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Much of finite element computation is constrained by the difficulty of evaluating high-order nodal
basis functions. While most codes rely on explicit formulae for these basis functions, we present
a new approach that allows us to construct a general class of finite element basis functions from
orthonormal polynomials and evaluate and differentiate them at any points. This approach relies on
fundamental ideas from linear algebra and is implemented in Python using several object-oriented
and functional programming techniques.
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1. INTRODUCTION

In many ways, finite element codes fail to realize the generality afforded by the
mathematical framework. One particularly notable shortcoming is the lack of
implementations of many finite element spaces. For example, high order imple-
mentations of Nedelec’s elements for electromagnetics are rare [Nédélec 1980],
and implementations beyond the lowest order of Raviart-Thomas [Raviart and
Thomas 1977a] elements are almost never found. A code allowing us to compute
these interesting elements and explore their practical properties could open up
many new discussions in the finite element community as well as possibilities
for more effective applications.

Perhaps the lack of high order implementations is because finite element
codes typically rely on explicit formulae for the basis functions. This difficulty
can play out as follows: The programmer has a method and element in mind.
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For example, he may be using Galerkin’s method for the Poisson equation with
piecewise quadratic elements. Formulae for these functions on triangles or rect-
angles can be found in many standard finite element references [Zienkiewicz
1971]. The implicit assumption seems to be that these formulae will be copied
into Fortran and evaluated at quadrature points to assemble the stiffness ma-
trix. Many programmers will recognize that it is really no more difficult to write
the loops for the stiffness matrix assembly so that a single routine will work
for any basis functions of any orders of approximation, with the basis values,
dimensions, and quadrature weights given as inputs. Then, separate routines
evaluate linears, quadratics, and cubics at the quadrature points to pass into
the matrix assembly. Still even very sophisticated codes that automate ma-
trix assembly such as Dolfin [Logg and Hoffman 2002] and Deal [Bangerth
and Kanschat 1999] are limited to the use of particular formulae for the basis
functions. For elements with complicated degrees of freedom, such as Nedelec
elements for electromagnetics [Nédélec 1980] or Raviart-Thomas elements for
mixed methods for scalar elliptic equations [Raviart and Thomas 1977a], ob-
taining explicit formulae for the basis functions for these elements beyond the
lowest order can be extremely tedious. Hence, with some notable exceptions
[Rachowicz and Demkowicz 2002], there are very few high-order approxima-
tions using these more complicated elements.

One way to avoid these difficulties is to seek alternative formulations using
simpler approximating spaces, such as discontinuous piecewise polynomials.
For example, this is a large part of the interest in the porous media community
in discontinuous Galerkin methods as a possible high-order alternative to mixed
finite elements [Rivière and Wheeler 2000; Arnold et al. 2002]. However, these
methods often have tradeoffs, such as lower convergence rates, nonsymmetric
linear systems, or poor conditioning. As another example, Arnold and Winther
[2002] have recently developed an element for the stress-displacement formula-
tion of linear elasticity that is based on noncomposite polynomials, gives exactly
symmetric stress tensors, and has optimal convergence rates, along with a very
complicated approximating space with similarly complicated internal degrees
of freedom. In many cases, these methods with more complicated approximat-
ing spaces have excellent properties, although it is not at all clear how one can
leverage their power in practice.

The gap between theory and practice remains—the “mathematically pow-
erful” elements remain largely theoretical, and practitioners usually make do
with low order elements or seek alternative methods. We take a large step to-
ward closing this gap here by presenting a new paradigm and associated model
implementation that allows us to tabulate a very wide range of finite element
basis functions on the reference triangle. We reinterpret the mathematical de-
scription of finite element families as a computational machine, applying some
ideas from computer science as needed.

FIAT (Finite element automatic tabulator) computes general nodal basis
functions as linear combinations of orthogonal polynomials. Since we have re-
currence relations that allow us to stably evaluate these polynomials to very
high order, and rules describing the degrees of freedom for the families of fi-
nite elements, we are able to create an effective code for tabulating arbitrary
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order basis functions for nearly arbitrary finite elements. The implication is
that there are no “hard” elements.

We start by developing the mathematical paradigm FIAT implements. This
includes a mathematical definition of a finite element, and techniques for gen-
erating so-called prime bases for the function spaces. After this, we turn to
questions of computation, describing the features of Python used in producing
the implementation. While some of these details may be new to readers more
familiar with Fortran or even C++, they help to make an effective, clean im-
plementation of the ideas. After this, we show several examples of so-called
“difficult” finite elements by tabulating some of the nodal basis functions with
FIAT and plotting the results. Finally, we conclude by describing the potential
impacts on scientific computing of this new technique.

2. MATHEMATICAL FORMULATION

While it is typically difficult to obtain explicit formulae for finite element basis
functions, they may be otherwise represented through linear algebra. There are
rules for stably evaluating orthogonal polynomial bases up to very high degree.
Moreover, the rules for defining degrees of freedom for a family of finite elements
give us exactly the information we need to build the nodal basis functions from
the orthogonal polynomials.

2.1 Definition of a Finite Element

Ciarlet [1978] defines a finite element as a triple (K , P, N ) such that

— K is a bounded domain in Rn with a piecewise smooth boundary,
— P ⊂ C

(
K̄

)
is a finite-dimensional function space over K , which may be

vector-valued,
— N = {ni}dim P

i=1 is a basis for the dual space P ′, called the set of nodes.

Practically speaking, finite element codes use domains K that are triangles
or quadrilaterals in two dimensions and tetrahedral, prismatic, hexahedral,
and so on in three dimensions. For now, FIAT does function spaces only on
triangles, but as there is no conceptual difference, the code can readily be ex-
tended to other shapes. Most finite element spaces P consist of polynomials,
though many interesting spaces are more complicated than just Pk . Gener-
ally, the spaces and basis functions are defined on some reference domain and
mapped to each region in a mesh by an appropriate change of variables. The
nodes N may include pointwise evaluation, pointwise differentiation, integra-
tion against other functions, and other functionals.

The nodal basis for the finite element (K , P, N ) is the (unique) set {ψi}dim P
i=1

spanning P such that ni(ψ j ) = δi, j for all 1 ≤ i, j ≤ dim P . The degrees of
freedom of this basis are chosen such that, among other things, basis functions
on adjacent elements can be patched together with the right continuity
requirements.

As an example, we consider the quadratric Lagrangian element on the tri-
angle K with vertices (−1, −1), (1, −1), (−1, 1). In this case, the function space
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Fig. 1. Nodes for quadratic Lagrangian element.

is P = Pk(K ), and the nodes N consist of pointwise evaluation at the points
shown in Figure 1.

More generally, families of finite elements {(K , Pk , Nk)}k>k0 are defined. In
this case, we have a definition for each space (e.g. polynomials of total degree
k) and a rule for the nodes (e.g. pointwise evaluation at the lattice of points of
order k on K). As we shall see later, both the function spaces and the nodes may
not be so simple.

2.2 Computing Nodal Bases from Prime Bases

In general, we do not know how to evaluate the nodal basis functions, but sup-
pose that we can evaluate some other basis for the same space P . We denote this
basis {φi}dim P

i=1 and refer to it as the prime basis. When P is simply polynomials
(or vectors or tensors thereof) of some degree k, we may use the basic orthogonal
basis described for triangles in the following subsection as our prime basis. In
many other situations, we can form a suitable prime basis from this orthogonal
set. For the moment, we shall simply suppose that we have some prime basis
and work with it.

We can express the nodal basis functions as linear combinations of the prime
basis functions since the two sets span the same space. We look for coefficients
α

(i)
j such that for 1 ≤ i ≤ dim P

ψi =
dim P∑
k=1

α
(i)
k φk . (1)

For each ψi, we have dim P degrees of freedom to determine. The criteria
that ni(ψ j ) = δi, j allow us to determine these coefficients. Letting ai be the
vector with (ai) j = α

(i)
j and ei the canonical basis vector, we have

V ai = ei, (2)

where Vi, j = ni(φ j ) is a sort of generalized Vandermonde matrix. We may solve
for all the coefficients simultaneously by posing a problem with multiple right
hand sides as:

VA = I, (3)

where the ith column of A is ai. Then, the matrix V −1 contains all of the coeffi-
cients for all of the nodal basis functions. We remark that this generalizes the

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.



506 • Robert C. Kirby

techniques used by Hesthaven and Warburton [2002] for Lagrangian elements
in spectral element methods.

Since we can write a rule for evaluating the prime basis to any order and we
have a rule for evaluating the nodes of any order (e.g. formulae for the lattice
points on the triangle), this procedure can be implemented on a computer in
a language that supports higher order computation (i.e. functions may take
function-like objects as arguments and have functions as return values).

2.3 A Prime Basis for Pk on the Reference Triangle

There is a well-known orthonormal basis for polynomials over a triangle due
to Dubiner [1991]. This basis consists of special combinations of Jacobi poly-
nomials, and has natural extensions to three-dimensional reference domains
[Karniadakis and Sherwin 1999]. We will briefly describe this basis.

We let Pα,β
k denote the kth degree Jacobi polynomial with weights α and β.

We define the mapping from (x, y) on the reference triangle K to coordinates
(η1, η2) on the square [−1, 1]2 by{

η1 = 2 1+x
1− y − 1

η2 = y
(4)

with η1 = −1 when y = 1. Then, the functions

Di, j (x, y) = P0,0
i (η1)

(
1 − η2

2

)i

P2i+1,0
j (η2) (5)

for 0 ≤ i, j ≤ k with i + j ≤ k orthonormally span Pk(K ). Formulae for evalu-
ating the partial derivatives of these functions are obtained by the product and
chain rules and the formulae for differentiating the Jacobi polynomials.

The Dubiner basis may be ordered hierarchically, so that the first (k +1)(k +
2)/2 functions span Pk . To do this, let the degree index d run from 0 to k. Then,
for each d , take Di,d−i for 0 ≤ i ≤ d . Any Dubiner polynomial of degree exactly k
is orthogonal to all polynomials of degree k−1 or lower, much like the Legendre
polynomials.

2.4 Generating New Prime Bases

Many finite elements of interest rely on function spaces that are not just poly-
nomials of some degree k. For example, when p refinement is used, the function
space on a particular domain may be Pk on the inside but constrained to be only
Pk−1 on a given edge, as in Figure 2, where our function space is P2 constrained
to be linear along the bottom edge.

Even apart from p refinement, some finite elements are defined with func-
tion space that require a modified prime basis. For example, the vector-valued
Brezzi-Douglas-Fortin-Marini elements [Brezzi et al. 1987; Brezzi and Fortin
1991] use functions that are polynomials of degree k in each component but
have normal components on the boundary that only have degree k − 1. Later,
we describe the Arnold-Winther stress element, the function space of which is
symmetric tensors of polynomials of degree k + 2 with divergences constrained
to be degree k.
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Fig. 2. Nodes for constrained Lagrangian quadratic.

In such situations, we can construct prime bases. Suppose that P lies in some
larger finite-dimensional space P̄ for which we do have a rule for evaluating a
prime basis {φ̄i}dim P̄

i=1 . Define dim P̄ − dim P = d . Suppose that there exists a
collection of linear functionals on P̄ with L = {�i}d

i=1 such that

P = ∩�∈Lnull(�). (6)

In our first example in this section, P = {p ∈ Pk : p|γ ∈ Pk−1}. A natural
choice for P̄ is P̄ = Pk . Let µk be the Legendre polynomial of degree k. This
polynomial is orthogonal in L2 to all polynomials of degree k − 1 or less. The
set L consists of just a single functional �:

�( f ) =
∫

γ

f µkds. (7)

Now, we form the matrix Li, j = �i(φ̄ j ). This matrix is d by dim P̄ . The null
space of this matrix will give us a prime basis for P . Let us compute the (full)
singular value decomposition of L:

L = UL	LV t
L. (8)

It is a well-known fact of linear algebra [Golub and Van Loan 1996] that if L
has a n dimensional null space, then the final n columns of VL orthonormally
span null(L). We let V = VL(:, d + 1 : dim P̄ ). Then, the set{

φi =
dim P̄∑
k=1

Vk,iφ̄k

}dim P

i=1

(9)

forms a prime basis for P . To see this, simply apply each � j to any member of
the basis and recognize that the result is a row of L dotted with a column of
V and hence vanishes. Then, since the new set has the same dimension as P ,
it must span P . Since we have an evaluation rule for the basis for P̄ , we also
have an evaluation rule for our basis for P . With this prime basis for P , we
may proceed to generate the nodal basis as before.

Remark. We note the similarity of this technique to the approximation-
theoretic results of Dupont and Scott [1980], where error estimates for polyno-
mial spaces are derived by characterizing the spaces in terms of what differen-
tial operators vanish on them.
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In other situations, writing the space as the null space of a collection of
functionals may be more difficult, but we could write down a set of functions
that spans the space. This is the case of even order nonconforming elements
and the Raviart-Thomas elements for H(div). In these cases, we can project the
list of functions onto a basis for some larger space and numerically obtain an
orthonormal basis consisting of linear combinations of the basis functions of
that larger space.

3. COMPUTING ISSUES

The primary goal of our code is to achieve as much of the mathematical structure
described above as possible. While the code currently only does finite element
spaces over triangles, almost any conceivable polynomial, noncomposite finite
element can be implemented. Moreover, the system can be very easily extended
to support other element shapes, even in three dimensions. All that needs to
be changed is the prime polynomial basis and the quadrature rules, and these
are well-documented for other shapes by Karniadakis and Sherwin [1999].

Our goal of general expressiveness and mathematical abstraction is some-
what unusual in numerical computing, where performance is typically not ne-
gotiable. However, a code that tabulates nodal basis functions is really a “run
once” code. Once the family of basis functions has been generated and stored
in a file, the code need not be run any more. Even if this were to take hours,
it still represents a substantial savings in time over coming up with and then
differentiating explicit formulae. In this section, we discuss several computing
issues, from the use of Python to particular techniques and ideas employed in
the code to enhance its expressiveness and avoid disastrous inefficiency.

3.1 Why Python?

The intersection of object-oriented and functional programming along with a
strong extension module for linear algebra makes Python a good option for this
kind of computing. Without the constraint of optimal performance, we were
able to enumerate a set of language features that would make it easy to write,
read, and extend the code, and then look at existing languages for a good fit.
While Python is not the perfect language, it turned out to be a very practical
and effective choice in this situation.

The following features seemed most relevant:

—automatic memory management,
—object orientation with support for overloaded operators,
—“higher-order” programming—function-like objects may be passed as argu-

ments to or returned from functions,
—easy interaction with numerical linear algebra routines.

Memory management, becomes important when we consider that we will be
making arrays of size only determined at run-time. Hence, we will dynamically
be creating and freeing matrices as needed. This makes garbage-collected lan-
guages such as Java and Python attractive and much easier to debug than C or
C++. On the other hand, object-orientation with overloaded operators allows for
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data encapsulation and high-level syntax. Among other languages, these are
supported by C++ and Python, but not Java. Third, as we want to pass around
“basis functions” and “linear functionals”, higher-order programming is impor-
tant. In C++, this can be accomplished by making hierarchies of classes with
the operator() method overloaded, or by using templates. However, Python
not only allows class hierarchies, but also allows us simply to define some func-
tionals as anonymous functions: “that function that takes a function as an ar-
gument and evaluates it at this point.” Python has borrowed this feature from
functional languages such as ML, Haskell, and Scheme, and it is quite useful in
the code. Finally, thanks to the Numerical Python module [Ascher et al. 2001],
Python supports matrix operations in a similar style as Matlab, with access to
standard LAPACK linear algebra routines such as inversion and the singular
value decomposition. Such extension modules are typically much less developed
in other higher-order programming languages. Moreover, Python’s list compre-
hension (borrowed from Haskell) can be combined with the Numeric module to
give very natural syntax for forming the matrices necessary in the code. This
is further described below.

3.2 What’s in the Code?

Our code uses several techniques from computer science that may be of interest
to scientific programmers. In this section, we describe some of these features
and their use in Python. These include memoizing wrappers for basis functions,
class hierarchies of our different types of function spaces, and list comprehen-
sion for forming our matrices. Additionally, we survey other features provided
by the code such as numerical integration rules.

3.2.1 List Comprehension. The list comprehension features of Python
proved very useful. This syntactic feature constructs a list by evaluating some
expression over the elements of another list. For example, suppose we wanted to
form the list of squares of integers up to some number. Python provides a func-
tion range(n) that returns the list of integers from 0 to n-1. With this function,
the list of squares of integers 0 through 9 may be expressed as:

[ i * i for i in range( 0 , 10 ) ]

We may also do nested list comprehension to form matrices. If we have a list
of basis functions us and a list of linear functionals nodes, then we form the
Vandermonde matrix by

v = array( [ [ node( u ) for u in us ] for node in nodes ] )

This does a few things. First, each row of the matrix is some functional applied
to all the basis functions. This gives a list of lists. Second, the array function is
a function imported from the Numeric module. It converts the list of lists into a
matrix representation so that the linear algebra module can operate on it.

3.2.2 Memoizing Wrapper System. In the course of evaluating a nodal ba-
sis, the Dubiner functions (and others) may be repeatedly evaluated at the
same set of points. For example, if the prime basis is a linear combination
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of the Dubiner basis and the nodes include integration against some func-
tions constructed from the Dubiner basis, building the Vandermonde may
involve order (dim P )2 evaluations of each Dubiner basis function at each
quadrature point, a disastrous inefficiency. While clever programming can
circumvent this difficulty, the expressiveness of the code will be compro-
mised. An alternative, which allows for more mathematical-looking code while
avoiding the dramatic increase in algorithmic complexity, is memoization
[Abelson et al. 1985]. Memoization simply means storing the result of each
function call, and reusing the stored value on subsequent evaluation on the
same arguments.

We created a class MemoizedFunction that is a container for callable objects
mapping points to numbers. The instances each contain a reference to some
callable object plus an associative array storing previously computed values.
This class not only performs memoization, but two other important tasks for
the code—operator overloading and differentiation.

When done correctly, operator overloading can allow for very clear, concise
code. In our system, we have several different kinds of functions we want to
operate on: Dubiner functions, algebraic combinations of functions, functions of
barycentric coordinates, and so on. However, since all these different kinds of
functions are wrapped into MemoizedFunction instances, we can just overload
operators for that class.

Many callable objects in our system also have methods that return the func-
tion’s derivative (as a function). The memoizing wrapper also has a method to
invoke the wrapped object’s derivative method. Differentiation is also cached
in two senses: MemoizedFunction remembers if a function has been differ-
entiated in a particular direction and so only creates a single instance of
each partial derivative, and these derivative functions are also wrapped into
MemoizedFunction objects.

Manipulating vectors and tensors as well as scalar-valued func-
tions is also an important tool in a general code. In similar fash-
ion, classes MemoizedVectorFunction and MemoizedTensorFunction and
MemoizedSymmetricTensorFunction contain lists of MemoizedFunction in-
stances. They may be indexed, evaluated, and differential operators (gradient,
divergence, curl) are defined on them.

3.2.3 Function Spaces. FIAT uses a class hierarchy to implement the var-
ious kinds of function spaces described in our mathematical description. Most
of the mathematics is done in a base class, and new classes are derived just by
providing inputs to the constructors. This hides the need for users to delve into
the mathematical details—they just provide the inputs needed.

For scalar-valued spaces, the base class FunctionSpace consists of a list of
basis functions and a list of matrices representing partial differentiation in
the various coordinate directions. A class implementing polynomials, spanned
by the Dubiner basis, is derived directly from this class. Since most functions
we will register with the system only have explicit rules for computing first
order partial derivatives, it is important that we introduce these matrices for
differentiation, as they can be used to construct higher order derivatives.
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Also derived from FunctionSpace is a class called LinCombFunctionSpace.
This class takes a function space and a matrix whose columns encode lin-
ear combinations of the basis functions of the input space. This is a natu-
ral base class for both constrained spaces and finite element spaces. We in-
troduce a class ConstrainedFunctionSpace that takes a function space and a
list of callable objects representing the constraints and forms the appropriate
LinCombFunctionSpace by forming the constraint matrix and computing the
singular value decomposition. Also derived from LinCombFunctionSpace is an
OrthonormalizedFunctionSpace, which takes a function space, a list of func-
tions, and an integration rule, and forms a new space by projecting the list
onto the space and orthonormalizing them. Further, the class FiniteElement
FunctionSpace takes the dual basis (containing a list of functionals) and
a function space, forms the van der Monde matrix, and hence forms the
LinCombFunctionSpace.

3.2.4 Linear Functionals and Quadrature Rules. In addition to functions
and function spaces, FIAT provides tools to define linear functionals and nu-
merical integration. A module provides standard linear functionals for point
evaluation, normal components of vectors or tensors, defining function mo-
ments, and so on. The integration rules are based on the Gauss-Legendre-Jacobi
quadrature rules mapped onto the triangle [Karniadakis and Sherwin 1999].
One interesting point is that these quadrature rules are callable objects—for
example, we can compute the L2 inner product of two functions f and g by

integrate = quadrature.JacobiQuadrature2D( 3 )
l2ip = integrate( f * g ).

4. EXAMPLES

In this section, we present some examples of elements that are known in the
literature, but have seldom (if ever) been used in computation, due in large part
to the difficulty involved in evaluating the basis functions. We are interested at
present in demonstrating that the approach outlined in this article allows us
to tabulate such elements, hopefully enabling better computation by the larger
finite element community.

4.1 Nonconforming Elements

The theory of nonconforming finite elements has been well-studied, and the low-
est order element (Crouziex-Raviart) is quite practical in many situations. Non-
conforming methods are closely related to the so-called primal hybrid method
of Raviart and Thomas [1977b]. Raviart and Thomas define an entire family of
function spaces, but the even order members are complicated by the presence
of an extra function beyond Pk .

For the function space of order n, this extra function is

(λ1 − λ0) (λ2 − λ1) (λ0 − λ2) (λ0λ1)
n−2

2 (λ1λ2)
n−2

2 (λ2λ0)
n−2

2 . (10)

With the overloaded operators, and so on, we can create simple objects for
the barycentric coordinates, append methods for doing the differentiation, and
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Fig. 3. Nonconforming P2 basis function for an edge Gauss point.

Fig. 4. Nonconforming P2 basis function for the midpoint.

then build this function with the expression

( lam1 - lam0 ) * ( lam2 - lam1 ) * ( lam0 - lam2 ) \
* ( ( lam0 * lam1 ) ** ( ( n - 2 ) / 2 ) \

+ ( lam1 * lam2 ) ** ( ( n - 2 ) / 2 ) \
+ ( lam0 * lam2 ) ** ( ( n - 2 ) / 2 ) ).

Then, we form an orthnormalized function space by projecting this function
and the Dubiner basis of order k on Pk+1. The degrees of freedom for k = 2 are

—pointwise evaluation at the two Gauss-Legendre points on each edge of the
triangle,

—pointwise evaluation at the center.

This is the Irons-Razzaque element [Irons and Razzaque 1972] Figures 3
and 4 show some of the basis functions for the second degree case. The first one
has unit value at one of the Gauss points on the hypotenuse and vanishes at
the other Gauss points around the boundary and at the center of the triangle.
The second one vanishes at the Gauss points around the boundary and has unit
value at the center.
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While the function space is well-defined for all orders, suitable degrees of
freedom for general even-order spaces have not been defined. For some even
degrees (such as six), the barycenter is already in the natural set of interior
degrees of freedom. Before computing with general even-order spaces, some
general result for the extra degree of freedom should be obtained. Our code will
allow empirical verification of these degrees of freedom (check that the van der
Monde matrix is numerically nonsingular), and it seems that specifying the
function’s average value may be a suitable candidate.

4.2 Vector-Valued H(div) Elements: Raviart-Thomas

On triangles, there are three fairly well-known elements discretizing H(div).
These are due to Raviart and Thomas (hence RT ) [Raviart and Thomas 1977a],
Brezzi, Douglas and Marini (hence BDM) [Brezzi et al. 1985], and Brezzi,
Douglas, Fortin and Marini (hence BDFM) [Brezzi et al. 1987; Brezzi and Fortin
1991]. All three families are defined and studied for all orders, with optimal
approximation properties, and so on. Yet almost all calculations use only the
lowest order RT space, even when higher orders of approximation would be ap-
propriate. This is due in large part to the perceived difficulty of tabulating the
elements. Here, we show that a proper understanding of the definition of these
spaces and the right programming tools allows us to tabulate these elements.
We present RT here as an example, but the other families are also implemented
in a module.

The family of Raviart-Thomas elements uses the function spaces:

RTk(T ) = Pk(T, R2) + x Pk . (11)

That is, the spaces are vectors of polynomials of degree k plus the position
vector times scalar polynomials of degree k. This space is the smallest space V
that the divergence maps onto Pk . If Dk denotes the list of Dubiner polynomials
of degree k or less, then Dk − Dk−1 is the set of k + 1 Dubiner polynomials that
are exactly degree k. A non-orthonormal prime basis for RTk is then

{(p, 0)}p∈Dk ∪ {(0, p)}p∈Dk ∪ {(xp, yp)}p∈(Dk−Dk−1). (12)

We can numerically project these functions onto a basis for Pk+1(T, R2) and
orthonormalize them (we use the SVD). This gives a prime basis, so it is only
necessary to describe the nodes. These are

—normal component at k + 1 points on each edge,
—moments against a basis for Pk−1(T, R2).

We choose the edge points to be equispaced on the interior of each edge, and
use the vectors consisting of a Dubiner polynomial in one component and zero
in the other as a basis for the interior nodes. These are all easy to specify in
FIAT.

In Figures 5 and 6, we visualize two nodal basis functions for RT3. The first
one has a unit normal component at a point on the hypotenuse of the triangle.
Note how the normal component vanishes at the other nodal points on the
edge. The second corresponds to the degree of freedom for integrating the y
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Fig. 5. RT3 basis function corresponding to point normal at an edge.

Fig. 6. RT3 basis function with a unit linear moment of the y component.

component against one of the linear Dubiner functions. Note the strong linear
variation in the y component, while the normal component vanishes around
the boundary.

4.3 A Tensor-Valued Element Due to Arnold and Winther

Developing a stable, noncomposite pair of elements for the stress/displacement
formulation of linear elasticity proved a daunting task for many decades.
Recently, Arnold and Winther [2002] formulated and analyzed a suitable
family of elements. While the vector-valued displacement spaces are just
discontinuous polynomials of degree k for k ≥ 1, the tensor space for stress is
more complex. Denoting by Pk(T, S) the set of symmetric 2 × 2 tensors with
components in Pk , the space is

	T = {τ ∈ Pk+2(T, S) : ∇ · τ ∈ Pk(T, R2)}. (13)

In order to build this function space, we start with symmetric tensors of poly-
nomials of degree k +2 and specify some constraints. Divergences of Pk+2(T, S)
naturally lie in Pk+1(T, R2). The Dubiner polynomials of degree exactly k + 1
are orthogonal to polynomials of degree k or less. So, our linear constraints on
Pk+2(T, S) are just integration of each component against these k +2 functions.
Once these constraints are specified in a list, we can form a constrained function
space.

Specifying the nodes is somewhat more involved, but now straightforward.
The degrees of freedom are

—point values of the three unique components at each vertex,
—normal components of each row at k + 1 points on each edge,
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—moments against symmetric parts of gradients of Pk(R2), and

{τ ∈ Pk+2(S) : ∇ · τ = 0 and τn = 0 on ∂ T̂ }.
While implementing this family of elements is somewhat more involved than

other cases, FIAT makes it relatively straightforward. Having a tool to rela-
tively quickly tabulate these functions let us learn something about them. For
one, they may be poorly behaved. The basis function with xx component tak-
ing unit value at (−1, −1) has different scales in its three components. The xx
component varies between 1 and about −20. The off-diagonal component takes
values between 1 and −2. The yy component varies on a much wider scale,
however, taking values between about 200 and −900. While a systematic study
has not been done, FIAT makes it possible to tabulate and study these basis
functions, as well as put them into a solver in order to experiment with them.

5. CONCLUSIONS

We have developed a mathematical paradigm and practical computer imple-
mentation for tabulating general finite element basis functions of possibly high
order. This allows us to tabulate the basis functions for complicated elements,
including for vector-valued and tensor-valued spaces. This appears to be the
first systematic approach to computing basis functions that cuts across differ-
ent families of elements.

Having an easy way of getting basis functions frees people developing finite
element code to use complicated, possibly high-order elements when appropri-
ate. Elements with excellent theoretical properties now also become practical
options. We are currently looking at ways of incorporating these techniques into
finite element codes. One subject of current investigation is building a run-time
C library for orthogonal polynomials on the various reference domains. Then,
FIAT can output the coefficients of the nodal basis functions in the orthonormal
expansions, and the run-time library can evaluate and differentiate the basis
functions as needed.

Finally, this code hopefully serves as an example of the power that higher-
order programming can offer. Given what this code is able to accomplish with
relative ease, it will be interesting to explore what other opportunities higher
order programming offers to scientific computing.
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RIVIÈRE, B. AND WHEELER, M. F. 2000. Locally conservative algorithms for flow. In The mathematics
of finite elements and applications, X, MAFELAP 1999 (Uxbridge). Elsevier, Oxford, 29–46.

ZIENKIEWICZ, O. C. 1971. The finite element method in engineering science. McGraw-Hill, London.
The second, expanded and revised, edition of The finite element method in structural and contin-
uum mechanics.

Received October 2003; revised April 2004; accepted June 2004

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.


