
PETSc and Unstructured Finite Elements

Matthew Knepley and Dmitry Karpeev

Mathematics and Computer Science Division

Argonne National Laboratory

What is PETSc?

• A freely available and supported research code

- Download from http://www.mcs.anl.gov/petsc

- Free for everyone, including industrial users

- Hyperlinked manual, examples, and manual pages for all routines

- Hundreds of tutorial-style examples

- Support via email: petsc-maint@mcs.anl.gov

- Usable from C, C++, Fortran 77/90, and soon Python

http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov

What is PETSc?

• Portable to any parallel system supporting MPI, including:

- Tightly coupled systems

Cray T3E, SGI Origin, IBM SP, HP 9000, Sub Enterprise

- Loosely coupled systems, such as networks of workstations

Compaq,HP, IBM, SGI, Sun, PCs running Linux or Windows

• PETSc History

- Begun September 1991

- Over 8,500 downloads since 1995 (version 2), currently 250 per month

• PETSc Funding and Support

- Department of Energy

SciDAC, MICS Program

- National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

Linear Algebra Abstractions

• Allows reuse of iterative solvers (Krylov methods)

• Vec and Mat

• KSP and SNES can be seen as a nonlinear operator

Hierarchy Abstractions

• Allows reuse of multilevel solvers and preconditioners (Multigrid)

• DA is a logically Cartesian grid

- Also contains linear discretization

- User works locally and DA handles parallel communication

• DM represents a hierarchy of meshes and associated approximation spaces

- Abstracts the control flow of a multilevel method

- User can specify local operators, or they are creating using Galerkin

- User can specify restriction and prologation, or use builtin linear space

Getting More Help

• http://www.mcs.anl.gov/petsc

• Hyperlinked documentation

- Manual

- Manual pages for evey method

- HTML of all example code (linked to manual pages)

• FAQ

• Full support at petsc-maint@mcs.anl.gov

• High profile users

- David Keyes

- Rich Martineau

- Richard Katz

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-as/documentation
http://www.mcs.anl.gov/petsc/petsc-as/documentation/faq.html
mailto:petsc-maint@mcs.anl.gov

Needs of FEM Simulation

Why Do We Need Another FEM Framework?

• Reusability

- Rarely goes beyond linear algebra

• Complexity

- Lack of effective mathematical abstractions creates inpenetrable code

• Extensibility

- Lack of effective mathematical abstractions prevents generalization

• Modularity

- Lack of effective mathematical abstractions inhibits component sharing

What Do We Need For FEM Simulation?

• Mesh topology and geometry

- Hand coded =⇒ Sieve and Array

• Discretization

- Hand coded =⇒ FIAT

• Weak form PDE

- Hand coded =⇒ FFC/Expression AST interface

• Integration

- Hand coded quadrature =⇒ FFC/Generated quadrature

• Assembly

- A big mess =⇒ Sieve and Array

• Algebraic solve

- PETSc interfaces

• Preconditioning

- Often involves LinearAlgebra/Discretization/Mesh

Trial Framework

Boundary Conditions

Weak Form

Finite Element

Mesh Generator

FIAT

ASE

PETSc VisualizationSieve

Sieve

FFC

Mesh Data

The Sieve

What is a Sieve?

A Sieve encodes topology

• Category with arrows denoting a covering relation

- We say that cap elements cover base elements

- Any set of elements is called a chain

• Model for set theory

• Hierarchical geometric data

- Finite element meshes

- Multipole octree

• Clean separation between topology and data organized by the topology

- Con-fused in most packages, e.g. PETSc Vec

Simple Sieve

Topological elements are encoded as (process, local id)

(0,1)

(0,4)

(0,0)

(0,5) (0,6)

(0,3) (0,2)

(0,1) (0,3)(0,2)

(0,5)

(0,0)

(0,6) (0,4)

Sieve Primitives

Cone: The set of cap elements covering a base element

cone(0, 0) = {(0, 1), (0, 2), (0, 3)}

Closure: The iterated cone

closure(0, 0) = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)}

Support: The set of base elements covered by a cap element

support(0, 4) = {(0, 2), (0, 3)}

Star: The iterated support

star(0, 4) = {(0, 2), (0, 3), (0, 0)}

Doublet Mesh

We can examine the meet and join using two adjacent elements

(0,2) (0,3) (0,5) (0,6)

(0,7) (0,10)

(0,0) (0,1)

(0,4)

(0,8) (0,9)

(0,1)(0,0)

(0,2)

(0,3)
(0,4) (0,5)

(0,6)

(0,7)

(0,8)

(0,9)

(0,10)

Doublet Mesh II

These elements provide a different lattice

(0,0)

(0,2)

(0,3)
(0,4)

(0,7)

(0,8)

(0,9)

(0,0) (0,1)

(0,1)

(0,6)

(0,10)

(0,11)

(0,12)

(0,7) (0,8) (0,9) (0,10) (0,12)

(0,2) (0,3) (0,5) (0,6)(0,4) (0,11)

(0,5)

Tetrahedron Mesh

(0,5)

(0,6)(0,7)

(0,8)

(0,9)

(0,10)

(0,11)

(0,12) (0,13)

(0,14)

(0,0)

(0,1) (0,2) (0,3) (0,4)

(0,5) (0,6) (0,7) (0,8) (0,9) (0,10)

(0,11) (0,12) (0,13) (0,14)

Lattice Operations

Meet: The smallest set of elements whose star contains the given chain

- Can be seen as the intersection of the closures of the chain elements

- For the doublet mesh, meet((0, 0), (0, 1)) = (0, 4)

- For the split doublet mesh, meet((0, 0), (0, 1)) = (0, 9)

Join: The smallest set of elements whose closure contain the given chain

- Can be seen as the intersection of the supports of the chain elements

- For the doublet mesh, join((0, 0), (0, 1)) = ((0, 0), (0, 1))

- For the tetrahedron, join((0, 5), (0, 7)) = (0, 1)

- However, also for the tetrahedron, join((0, 5), (0, 9)) = (0, 0)

Cone Completion

In a distributed Sieve, parts of an elements’s cone may lie on different processes.
Completion constructs another local Sieve which contains the missing parts of
each local cone.

• Dual operation of support completion

- Uses the same communication routine

• Single parallel operation is sufficient for Sieve

• Enables many other parallel operations

- Dual graph construction

- Graph partitioning

- Parallel and periodic meshing

The Sieved Array

Restriction

Restriction is the dual operation to covering

• Allows global fields to be manipulated locally

- This is the heart of FEM

• Ties value storage to the topology (hierarchy)

• Can apply to any mesh subset (chain)

- Single element

- Mesh boundary

- Local submesh

• Looks like indexing with elements

Sieved Arrays

• Represent values organized by the underlying topology

- Solution fields

- Mesh geometry

- Boundary markers

- Chemical species

• Allows natural operations of restriction and prolongation (assembly)

- Many different storage policies may be used

• Allows user to work completely locally, letting the Array handle assembly

- Very similar to PETSc strategy for parallelism

• Arrays are sections of a fibre bundle over the mesh

- Transition between chains is a (nontrivial) map between vector spaces

Sifting

Sifting is the operation of restricting an Array to a chain

• Nontrivial assembly and restriction policies

- replacement/preservation

- addition

- coordinate transformation

- orientation using the input chain

- Nonconforming overlapping grids

• Decouples storage/restriction policy from continuum mathematics

- Vectors are not Arrays

• Seems to tied to the storage to factor out

Stack

A Stack connects two Sieves with vertical arrows

(0,2) (0,3) (0,5) (0,6)

(0,7) (0,10)

(0,0) (0,1)

(0,4)

(0,8) (0,9)

(−1,0) (−1,1) (−1,3) (−1,4)(−1,2) Top

Bottom

Degrees of Freedom

Stacks organize the degrees of freedom over a mesh

• The top (discrete) sieve contains the degrees of freedom

• The bottom sieve is the mesh topology

• Sieve operations now occur over vertical arrows

• Lattice operations will now have pullback and pushforward versions

Degrees of Freedom for Multiple Fields

Using a DOF and Field Stack with common top Sieve, we can extract the vari-
ables from a given field using the meet operation.

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

Topology

DOFs

Fields

Trial Implementation

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

Topology

Chains

DOFs

Top

Bottom

= inner Stack

Examples

Dual Graph Creation

topology = mesh.getTopology()

Loop over all edges

completion, footprint = topology.supportCompletion(supportFootprint)

for edge in topology.heightStratum(1):

support = topology.support(edge)

if len(support) == 2:

dualTopology.addCone(support, edge)

elif len(support) == 1 and completion.capContains(edge):

cone = (support[0], completion.support(edge)[0])

dualTopology.addCone(cone, edge)

dualMesh.setTopology(dualTopology)

Mesh Partitioning

def partitionDoublet(self, topology):

if rank == 0:

topology.addCone(topology.closure((0, 0)), (-1, 0))

topology.addCone(topology.closure((0, 1)), (-1, 1))

else:

topology.addBasePoint((-1, rank))

Mesh Partitioning

def genericPartition(self, comm, topology):

Cone complete to move the partitions to the other processors

completion, footprint = topology.coneCompletion(footprintTypeCone)

Merge in the completion

topology.add(completion)

Cone complete again to build the local topology

completion, footprint = topology.coneCompletion(footprintTypeCone)

Merge in the completion

topology.add(completion)

Restrict to the local partition

topology.restrictBase(topology.cone((-1, rank)))

Optional: Support complete to get the adjacency information

FEM Numbering

Start by creating the discretizations and a Stack

elements = [FIAT.Lagrange.Lagrange(FIAT.shapes.TRIANGLE, 2),

FIAT.Lagrange.Lagrange(FIAT.shapes.TRIANGLE, 3)]

ranks = [1, 0]

dof = ALE.Sieve.Sieve()

numbering = ALE.Stack.Stack()

numbering.setTop(dof)

numbering.setBottom(topology)

FEM Numbering

def multipleFieldsStack(self, topology):

completion, footprint = topology.supportCompletion(supportType)

for p in topology.space():

if completion.capContains(p):

support = footprint.support([p]+list(completion.support(p)))

if [0 for processTie in support if processTie[1] < rank]:

continue

indices = []

for field in range(len(elements)):

entityDof = len(dualBases[field].getNodeIDs(topology.depth(p))[0])

tensorSize = entityDof*max(1, dim*ranks[field])

var = [(-(rank+1), index+i) for i in range(tensorSize)]

indices.extend(var); index += dof

dof.addCone(var, (-1, field))

numbering.addCone(var, p)

completion, footprint = topology.coneCompletion(coneType)

FEM Assembly

elements = mesh.heightStratum(0)

elemU = u.restrict(elements)

Loop over highest dimensional elements

for element in elements:

We want values over the element and all its coverings

chain = mesh.closure(element)

Retrieve the field coefficients for this element

coeffs = elemU.getValues([element])

Calculate the stiffness matrix and load vector

K, f = self.integrate(coeffs, self.jacobian(element, mesh, space))

Place results in global storage

elemF.setValues([chain], f)

elemA.setValues([[chain], [chain]], K)

F = elemF.prolong([])

A = elemA.prolong([])

FEM Assembly

Notice that the prior code is independent of:

• dimension

• element type

• finite element

• sifting policy

Conclusions

Better mathematical abstractions bring concrete benefits:

• Vast reduction in complexity

- Dimension independent code

- Only a single communication routine to optimize

- One relation handles all hierarchy

• Expansion of capabilities

- Can handle hybrid meshes

- Can hande complicated topologies (magnetization)

- Can hande complicated structures (faults)

