrices and inserting them into the global matrix) is much
more important. This is especially true in geometric multigrid methods in which
a stiffness matrix can be built on each of a sequence of nested meshes, but only a
few iterations are required for convergence. To factor out the choice of solver, we
concentrate first on the relative costs of building local stiffness matrices, inserting
them into the global matrix, and applying the matrix to a vector.

We used four strategies for computing the local stiffness matrices - numerical
quadrature, tensor contractions (four flops per entry), tensor contractions with zeros
omitted (this code was generated by the FEniCS Form Compiler [19]), and the
FErari-optimized code translated into C. For both linear and quadratic elements,
the cost of building all of the local stiffness matrices and inserting them into the
global sparse matrix was comparable (after storage has been preallocated). In both
situations, computing the matrix-vector product is an order of magnitude faster than
computing the local matrices and inserting them into the global matrix. These costs,
all measured seconds to process one million triangles, are given in Table 7 and plotted
Figure 7 using log-scale for time.

We may draw several conclusions from this. First, precomputing the reference
tensors leads to a large performance gain over numerical quadrature. Beyond this,
additional benefits are included by omitting the zeros, and more still by doing the
FErari optimizations. We seem to have optimized the local computation to the point
where it is constrained by read-write to cache rather than by floating point optimiza-
tion. Second, these optimizations reveal a new bottleneck: matrix insertion. This
motivates studying whether we may improve the performance of insertion into the
global sparse matrix or else implementing matrix-free methods.

While the FErari optimizations are highly successful for building the matrices,
there is still quite a bit of solver overhead to contend with. We used GMRES (bound-
ary conditions were imposed in a way that broke symmetry) preconditioned by the
BoomerAMG method of HYPRE [9]. For both linear and quadratics, the Krylov
solver converged with only three iterations. However, the cost of building and apply-
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Fig. 7.1. Seconds to process one million triangles: local stiffness matrices, global matrix inser-
tion, and matrix-vector product

ing the AMG preconditioner is very large. Using numerical quadrature, building local
stiffness matrices accounted for between five and nine percent of the total run time
(building the local to global mapping, computing geometry tensors, computing local
stiffness matrices, sorting and inserting local matrices into the global matrix, creating
and applying the AMG preconditioner, and the rest of the Krylov solver). Keeping
everything else constant and switching to the FErari optimized code, building local
stiffness matrices took less than one percent of total time. Geometric multigrid al-
gorithms tend to be much more efficient, and we conjecture that the cost of building
local matrices would be even more important in this case.

8. Conclusions. The determination of local element matrices involves a novel
problem in computational complexity. There is a mapping from (small) geometry
matrices to “difference stencils” that must be computed. We have demonstrated the
potential speed-up available with simple low-order methods. We have suggested by
examples that it may be possible to automate this to some degree by solving abstract
graph optimization problems.

9. Acknowledgements. We thank the FEniCS team, and Todd Dupont, Johan
Hoffman, and Claes Johnson in particular, for substantial suggestions regarding this
paper.
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