PETSc and Unstructured Finite Elements

Matthew Knepley and Dmitry Karpeev
Mathematics and Computer Science Division

Argonne National Laboratory

WHAT 1s PETSc?

e A freely available and supported research code
- Download from
- Free for everyone, including industrial users
- Hyperlinked manual, examples, and manual pages for all routines
- Hundreds of tutorial-style examples
- Support via email:

- Usable from C, C++, Fortran 77/90, and soon Python

http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov

WHAT 1s PETSc?

e Portable to any parallel system supporting MPI, including:
- Tightly coupled systems
Cray T3E, SGI Origin, IBM SP, HP 9000, Sub Enterprise
- Loosely coupled systems, such as networks of workstations

Compaq,HP, IBM, SGI, Sun, PCs running Linux or Windows

e PETSc History
- Begun September 1991
- Over 8,500 downloads since 1995 (version 2), currently 250 per month

e PETSc Funding and Support
- Department of Energy
SciDAC, MICS Program

- National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

LINEAR ALGEBRA ABSTRACTIONS

e Allows reuse of iterative solvers (Krylov methods)
e Vec and Mat

e KSP and SNES can be seen as a nonlinear operator

HIERARCHY ABSTRACTIONS

e Allows reuse of multilevel solvers and preconditioners (Multigrid)

e DA is a logically Cartesian grid
- Also contains linear discretization

- User works locally and DA handles parallel communication

e DM represents a hierarchy of meshes and associated approximation spaces
- Abstracts the control flow of a multilevel method
- User can specify local operators, or they are creating using Galerkin

- User can specify restriction and prologation, or use builtin linear space

GETTING MORE HELP

e Hyperlinked documentation
- for evey method

- HTML of all example code (linked to manual pages)

e Full support at

e High profile users
- David Keyes
- Rich Martineau
- Richard Katz

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-as/documentation
http://www.mcs.anl.gov/petsc/petsc-as/documentation/faq.html
mailto:petsc-maint@mcs.anl.gov

Needs of FEM Simulation

WHY DO WE NEED ANOTHER FEM FRAMEWORK?

e Reusability

- Rarely goes beyond linear algebra

e Complexity

- Lack of effective mathematical abstractions creates inpenetrable code

e Extensibility

- Lack of effective mathematical abstractions prevents generalization

e Modularity

- Lack of effective mathematical abstractions inhibits component sharing

WHAT DO WE NEED FOR FEM SIMULATION?

Mesh topology and geometry
- Hand coded = Sieve and Array

Discretization
- Hand coded = FIAT

Weak form PDE
- Hand coded = FFC/Expression AST interface

Integration

- Hand coded quadrature = FFC/Generated quadrature

Assembly
- A big mess = Sieve and Array

Algebraic solve

- PETSc interfaces

Preconditioning

- Often involves LinearAlgebra/Discretization/Mesh

TRIAL FRAMEWORK

Mesh Generator

U

Y
)
2
()

Mesh Data

. N PETSc Sieve = \/isualization
[FlnlteEIement j—>FIAT N I Izatl

Y

\/

FFC |— sk |

Weak Form

[Boundary Conditions

The Sieve

WHAT 1S A SIEVE?

A Sieve encodes topology

Category with arrows denoting a covering relation
- We say that cap elements cover base elements

- Any set of elements is called a chain
Model for set theory

Hierarchical geometric data
- Finite element meshes

- Multipole octree

Clean separation between topology and data organized by the topology
- Con-fused in most packages, e.g. PETSc Vec

SIMPLE SIEVE

(0.4)
(03) 02)
(0.0)
(0.5 0,1)
(0,1) 02) (03)

(0,0)

Topological elements are encoded as (process, local id)

(0.6)

Cone:

Closure:

Support:

Star:

SIEVE PRIMITIVES

The set of cap elements covering a base element
cone(0,0) = {(0,1),(0,2),(0,3)}

The iterated cone
closure(0,0) = {(0, 1), (0,2), (0,3),(0,4), (0,5),(0,6)}

The set of base elements covered by a cap element
support(0,4) = {(0,2), (0,3)}

The iterated support
star(0,4) = {(0,2), (0,3),(0,0)}

DoOUBLET MESH

We can examine the meet and join using two adjacent elements

(0,9)
(0,2) (0,6)
(0,7) (0,0) (0,2) (0,10)
03~ ©5)
(0,8)
(0.7) (0,8) (0,9) (0,10)

N SN

(0,2) (0,3) (0,4) (0,5) (0,6)

(0,0) (0,2)

DoUBLET MEsH 11

These elements provide a different lattice

(0,9 06)
(0,2) (0,10)
(0,7) (0,0)
(0.5
(0,3) 04
09 (0,12)

07) (0,8) (0,9) (0,100 (0,12)

(/WW
027 (03 (04 (0’5)y11)

(0,0) (0,2)

TETRAHEDRON MESH

(0,11)
(0,9
0,6)

//’//(6110)

(0,14)
(0.8)

012 (05 (0,13)
011) (012 (0,13) (0,14)

05 (©6) (©O7) (©O8 (09 (0,10

\\\,{/

(0.0)

LATTICE OPERATIONS

Meet: The smallest set of elements whose star contains the given chain
- Can be seen as the intersection of the closures of the chain elements
- For the doublet mesh, meet((0,0), (0,1)) = (0,4)
- For the split doublet mesh, meet((0,0), (0,1)) = (0,9)

Join: The smallest set of elements whose closure contain the given chain
- Can be seen as the intersection of the supports of the chain elements
- For the doublet mesh, join((0,0), (0,1)) = ((0,0), (0,1))
- For the tetrahedron, join((0,5),(0,7)) =
- However, also for the tetrahedron, join((0,5),(0,9)) = (0,0)

CoNE COMPLETION

In a distributed Sieve, parts of an elements’s cone may lie on different processes.
Completion constructs another local Sieve which contains the missing parts of

each local cone.

e Dual operation of support completion

- Uses the same communication routine
e Single parallel operation is sufficient for Sieve

e Enables many other parallel operations
- Dual graph construction
- Graph partitioning

- Parallel and periodic meshing

The Sieved Array

RESTRICTION

Restriction is the dual operation to covering

Allows global fields to be manipulated locally
- This is the heart of FEM

Ties value storage to the topology (hierarchy)

Can apply to any mesh subset (chain)
- Single element
- Mesh boundary

- Local submesh

Looks like indexing with elements

SIEVED ARRAYS

e Represent values organized by the underlying topology
- Solution fields
- Mesh geometry
- Boundary markers

- Chemical species

e Allows natural operations of restriction and prolongation (assembly)

- Many different storage policies may be used

e Allows user to work completely locally, letting the Array handle assembly
- Very similar to PETSc strategy for parallelism

e Arrays are sections of a fibre bundle over the mesh

- Transition between chains is a (nontrivial) map between vector spaces

SIFTING

Sifting is the operation of restricting an Array to a chain

e Nontrivial assembly and restriction policies

replacement / preservation

addition

coordinate transformation

orientation using the input chain

Nonconforming overlapping grids

e Decouples storage/restriction policy from continuum mathematics

- Vectors are not Arrays

e Seems to tied to the storage to factor out

STACK

A Stack connects two Sieves with vertical arrows

[\ \ | / / } I
\ A t # +
\ \ | / 1
\ \ | / /

(o" 7) (0,8) (0,9) (0 "10)

N7 N

0,2) (0,3) (024) (0,5) (0,6) | Bottom

(0,0) (0,1)

DEGREES OF FREEDOM

Stacks organize the degrees of freedom over a mesh
e The top (discrete) sieve contains the degrees of freedom
e The bottom sieve is the mesh topology
e Sieve operations now occur over vertical arrows

e Lattice operations will now have pullback and pushforward versions

DEGREES OF FREEDOM FOR MULTIPLE FIELDS

Using a DOF and Field Stack with common top Sieve, we can extract the vari-

ables from a given field using the meet operation.

TRIAL IMPLEMENTATION

Topology

Top = inner Stack

Bottom

Examples

DuaL GRAPH CREATION

topology = mesh.getTopology()
Loop over all edges
completion, footprint = topology.supportCompletion(supportFootprint)
for edge in topology.heightStratum(1):
support = topology.support(edge)
if len(support) ==
dualTopology.addCone (support, edge)
elif len(support) == 1 and completion.capContains(edge):
cone = (support[0], completion.support(edge) [0])
dualTopology.addCone(cone, edge)
dualMesh.setTopology(dualTopology)

MESH PARTITIONING

def partitionDoublet(self, topology):

if rank ==
topology.addCone (topology.closure((0, 0)), (-1, 0))
topology.addCone(topology.closure((0, 1)), (-1, 1))

else:

topology.addBasePoint ((-1, rank))

MESH PARTITIONING

def genericPartition(self, comm, topology):
Cone complete to move the partitions to the other processors
completion, footprint = topology.coneCompletion(footprintTypeCone)
Merge in the completion
topology.add(completion)
Cone complete again to build the local topology
completion, footprint = topology.coneCompletion(footprintTypeCone)
Merge in the completion
topology.add(completion)
Restrict to the local partition
topology.restrictBase(topology.cone((-1, rank)))
Optional: Support complete to get the adjacency information

FEM NUMBERING

Start by creating the discretizations and a Stack

elements = [FIAT.Lagrange.Lagrange(FIAT.shapes.TRIANGLE, 2),
FIAT.Lagrange.Lagrange (FIAT.shapes.TRIANGLE, 3)]

ranks = [1, 0]

dof = ALE.Sieve.Sieve()

numbering = ALE.Stack.Stack()

numbering.setTop (dof)

numbering.setBottom(topology)

FEM NUMBERING

def multipleFieldsStack(self, topology):
completion, footprint = topology.supportCompletion(supportType)
for p in topology.space():
if completion.capContains(p):
support = footprint.support([p]+list(completion.support(p)))
if [0 for processTie in support if processTie[l] < rank]:
continue
indices = []
for field in range(len(elements)):
entityDof = len(dualBases[field].getNodeIDs(topology.depth(p)) [0])
tensorSize = entityDof*max(1l, dim*ranks[field])
var = [(-(rank+1), index+i) for i in range(tensorSize)]
indices.extend(var); index += dof
dof .addCone(var, (-1, field))
numbering.addCone(var, p)

completion, footprint = topology.coneCompletion(coneType)

FEM ASSEMBLY

mesh.heightStratum(0)

elements

elemU = u.restrict(elements)

Loop over highest dimensional elements

for element in elements:

We want values over the element and all its coverings

mesh.closure(element)

chain

coeffs

Retrieve the field coefficients for this element

elemU.getValues([element])

Calculate the stiffness matrix and load vector

K, f = self.integrate(coeffs, self.jacobian(element, mesh, space))

Place results in global storage
elemF.setValues([chain], f)
elemA.setValues([[chain], [chain]], K)

elemF.prolong([])
elemA.prolong([])

FEM ASSEMBLY

Notice that the prior code is independent of:

e dimension
e clement type
e finite element

e sifting policy

CONCLUSIONS

Better mathematical abstractions bring concrete benefits:

e Vast reduction in complexity
- Dimension independent code
- Only a single communication routine to optimize

- One relation handles all hierarchy

e Expansion of capabilities
- Can handle hybrid meshes
- Can hande complicated topologies (magnetization)

- Can hande complicated structures (faults)

