Optimizing FIAT with Level 3 BLAS

ROBERT C. KIRBY!
The University of Chicago

The code FIAT (FInite element Automatic Tabulator) provides necessary abstractions to define
and tabulate a wide range of different finite elements on a reference element. We show here
how the performance of the critical operations in its algorithms may be greatly improved by
representing polynomials and linear functionals internally as vectors and hence setting up dense
matrix operations. The performance gains are up to three orders of magnitude in cases studied.
We also discuss how dimensional independence can be obtained through a use of graded incidence
relations and give some applications to Lagrange and Brezzi-Douglas-Marini elements.

Categories and Subject Descriptors: G.4 [Mathematical Software]: —Algorithm Design, Effi-
ciency; G.1.8 [Partial Differential Equations]: Finite Element Methods—

General Terms: Algorithms,Performance

Additional Key Words and Phrases: finite element, numerical linear algebra, Hilbert space

1. INTRODUCTION

Previously, we presented a computational representation theory for finite element
spaces based on the mathematical definitions of Ciarlet [Kirby 2004; Ciarlet 1978].
The abstractions used allowed us to implement a Python code capable of eval-
uating the nodal basis for arbitrary order instances of many different triangular
finite elements, including those of Lagrange [Brenner and Scott 2002], Raviart-
Thomas [Raviart and Thomas 1977], and Arnold-Winther [Arnold and Winther
2002]. The capability to employ a wide range of elements will become useful both
for theoreticians studying new elements and methods and practitioners seeking to
leverage the best theoretical work, especially as FIAT becomes fully merged with
language/compiler projects for variational forms such as Sundance [Long 2003],
PETSc [Laboratory |, and FFC [Logg 2005].

In order to improve both the performance and the generality of FIAT, we have
reinterpreted many aspects to pay more attention to granularity and mathematical
structure. For one, the previous memoizing system encouraged programming at too
low granularity. We have implemented a batch evaluation mode for the orthornor-
mal polynomials and sought out ways to rephrase the calculation at this higher level.
Also, we have exploited the Hilbert space structure of polynomials to implement
integration and functional application in terms of Euclidean dot products. This
has led to a much higher fraction of work being performed in the context of dense

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1-13.

2 : Robert C. Kirby

matrix operations. We have observed up to a thousand-fold improvement in per-
formance while using no additional C or Fortran code beyond Python’s numerical
and linear algebra extension modules, which rely upon the level 3 BLAS [Dongarra
et al. 1990]

Since [Kirby 2004], the work of Bientinesi et al [Bientinesi et al. 2005] for dense
linear algebra has come to our attention. They develop a formal structure for
deriving linear algebra algorithms that allows generation of provably correct, high-
performance code. One interpretation of this work is that it moves beyond an “enu-
merative” phase of scientific computating in which a set of algorithms is specified
and manually implemented in a library to “grammatical” phase in which structures
capable of generating the entire suite of such algorithms are exploited. Through
FIAT and its integration into codes for variational forms, we hope to make an
analagous contribution to numerical PDE. Rather than enumerating a list of finite
elements and variational forms and laboriously implementing each, we are develop-
ing abstract structures covering an entire class of finite element methods.

In this paper, we first review the major mathematical results in [Kirby 2004], then
present our techniques for representing polynomials, sets of polynomials, and linear
functionals over polynomial spaces. We discuss both how our new code achieves
dimensional abstraction and how we may formulate the construction of the Vander-
monde and constraint matrices needed in [Kirby 2004] with level 3 BLAS. Then, we
present two examples, the Lagrange and the Brezzi-Douglas-Marini [Brezzi et al.
1985] elements in light of our new framework and study the performance of the
old and new codes. We believe this to be the first implementation of higher or-
der BDM elements on tetrahedra. Finally, we conclude by discussing the ongoing
and future work for FIAT and its implications for the automation of finite element
computation.

2. FINITE ELEMENT DEFINITIONS

Before discussing our techniques for optimizing FIAT, we review the basic defini-
tions of Ciarlet [Ciarlet 1978] and the linear algebraic framework presented in [Kirby
2004].

We recall that Ciarlet defines a finite element as a triple (K, P, N) where K is a
bounded domain in R? with a piecewise smooth boundary, P is a finite-dimensional
function space over K, and N = {nl}‘ill is a basis for the dual space P’. Finite

element computations rely on a nodal basis for P. That is, a basis {’(/Jz}lzljl such that
n;(v;) = d;; for each 1 < i, j < |P|. For example, for the Lagrange elements, this
nodal basis would consist of polynomials that are either one or zero at a collection of
lattice points over some lattice on a triangle or tetrahedron. The nodes are chosen,
among other things, to enforce appropriate continuity across adjacent elements.
In [Kirby 2004], we argued that the difficulty in constructing computable repre-
sentations for nodal bases for general finite elements such as high-order Raviart-
Thomas elements is a major factor limiting their adoption by practitioners. Hence,
we proceeded to develop a linear algebraic framework for computing a wide class of
such elements relying on the existence of nice recurrence relations for orthonormal
polynomials on simplices. In particular, supposing that we had some basis {gbl}‘lill
for P and the ability to apply members N to that basis for P, we could construct

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Optimizing FIAT : 3
the nodal basis by forming the matrix V € RIPLIPI such that

Vi = ni(¢;)- (1)

We showed that the columns of the inverse of this matrix (a generalized Van-
dermonde matrix) are in fact the expansion coefficients for the nodal basis for
(K, P,N). Thus, computation of the nodal basis is nothing more than computing
the basis for which we have an implementation followed by some arithmetic.

In some cases, such as p-adaptivity of the Brezzi-Douglas-Fortin-Marini [Brezzi
and Fortin 1991] or Arnold-Winther [Arnold and Winther 2002] elements, the poly-
nomial space does not coincide exactly with polynomials of some total degree.
Hence, the standard orthonormal expansions do not exactly span the space. In this
situation, we set the polynomial space inside of some larger space P and described
P as the intersection of the null spaces of several functionals acting on P. For ex-
ample, we showed how the BDFM elements of degree k on a triangle can specified
as the subspace of (Pj)? that the normal components integrated against the k"
Legendre polynomial on each edge vanish. Given a set of constraint functionals
{£;}, and a basis {gﬁz}‘zill for P, we constructed the matrix L with

Lij = ti(¢;), (2)

and hence constructed a basis for P using the null space of the matrix, computed
with the singular value decomposition.

For both Vandermonde matrices and constraint matrices, we are required to
construct a “functional outer product” that is a collection of functionals applied
to a collection of polynomials. In the former implementation, the cost of building
such matrices could be considerable. In the following section, we show how a new
interpretation of polynomials and functionals leads to a much more streamlined
implementation.

3. REPRESENTING AND COMPUTING POLYNOMIALS
3.1 Bulk evaluation of orthonormal polynomials

Even with memoization, repeated evaluation of the orthornormal polynomials cre-
ated a considerable bottleneck in [Kirby 2004]. We have increased the granularity
of evaluation, yielding substantial performance gains.

Consider first one space dimension and the Jacobi polynomials. Using recurrence
relations to calculate P*®, we must calculate all of the preceding Jacobi polynomials
{Pia’b};:ll. If the recurrence relations are written as a loop rather than recursively,
then memoization will not detect these redundancies if we call Pia’b with several
different values of 7.

Now, consider the two-dimensional orthogonal polynomials over the triangle due
to Dubiner [Dubiner 1991]. These polynomials are L?-orthogonal and can be or-
dered hierarchically. They are defined by a mapping from the reference triangle
(=1,-1),(1,-1),(—1,1) to the reference square with vertices at £1. Away from
the top vertex, this change of coordinates from the triangle to the rectangle is given

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 : Robert C. Kirby

by

(-5

For a degree n, the polynomials are defined by

K3
st = 20 (F57) P 0
where 0 <i,j <n and 0 <i+j <n. In order to tabulate all of the polynomials of
degree n, we must run through the Jacobi recurrence relations for PZ-O’0 for0 <i<n,
and also Pf“‘l’0 forall 0 < j <nand 0 <7< j. In our new implementation,
we have been careful to make calls to tabulate all the Jacobi polynomials with
particular weights that we need, then incorporate them into the final result. Similar
(but more detailed) considerations apply in three dimensions.

Furthermore, looping through the recurrence relations requires computing the
appropriate weights for each stage. We have vectorized the tabulation procedure so
as to run through the recurrence relations a single time for all points. Hence, in the
following, we shall rely the existence of routines for lines, triangles, and tetrahe-
dra [Karniadakis and Sherwin 1999] that efficiently calculate all of the appropriate
orthonormal bases together, making use of vectorized operations and not repeating
recurrence relations.

3.2 Computing with polynomials

All polynomials in FIAT are represented as linear combinations of orthonormal
polynomials; this representation is particularly amenable to setting up dense linear
algebra. In this section, we show how tabulating a set of polynomials is naturally
matrix multiplication, even if the polynomials are vector-valued. Then, we ar-
gue from basic functional analysis that application of linear functionals and hence
construction of functional outer products in FIAT may also be done by matrix
multiplication.

Before we begin, we make two preliminary points. First, we throughout will
use the standard summation convention for tensors with repeated indices denoting
summation. Second, we will always consider that our arrays are stored contiguously
in row-major format. This is the C-style layout and is adopted by the Numerical
Python module underlying the implementation of FIAT.

3.2.1 Tabulation. First, we let P be a set of polynomials of degree n over a
reference simplex (line, triangle, tetrahedron) K in d—dimensional space and let
{@}li‘l be an orthonormal basis. Here, |P| is the dimension of the vector space
of polynomials. For any p € P, we let R be the mapping from p to its vector of
expansion coefficients in the orthonormal basis. That is, p = R(p);¢;.

If we want to evaluate a polynomial p at a point z, we then construct the vector
®; = ¢;(z) and compute the dot product

R(p)i®;. (5)
Now, suppose that have a set of polynomials S = {p;}¥;, such as the nodal
basis of a finite element set. To this set, we assocate a matrix C' such that C; ; =

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Optimizing FIAT : 5

R(pi);. That is, the rows of C store the expansion coefficients of the members of
S. Tabulating S at a collection of points X = {z;}},, such as a set of quadrature
points, is accomplished by matrix multiplication. We compute the matrix ®; ; =
¢;(z;) and hence

pi(zj) = Ci 1 Pr 5. (6)

The same methodology may be extended to tabulate sets of vector-valued polyno-
mials by matrix-multiplication with no excess data motion, provided that we store
our coefficients properly. Now, we consider a vector-valued polynomial v € (P)™
with m components, each of which is a polynomial in P. We may represent v as
a two-dimensional array R(v); ; with v® = R(v); ;¢; denoting the i*® component
of the vector. This corresponds to writing the vector as a linear combination of
vectors in R™ times the expansion coefficients. Rows of the matrix R;; are the
representations of the scalar-valued polynomials in each component. Perhaps it is
more suggestive to write v = R(v); ;0; xe*¢;, in which we take the i'! row times
a set of vector-valued functions that only have support in component i. This in-
terpretation will be helpful when we consider linear functionals on vector-valued
polynomials.

Now, suppose we have a set S = {v;}¥; of vector-valued polynomials. We can
associate with this set a rank three tensor of coefficients Cj ; ;. such that C; is the
matrix of coefficients obtained by applying R to v;. That is, C; j x = R(v;)j k. As
before, we build the matrix ®; ; = ¢;(z;) of the orthornomal basis functions at
each point. Then, it is simple to see that

Viiik = vi(zr) = Cij 1Py (7)

While this involves a higher rank tensor, this expression may naturally be recast as
a matrix multiplication. To see this, we introduce the matrix

Gk = Ciik, (®)

R N:ds| P RN P

where ¢ = id + j. The mapping ~ is an isomorphism between and
and can be applied “in-place” by simply changing the way in which a block of
memory is indexed. The Numeric module of Python supports this via the reshape
function.

So, we compute the matrix multiplication

Vie = Ci 1Pk, 9)
and hence V; ;1 by the inverse of * (again, in place).

This same technique applies to general tensor-valued polynomials, as we can
always re-index the tensors to be rank one-dimensional arrays with no data motion
by an extension of the operation *. Moreover, symmetric tensors (needed for the
Arnold-Winther elements [Arnold and Winther 2002]) may be represented as some
higher-level object (such as symmetric indexing into a linear array); as long as we
are dealing with objects that are isomorphic to vectors, we can use this approach.

3.2.2 Linear functionals. With the L? inner product, all of our polynomial
spaces are naturally considered as Hilbert spaces. Our representation in terms of
orthonormal bases means that the L? inner product may be computed by a simple

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 : Robert C. Kirby

Euclidean inner product (this is really just Parseval’s relation (p, ¢) = R(p):iR(q):)-
As with tabulating polynomials, it is possible to scale up dot products to matrix
multiplication in building Vandermonde and constraint matrices needed through-
out FIAT. After developing this idea for scalar-valued polynomials, we show how
similar techniques used for tabulating vector-valued polynomials may be used for
functionals and outer products.

We first develop an abstraction for Banach spaces and then return to the Hilbert
space context. For a finite dimensional Banach space V' with basis {qﬁi}‘izll, we may
represent all members of its dual V/ by vectors. As before, let R be the mapping
from a member of V' to its expansion coefficients in the basis. Then, if £ € V', we
may apply ¢ to some v € V by

(v) = {R(v)idi) = R(v)il(i)- (10)

This motivates the introduction of a mapping R’ : V! — R!"! by R(0); = ¥(¢;), for
then

(v) =R'(0);R(v), (11)

which is just a dot product.

While this abstraction is sufficient to drive our computation, considering the
Hilbert space context adds some additional insight. Finite elements often use inte-
gration against some set of polynomials as nodes (hence requiring an inner prod-
uct). Let P be our polynomial space with basis {(bi}yjl, and let f € P’ be given
by f(p) = (p,q) for some fixed ¢ € P. Then, f(p) = ¢pi, so that R'(f); = ¢,
but also R(g) = R'(f) in the sense of R'Fl. This is just what we expect from the
Riesz Representation Theorem; the Hilbert space and its dual are isomorphic, so
our mapping from either the space or its dual into Euclidean space give the same
vector.

In FIAT, we model linear functionals with a class Functional that takes a poly-
nomial space and a vector and can operate on any member of that polynomial space
by computing a dot product. In order to implement new kinds of functionals, we
must determine what they do to a given polynomial basis. This is typically imple-
mented in a few lines of code. Moreover, we can model a set of linear functionals
{¢;}N_, over a scalar-valued space of polynomials by including a reference to the
polynomial space and a matrix L; j = R/(£;);.

This representation of polynomials and linear functionals over them allows us to
phrase building functional outer products as matrix multiplication. For either Van-
dermonde or constraint matrices, we have a collection of linear functionals {¢;},
and a collection of polynomials {p;}¥; and we must build a matrix A; ; = ¢;(p;).
Once we have matrix L; ; and the coefficient matrix C; ;, formation of A is straight-
forward, as

Aij = Li1Cj i, (12)

or A = LC*, motivating the description of the operation as an outer product.
We implement functionals on vector-valued spaces with this approach as well.
Just as before, we will consider P a space of polynomials of degree n with basis

{(bl}li‘l and to each v € (P)™ associate the tensor representation v’ = R(v); ;¢;.
For any functional f € ((P)m)l7 we will specify a tensor representation R'(f); ; such

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Optimizing FIAT . 7

that f(v) = R'(f)i;R(v);; is computed by a contraction of two m x |P| tensors.
We let e’ be the canonical basis vector such that (e’); = 0; ;. To determine the
representation R'(f), we write

f)

f(Rijb5)
f(Ri,jdi,kek¢j)
f(Rije'd))
=Ri;f(e'd)),

so that R'(f)i; = f(e'®;).

Now, we take {v; }; be a set of vector-valued polynomials with coefficient tensor
C;jx and let {£;}M be a set of linear functionals. We may store all of the tensor
representations in a rank three tensor L; ;i such that L; ; , = R'(¢;); . Application
of the set of functionals to each polynomial entails a tensor contraction, and we must
compute the matrix

Aij=L;i11C) k- (14)

This inolves contraction over the last two dimensions. However, we may reshape
both tensors by an operator similar to *. We let L, ;s = L; j and C, ; = C; j with

J = j|P| + k. Then, our contraction becomes
Aij = LixCi. (15)

As before, this requires reshaping the tensors by changing the indexing strategy,
but no data rearrangement.

4. TOPOLOGICAL AND GEOMETRIC INFORMATION

Several kinds of topological and geometric information are necessary to specify point
locations for functionals and what degrees of freedom are associate with vertices,
edges, and so on. It is interesting that this can be presented to the programmer in
a dimensionally-independent way with a very small programmer interface.

We make use of a “graded incidence relation” being developed by Knepley and
Karpeev [Knepley and Karpeev | for presenting finite element meshes to the pro-
grammer. In this, we associate to each entity in the reference element a dimension
and a number within that dimension. The vertices have dimension zero, edges have
dimension one, triangles dimension two, and tetrahedra dimension three. For each
reference domain, we have a particular ordering of the entities for each dimension.

This basic topological idea provides us with a formalism for associating particular
finite element nodes with reference element entities. When building the mapping
between local and global degrees of freedom, it is essential to know, for example,
that linear Lagrange elements have nodes associated with vertices, as these must
be shared by all triangles in a patch. In FIAT, we associate with our class for dual
bases a nested associative array entity_ids[d] [e] that maps the entity of number
e of topological dimension d to the list of integers indicating the nodes asssociated
with that entity. For quadratic Lagrange elements over triangles, if d is 2 and e
is 1, we are refering to the edge of the reference domain with number 2. There is
one degree of freedom associated with each edge, and so we will have a list of one

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 : Robert C. Kirby

node. We remark that a similar strategy is employed for automating connectivity
information in Sundance [Long 2003].

Moreover, thinking about the mesh entities for the reference element in this
way allows us a general mechanism for determining locations of sets of points.
For example, the nodes for cubic Lagrange elements on a triangle are defined us-
ing nodal locations on the lattice of degree three (with ten points). In order to
build our connectivity information, it is useful to order the vertex nodes first, fol-
lowed by the edge nodes and then the internal node. Rather than enumerating
the points in a lattice and then taking the lattice apart, we provide a function
make_points(shape,d,e,deg) that returns the list of points on a lattice of degree
deg that are associated with a particular topological entity of a reference element.
As in the entity_ids array, the parameters d and e identify the entity of the ref-
erence element by its topological dimension and number within the set of entities
of that dimension. This is a powerful abstraction for defining dual bases for finite
elements dimensionally independently; we shall return to this point later, using the
Lagrange elements as a simple example, but also discussing the BDM elements as
well.

5. EXAMPLES

Here, we describe what is involved with implementing the Lagrange and BDM ele-
ments of general degree over both triangles and tetrahedra. This makes use of the
points and shapes modules in FTAT, as well as batch evaluation of orthonormal
polynomials. After describing the implementation of both elements, we present
some timing results indicating the vast performance gains the new framework pro-
vides.

5.1 Lagrange Elements

First, we consider the Lagrange elements over the reference simplex in two and
three space dimensions. For degree n, our function space is simply P,, and we
must specify the functionals.

We showed the vector representation of pointwise evaluation in (5); the coeffi-
cients are merely the values of the orthonormal basis functions at the given point.
Since all the nodes in the dual basis are pointwise evaluation, it makes sense to
do all of the evaluation with a single tabulation. We can then read off the rows
of the resulting matrix and construct linear functionals for each one. Since this is
a common operation, we have provided a function make_point_evaluations that
takes a basis and a list of points, and returns the list of functionals corresponding
to evaluating the members of the basis at each of the points.

FIAT includes a short snippet (eight lines) that computes the entity_ids for
any degree on all simplices. Here, we give an example of the entity_ids associa-
tive array for cubic Lagrange on triangles. We used the make_points function to
generate the appropriate points on each entity.

{0: {0: [0]
1: [117,
2: [2113,
1: {0: [3,41,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

B

Optimizing FIAT : 9

5.2 BDM Elements

H (div)-conforming elements are frequently discussed when locally conservative for-
mulations of elliptic problems are desired, such as porous media. Given the difficulty
of constructing bases for H(div) elements, most implementations of mixed methods
for Poisson-type problems use only the lowest order Raviart-Thomas elements.

The BDM elements of order k over the d—dimensional simplex use the func-
tion space (Py)?. The nodes consist of specifying the normal component on the
(d — 1)-dimensional mesh entities (edges on triangles, faces on tetrahedra), integral
moments against gradients of polynomials of degree k — 1, and integral moments
against vector polynomial of degree k that are divergence-free and have vanishing
normal components on the boundary.

The graded incidence relation used by make_points helps us to specify the ap-
propriate sets of points on the boundary abstractly. Consider just the lowest order
case of linear elements. On triangles, we need two points on the interior of each
edge to specify the normal component of linears. Taking two points per edge means
taking the internal edge points of a lattice of degree three. We can compute these
points on edge e by make_points(TRIANGLE, 1,e,3) On tetrahedra, we must spec-
ify three points per face. The three internal nodes lie on a lattice of degree four,
which we may compute for face £ by make_points(TETRAHEDRON,2,f,4) A sim-
ple calculation can show that the single call make_points(shape,d-1,i,d+k) will
generate the appropriate points on boundary entity i, so that we can write one func-
tion (without a branch) to generate the nodes for both triangular and tetrahedral
elements.

As in [Brezzi and Fortin 1991] and denote the space of divergence-free polynomials
of degree k& with vanishing normal component by ®;. In two space dimensions,
the space @ has a closed-form representation as {curl(pb) : p € Px_2}, where b
represents a cubic function that vanishes along the triangle boundary. While no
such formulation exists in three dimensions, we construct a basis for this space
in FIAT by means of constraint functionals, as more carefully described in [Kirby
2004]. In that work, we typically used constraint functionals to build bases for
element spaces, but here we use them to build a function space needed for the dual
space.

To say that a vector-valued polynomial of degree k has zero divergence, we may
say that the integral of its divergence against each member of Py_1 vanishes. Hence,
we construct a set of linear functionals that specify (V - v,p) for p in some basis
for Py_1. Additionally, we construct functionals evaluating the normal component
at appropriate points on each edge/face of the element boundary. The vector rep-
resentations of these functionals on (P;)¢ give a matrix of which we compute the
null space and hence a basis for ®;. Relying on our mechanism for dimensional
abstraction and the modules for constructing constrained spaces and functionals,
specifying @y in FIAT takes about twenty lines of code, which works for any degree
polynomial over triangles and tetrahedra.

Developing the entity_id dictionary for BDM elements is fairly straightforward.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 : Robert C. Kirby

In this case, all degrees of freedom are associated with the boundary or the interior
- entities of dimension d or d — 1, as there are no vertex degrees of freedom for
triangles or tetrahedra or edge degrees of freedom for tetrahedra.

5.3 Timing results

First, we consider the costs of instantiating (calling the class constructor) for the La-
grange and BDM elements in the old implementation provided in [Kirby 2004] and
in our new implementation. We compare triangular Lagrange and BDM elements
in the new and old systems, and also include both element families on tetrahedra
in the new system. All computations were run on a Macintosh G4 Powerbook with
a 1GHz processor and 1.25 GB of memory.

The time in seconds to create the element (including building the dual basis, Van-
dermonde matrix, and inverting it), is plotted in log-scale against the polynomial
degree in Figure 1. Notice that asymptotically, instantiating triangular Lagrange
elements is about ten times faster in the new system than the old. BDM elements
give more striking speedups, with over two orders of magnitude improvement. No-
tice that for higher degree, the new system allows instantiation of tetrahedral BDM
elements in a tenth of the time that the old system took for the triangular case.
These vast speedups reflect not only vastly improved algorithmics but also open
the possibility of using FIAT in an online rather than offline mode.

The performance gains in tabulating the nodal bases for these elements is also
significant. We consider the cost of tabulating the nodal basis functions at a collec-
tion of quadrature points. For degree d, we tabulate all the nodal basis functions
at the rule obtained by mapping Gauss-Jacobi quadrature rules with d points per
direction on the reference square/cube to the reference triangle/tetrahedron. As
before, we consider triangular elements of both families in both systems, and also
include tetrahedral versions in the new family. Note that tetrahedral elements re-
quire tabulation at a much larger number of points than triangular elements. We
plot the time in seconds to perform the tabulation in log-scale against the poly-
nomial degree in Figure 2. We remark that the time differential between BDM
and Lagrange elements for triangles is negligible (perhaps the tabulation of the
orthonormal basis dominates the rather large matrix multiplication). For higher
degree BDM elements, the new system allows tabulation about a thousand times
faster than the old. Even high degree tetrahedral elements take less than a second
to tabulate.

6. CONCLUSIONS AND FUTURE WORK

We have seen that the mathematical structure of finite element spaces lends itself
to an abstract linear algebraic formulation. Moreover, this formulation can be
effectively expressed as matrix multiplication, inversion, and decomposition, leading
to high-performance implementation as evidenced by timing comparisons with the
old version described in [Kirby 2004].

Current work is focused on using FIAT as a back-end for systems which auto-
mate the evaluation of variational forms over finite element spaces. In the case of
FFC [Logg 2005], FIAT is being called at run-time to produce code for evaluating
local stiffness matrices. As FFC is written in Python, this integration is simple.
In the case of Sundance [Long 2003], we are developing C++ bindings to FIAT so

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Optimizing FIAT . 11

Fig. 1. Time to instantiate various elements in old and new versions of FIAT.

Time to Instantiate Elements
1000 1
100
10 . ——Lag Tri Old
" —=Lag Tri New
: 1 Lag Tet New
£ BDM Tri Old
= —— BDM Tri New
0.1 —»— BDM Tet New
0.01
0.001
1 2 3 4 5 6 7 8
Polynomial degree

that it may be called at run-time. Our experimental results in the previous section
indicate that FIAT will not create a new bottleneck in Sundance.

The pressing question that is raised by this integration is how to go from reference
elements to physical elements and hence an assembled global space. For Lagrange
elements, this is not terribly difficult, but more general elements present additional
considerations. For example, the normal component degrees of freedom for H(div)
are always specified as outward on the reference element, but a sign convention
must be adopted in the code so that a unique normal is used for each boundary.
Also, Hermite and Arnold-Winther elements only map to interpolation-equivalent
elements. After mapping, we must apply some transformation to acquire the nodal
basis on each element. In both these situations, we are considering how to use FIAT
to generate the appropriate assembly algorithms or at least specify type information
regarding the nodes and how they couple or require special treatment.

REFERENCES
ARNOLD, D. N. AND WINTHER, R. 2002. Mixed finite elements for elasticity. Numer. Math. 92, 3,
401-419.

BIENTINESI, P., GUNNELS, J. A., MYERS, M. E., QUINTANA-ORTI{, E. S., AND VAN DE GELJN,
R. A. 2005. The science of deriving dense linear algebra algorithms. ACM Transactions on
Mathematical Software 31, 1 (Mar.), 1-26.

BRENNER, S. C. AND ScoTT, L. R. 2002. The Mathematical Theory of Finite Element Methods,
2nd Edition. Springer-Verlag.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 : Robert C. Kirby

Fig. 2. Time to tabulate various elements at quadrature points in old and new versions of FIAT.

Time to Tabulate Elements
100 -
10 <=
1 ——Lag Tri Old

" —=Lag Tri New
Nt
o 0.1 Lag Tet'New
£ BDM Tri Old
= —— BDM Tri New

0.01 —— BDM Tet New

0.001
0.0001 T ‘
1 2 3 4 5 6 7 8
Polynomial Degree

Brezzi, F., DouGLAs, JR., J., AND MARINI, L. D. 1985. Two families of mixed finite elements for
second order elliptic problems. Numer. Math. 47, 2, 217-235.

BrEezz1i, F. AND FORTIN, M. 1991. Mized and hybrid finite element methods. Springer Series in
Computational Mathematics, vol. 15. Springer-Verlag, New York.

CIARLET, P. G. 1978. The finite element method for elliptic problems. North-Holland.

DONGARRA, J. J., CrOZ, J. D., DUFF, 1. S., AND HAMMARLING, S. 1990. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Soft. 16.

DUBINER, M. 1991. Spectral methods on triangles and other domains. J. Sci. Comput. 6, 4,
345-390.

KARNIADAKIS, G. E. AND SHERWIN, S. J. 1999. Spectral/hp element methods for CFD. Numerical
Mathematics and Scientific Computation. Oxford University Press, New York.

KirBY, R. C. 2004. Algorithm 839:FIAT, a new paradigm for computing finite element basis
functions. ACM Trans. Math. Software 30, 502-516.

KNEPLEY, M. AND KARPEEV, D. A flexible representation for computational meshes. in prepara-
tion.

LABORATORY, A. N. Petsc 3 web page. http://www-unix.mcs.anl.gov/petsc/petsc-3/.

LoaGa, A. 2005. FFC: the FEniCS Form Compiler. http://www.fenics.org/ffc.

Long, K. 2003. Sundance, a rapid prototyping tool for parallel PDE-constrained optimization.
In Large-Scale PDE-Constrained Optimization. Lecture notes in computational science and
engineering. Springer-Verlag.

RAVIART, P.-A. AND THOMAS, J. M. 1977. A mixed finite element method for 2nd order elliptic
problems. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle
Ricerche (C.N.R.), Rome, 1975). Springer, Berlin, 292-315. Lecture Notes in Math., Vol. 606.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Optimizing FIAT : 13

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

