
27
The Integral

The two questions, the first that of finding the description of the
curve from its elements, the second that of finding the figure from
the given differences, both reduce to the same thing. From this it
can be taken that the whole of the theory of the inverse method of
the tangents is reducible to quadratures. (Leibniz 1673)

Utile erit scribit
∫

pro omnia. (Leibniz, October 29 1675)

27.1 Primitive Functions and Integrals

In this chapter, we begin the study of the subject of differential equations,
which is one of the common ties binding together all areas of science and
engineering, and it would be hard to overstate its importance. We have been
preparing for this chapter for a long time, starting from the beginning with
Chapter A very short course in Calculus, through all of the chapters on
functions, sequences, limits, real numbers, derivatives and basic differential
equation models. So we hope the gentle reader is both excited and ready
to embark on this new exploration.

We begin our study with the simplest kind of differential equation, which
is of fundamental importance:

Given the function f : I → R defined on the interval I = [a, b],
find a function u(x) on I, such that the derivative u′(x) of u(x)
is equal to f(x) for x ∈ I.
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We can formulate this problem more concisely as: given f : I → R find
u : I → R such that

u′(x) = f(x) (27.1)

for all x ∈ I. We call the solution u(x) of the differential equation u′(x) =
f(x) for x ∈ I, a primitive function of f(x), or an integral of f(x). Some-
times the term antiderivative is also used.

To understand what we mean by “solving” (27.1), we consider two simple
examples. If f(x)=1 for x ∈ R, then u(x) = x is a solution of u′(x) = f(x)
for x ∈ R, since Dx = 1 for all x ∈ R. Likewise if f(x) = x, then u(x) =
x2/2 is a solution of u′(x) = f(x) for x ∈ R, since Dx2/2 = x for x ∈ R.
Thus the function x is a primitive function of the constant function 1, and
x2/2 is a primitive function of the function x.
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Fig. 27.1. Dx = 1 and D(x2/2) = x

We emphasize that the solution of (27.1) is a function defined on an
interval. We can interpret the problem in physical terms if we suppose that
u(x) represents some accumulated quantity like a sum of money in a bank,
or an amount of rain, or the height of a tree, while x represents some
changing quantity like time. Then solving (27.1) amounts to computing
the total accumulated quantity u(x) from knowledge of the rate of growth
u′(x) = f(x) at each instant x. This interpretation suggests that finding
the total accumulated quantity u(x) amounts to adding little pieces of
momentary increments or changes of the quantity u(x). Thus we expect
that finding the integral u(x) of a function f(x) satisfying u′(x) = f(x)
will amount to some kind of summation.
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A familiar example of this problem occurs when f(x) is a velocity and
x represents time so that the solution u(x) of u′(x) = f(x), represents the
distance traveled by a body moving with instantaneous velocity u′(x) =
f(x). As the examples above show, we can solve this problem in simple
cases, for example when the velocity f(x) is equal to a constant v for all
x and therefore the distance traveled during a time x is u(x) = vx. If we
travel with constant velocity 4 miles/hour for two hours, then the distance
traveled is 8 miles. We reach these 8 miles by accumulating distance foot-
by-foot, which would be very apparent if we are walking!

An important observation is that the differential equation (27.1) alone
is not sufficient information to determine the solution u(x). Consider the
interpretation when f represents velocity and u distance traveled by a body.
If we want to know the position of the body, we need to know only the
distance traveled but also the starting position. In general, a solution u(x)
to (27.1) is determined only up to a constant, because the derivative of
a constant is zero. If u′(x) = f(x), then also (u(x) + c)′ = f(x) for any
constant c. For example, both u(x) = x2 and u(x) = x2 + 1 satisfy u′(x) =
2x. Graphically, we can see that there are many “parallel” functions that
have the same slope at every point. The constant may be specified by
specifying the value of the function u(x) at some point. For example, the
solution of u′(x) = x is u(x) = x2 + c with c a constant, and specifying
u(0) = 1 gives that c = 1.

x
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c u(x)

u(x) + c

slope f(x)

Fig. 27.2. Two functions that have the same slope at every point

More generally, we now formulate our basic problem as follows: Given
f : [a, b] → R and ua, find u : [a, b] → R such that

{
u′(x) = f(x) for a < x ≤ b,

u(a) = ua,
(27.2)
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where ua is a given initial value. The problem (27.2) is the simplest example
of an initial value problem involving a differential equation and an initial
value. The terminology naturally couples to situations in which x represents
time and u(a) = ua amounts to specifying u(x) at the initial time x = a.
Note that we often keep the initial value terminology even if x represents
a quantity different from time, and in case x represents a space coordinate
we may alternatively refer to (27.2) as a boundary value problem with now
u(a) = ua representing a given boundary value.

We shall now prove that the initial value problem (27.2) has a unique
solution u(x) if the given function f(x) is Lipschitz continuous on [a, b]. This
is the Fundamental Theorem of Calculus, which stated in words says that
a Lipschitz continuous function has a (unique) primitive function. Leibniz
referred to the Fundamental Theorem as the “inverse method of tangents”
because he thought of the problem as trying to find a curve y = u(x) given
the slope u′(x) of its tangent at every point x.

We shall give a constructive proof of the Fundamental Theorem, which
not only proves that u : I → R exists, but also gives a way to compute
u(x) for any given x ∈ [a, b] to any desired accuracy by computing a sum
involving values of f(x). Thus the version of the Fundamental Theorem we
prove contains two results: (i) the existence of a primitive function and (ii)
a way to compute a primitive function. Of course, (i) is really a consequence
of (ii) since if we know how to compute a primitive function, we also know
that it exists. These results are analogous to defining

√
2 by constructing

a Cauchy sequence of approximate solutions of the equation x2 = 2 by
the Bisection algorithm. In the proof of the Fundamental Theorem we
shall also construct a Cauchy sequence of approximate solutions of the
differential equation (27.2) and show that the limit of the sequence is an
exact solution of (27.2).

We shall express the solution u(x) of (27.2) given by the Fundamental
Theorem in terms of the data f(x) and ua as follows:

u(x) =

∫ x

a

f(y) dy + ua for a ≤ x ≤ b, (27.3)

where we refer to ∫ x

a

f(y) dy

as the integral of f over the interval [a, x], a and x as the lower and upper
limits of integration respectively, f(y) as the integrand and y the integration
variable. This notation was introduced on October 29 1675 by Leibniz, who
thought of the integral sign

∫
as representing “summation” and dy as the

“increment” in the variable y. The notation of Leibniz is part of the big
success of Calculus in science and education, and (like a good cover of
a record) it gives a direct visual expression of the mathematical content of
the integral in very suggestive form that indicates both the construction of
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the integral and how to operate with integrals. Leibniz choice of notation
plays an important role in making Calculus into a “machine” which “works
by itself”.

We recapitulate: There are two basic problems in Calculus. The first
problem is to determine the derivative u′(x) of a given function u(x). We
have met this problem above and we know a set of rules that we can use to
attack this problem. The other problem is to find a function u(x) given its
derivative u′(x). In the first problem we assume knowledge of u(x) and we
want to find u′(x). In the second problem we assume knowledge of u′(x)
and we want to find u(x).

As an interesting aside, the proof of the Fundamental Theorem also shows
that the integral of a function over an interval may be interpreted as the
area underneath the graph of the function over the interval. This couples the
problem of finding a primitive function, or computing an integral, to that
of computing an area, that is to quadrature. We expand on this geometric
interpretation below.

Note that in (27.2), we require the differential equation u′(x) = f(x)
to be satisfied for x in the half-open interval (a, b] excluding the left end-
point x = a, where the differential equation is replaced by the specification
u(a) = ua. The proper motivation for this will become clear as we develop
the proof of the Fundamental Theorem. Of course, the derivative u′(b) at
the right end-point x = b, is taken to be the left-hand derivative of u. By
continuity, we will in fact have also u′(a) = f(a), with u′(a) the right-hand
derivative.

27.2 Primitive Function of f(x) = xm

for m = 0, 1, 2, . . .

For some special functions f(x), we can immediately find primitive func-
tions u(x) satisfying u′(x) = f(x) for x in some interval. For example, if
f(x) = 1, then u(x) = x + c, with c a constant, for x ∈ R. Further, if
f(x) = x, then u(x) = x2/2 + c for x ∈ R. More generally, if f(x) = xm,
where m = 0, 1, 2, 3, . . .TS

h , then u(x) = xm+1/(m + 1) + c. Using the
notation (27.3) for x ∈ R we write

∫ x

0

1 dy = x,

∫ x

0

y dy =
x2

2
, (27.4)

and more generally for m = 0, 1, 2, . . . ,

∫ x

0

ym dy =
xm+1

m+ 1
, (27.5)

because both right and left hand sides vanish for x = 0.

TS
h I have changed 2 dots to 3 dots.
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27.3 Primitive Function of f(x) = xm

for m = −2,−3, . . .

We recall that if v(x) = x−n, where n = 1, 2, 3, . . . ,TS
h then v′(x) =

−nx−(n+1), where now x �= 0. Thus a primitive function of f(x) = xm

for m = −2,−3, . . .TS
h is given by u(x) = xm+1/(m+1) for x > 0. We can

state this fact as follows: For m = −2,−3, . . . ,

∫ x

1

ym dy =
xm+1

m+ 1
− 1

m+ 1
for x > 1, (27.6)

where we start the integration arbitrarily at x = 1. The starting point
really does not matter as long as we avoid 0. We have to avoid 0 because
the function xm with m = −2,−3, . . . , tends to infinity as x tends to zero.
To compensate for starting at x = 1, we subtract the corresponding value
of xm+1/(m+1) at x = 1 from the right hand side. We can write analogous
formulas for 0 < x < 1 and x < 0.

Summing up, we see that the polynomials xm with m = 0, 1, 2, . . . , have
the primitive functions xm+1/(m + 1), which again are polynomials. Fur-
ther, the rational functions xm for m = −2,−3, . . . , have the primitive
functions xm+1/(m+ 1), which again are rational functions.

27.4 Primitive Function of f(x) = xr for r �= −1

Given our success so far, it would be easy to get overconfident. But we
encounter a serious difficulty even with these early examples. Extending
the previous arguments to rational powers of x, since Dxs = sxs−1 for
s �= 0 and x > 0, we have for r = s− 1 �= −1,

∫ x

1

yr dy =
xr+1

r + 1
− 1

r + 1
for x > 1. (27.7)

This formula breaks down for r = −1 and therefore we do not know a prim-
itive function of f(x) = xr with r = −1 and moreover we don’t even know
that one exists. In fact, it turns out that most of the time we cannot solve
the differential equation (27.2) in the sense of writing out u(x) in terms of
known functions. Being able to integrate simple rational functions is spe-
cial. The Fundamental Theorem of Calculus will give us a way past this
difficulty by providing the means to approximate the unknown solution to
any desired accuracy.
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27.5 A Quick Overview of the Progress So Far

Any function obtained by linear combinations, products, quotients and
compositions of functions of the form xr with rational power r �= 0 and
x > 0, can be differentiated analytically. If u(x) is such a function, we thus
obtain an analytical formula for u′(x). If we now choose f(x) = u′(x), then
of course u(x) satisfies the differential equation u′(x) = f(x), so that we
can write recalling Leibniz notation:

u(x) =

∫ x

0

f(y) dy + u(0) for x ≥ 0,

which apparently states that the function u(x) is a primitive function of
its derivative f(x) = u′(x) (assuming that u(x) is defined for all x ≥ 0 so
that no denominator vanishes for x ≥ 0).

We give an example: Since D(1+x3)
1
3 = (1+x3)−

2
3x2 for x ∈ R, we can

write

(1 + x3)
1
3 =

∫ x

0

y2

(1 + y3)
2
3

dy + 1 for x ∈ R.

In other words, we know primitive functions u(x) satisfying the differ-
ential equation u′(x) = f(x) for x ∈ I, for any function f(x), which itself
is a derivative of some function v(x) so that f(x) = v′(x) for x ∈ I. The
relation between u(x) and v(x) is then

u(x) = v(x) + c for x ∈ I,

for some constant c.
On the other hand, if f(x) is an arbitrary function of another from, then

we may not be able to produce an analytical formula for the corresponding
primitive function u(x) very easily or not at all. The Fundamental The-
orem now tells us how to compute a primitive function of an arbitrary
Lipschitz continuous function f(x). We shall see that in particular, the
function f(x) = x−1 has a primitive function for x > 0 which is the famous
logarithm function log(x). The Fundamental Theorem therefore gives in
particular a constructive procedure for computing log(x) for x > 0.

27.6 A “Very Quick Proof”
of the Fundamental Theorem

We shall now enter into the proof of the Fundamental Theorem. It is a good
idea at this point to review the Chapter A very short course in Calculus. We
shall give a sequence of successively more complete versions of the proof of
the Fundamental Theorem with increasing precision and generality in each
step.
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The problem we are setting out to solve has the following form: given
a function f(x), find a function u(x) such that u′(x) = f(x) for all x
in an interval. In this problem, we start with f(x) and seek a function
u(x) such that u′(x) = f(x). However in the early “quick” versions of
the proofs, it will appear that we have turned the problem around by
starting with a given function u(x), differentiating u to get f(x) = u′(x),
and then recovering u(x) as a primitive function of f(x) = u′(x). This
naturally appears to be quite meaningless circular reasoning, and some
Calculus books completely fall into this trap. But we are doing this to
make some points clear. In the final proof, we will in fact start with f(x)
and construct a function u(x) that satisfies u′(x) = f(x) as desired!

Let now u(x) be differentiable on [a, b], let x ∈ [a, b], and let a = y0 <
y1 < . . . < ym = x be a subdivision of [a, x] into subintervals [a, y1),
[y1, y2), . . . , [ym−1, x). By repeatedly subtracting and adding u(yj), we ob-
tain the following identity which we refer to as a telescoping sum with the
terms cancelling two by two:

u(x) − u(a) = u(ym) − u(y0)

= u(ym) − u(ym−1) + u(ym−1) − u(ym−2) + u(ym−2)

− · · · + u(y2) − u(y1) + u(y1) − u(y0). (27.8)

We can write this identity in the form

u(x) − u(a) =

m∑

i=1

u(yi) − u(yi−1)

yi − yi−1
(yi − yi−1), (27.9)

or as

u(x) − u(a) =
m∑

i=1

f(yi−1)(yi − yi−1), (27.10)

if we set

f(yi−1) =
u(yi) − u(yi−1)

yi − yi−1
for i = 1, . . . ,m. (27.11)

Recalling the interpretation of the derivative as the ratio of the change
in a function to a change in its input, we obtain our first version of the
Fundamental Theorem as the following analog of (27.10) and (27.11):

u(x) − u(a) =

∫ x

a

f(y) dy where f(y) = u′(y) for a < y < x.

In the integral notation, the sum
∑

corresponds to the integral sign
∫

,
the increments yi − yi−1 correspond to dy, the yi−1 to the integration vari-

able y, and the difference quotient u(yi)−u(yi−1)
yi−yi−1

corresponds to the deriva-

tive u′(yi−1).
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This is the way that Leibniz was first led to the Fundamental Theorem
at the age of 20 (without having studied any Calculus at all) as presented
in his Art of Combinations from 1666.

Note that (27.8) expresses the idea that “the whole is equal to the sum of
the parts” with “the whole” being equal to u(x)−u(a) and the “parts” being
the differences (u(ym)−u(ym−1)), (u(ym−1)−u(ym−2)),. . . ,(u(y2)−u(y1))
and (u(y1) − u(y0)). Compare to the discussion in Chapter A very short
Calculus course including Leibniz’ teen-age dream.

27.7 A “Quick Proof”
of the Fundamental Theorem

We now present a more precise version of the above “proof”. To exercise
flexibility in the notation, which is a useful ability, we change notation
slightly. Let u(x) be uniformly differentiable on [a, b], let x̄ ∈ [a, b], and let
a = x0 < x1 < . . . < xm = x̄ be a partition of [a, x̄]. We thus change from
y to x and from x to x̄. With this notation x serves the role of a variable
and x̄ is a particular value of x. We recall the identity (27.9) in its new
dress:

u(x̄) − u(a) =

m∑

i=1

u(xi) − u(xi−1)

xi − xi−1
(xi − xi−1). (27.12)

By the uniform differentiability of u:

u(xi) − u(xi−1) = u′(xi−1)(xi − xi−1) + Eu(xi, xi−1),

where
|Eu(xi, xi−1)| ≤ Ku(xi − xi−1)

2, (27.13)

with Ku a constant, we can write the identity as follows:

u(x̄) − u(a) =
m∑

i=1

u′(xi−1)(xi − xi−1) +
m∑

i=1

Eu(xi, xi−1). (27.14)

Setting h equal to the largest increment xi − xi−1, so that xi − xi−1 ≤ h
for all i, we find

m∑

i=1

|Eu(xi, xi−1)| ≤
m∑

i=1

Ku(xi − xi−1)h = Ku(x̄− a)h.

The formula (27.14) can thus be written

u(x̄) − u(a) =

m∑

i=1

u′(xi−1)(xi − xi−1) + Eh, (27.15)
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where
|Eh| ≤ Ku(x̄− a)h. (27.16)

The Fundamental Theorem is the following analog of this formula:

u(x̄) − u(a) =

∫ x̄

a

u′(x) dx, (27.17)

with the sum
∑

corresponding to the integral sign
∫

, the increments
xi − xi−1 corresponding to dx, and xi corresponding to the integration
variable x. We see by (27.16) that the additional term Eh in (27.15) tends
to zero as the maximal increment h tends to zero. We thus expect (27.17)
to be a limit form of (27.15) as h tends to zero.

27.8 A Proof of the Fundamental Theorem
of Calculus

We now give a full proof of the Fundamental theorem. We assume for
simplicity that [a, b] = [0, 1] and the initial value u(0) = 0. We comment on
the general problem at the end of the proof. So the problem we consider is:
Given a Lipschitz continuous function f : [0, 1] → R, find a solution u(x)
of the initial value problem,

{
u′(x) = f(x) for 0 < x ≤ 1,

u(0) = 0.
(27.18)

We shall now construct an approximation to the solution u(x) and give
a meaning to the solution formula

u(x̄) =

∫ x̄

0

f(x) dx for 0 ≤ x̄ ≤ 1.

To this end, let n be a natural number and let 0 = x0 < x1 < . . . < xN = 1
be the subdivision of the interval [0, 1] with nodes xn

i = ihn, i = 0, . . . , N ,
where hn = 2−n and N = 2n. We thus divide the given interval [0, 1] into
subintervals In

i = (xn
i−1, x

n
i ] of equal lengths hn = 2−n, see Fig. 27.3.

0 1Ini
x

xn0 xn1 xn2 xni−1 xni xnN

Fig. 27.3. Subintervals Ini of lengths hn = 2−n

The approximation to u(x) is a continuous piecewise linear function
Un(x) defined by the formula

Un(xn
j ) =

j∑

i=1

f(xn
i−1)hn for j = 1, . . . , N, (27.19)
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where Un(0) = 0. This formula gives the values of Un(x) at the nodes
x = xn

j and we extend Un(x) linearly between the nodes to get the rest of
the values, see Fig. 27.4.

0 1Ini
x

xn0 xn1 xn2 xni−1 xni xnN

Un(x)

Fig. 27.4. Piecewise linear function Un(x)

We see that Un(xn
j ) is a sum of contributions f(xn

i−1)hn for all inter-
vals In

i with i ≤ j. By construction,

Un(xn
i ) = Un(xn

i−1) + f(xn
i−1)hn for i = 1, . . . , N, (27.20)

so given the function f(x), we can compute the function Un(x) by using the
formula (27.20) successively with i = 1, 2, . . . , N , where we first compute
Un(xn

1 ) using the value Un(xn
0 ) = Un(0) = 0, then Un(xn

2 ) using the value
Un(xn

1 ) and so on. We may alternatively use the resulting formula (27.19)
involving summation, which of course just amounts to computing the sum
by successively adding the terms of the sum.

The function Un(x) defined by (27.19) is thus a continuous piecewise
linear function, which is computable from the nodal values f(xn

i ), and we
shall now motivate why Un(x) should have a good chance of being an
approximation of a function u(x) satisfying (27.18). If u(x) is uniformly
differentiable on [0, 1], then

u(xn
i ) = u(xn

i−1) + u′(xn
i−1)hn + Eu(xn

i , x
n
i−1) for i = 1, . . . , N, (27.21)

where |Eu(xn
i , x

n
i−1)| ≤ Ku(xn

i − xn
i−1)

2 = Kuh
2
n, and consequently

u(xn
j ) =

j∑

i=1

u′(xn
i−1)hn + Eh for j = 1, . . . , N, (27.22)

where |Eh| ≤ Kuhn, since
∑j

i=1 hn = jhn ≤ 1. Assuming that u′(x) = f(x)
for 0 < x ≤ 1, the connection between (27.20) and (27.21) and (27.19) and
(27.22) becomes clear considering that the terms Eu(xn

i , x
n
i−1) and Eh are

small. We thus expect Un(xn
j ) to be an approximation of u(xn

j ) at the nodes
xn

j , and therefore Un(x) should be an increasingly accurate approximation
of u(x) as n increases and hn = 2−n decreases.

To make this approximation idea precise, we first study the convergence
of the functions Un(x) as n tends to infinity. To do this, we fix x̄ ∈ [0, 1]
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x

x2i−2n+1

y = f(x)

xni−1 xni

xn+1
2i−1 xn+1

2i

area |f(xni−1) − f(xn+1
2i−1|hn+1

Fig. 27.5. The difference between Un+1(x) and Un(x)

TS
i

and consider the sequence of numbers {Un(x̄)}∞n=1. We want to prove that
this is a Cauchy sequence and thus we want to estimate |Un(x̄) − Um(x̄)|
for m > n.

We begin by estimating the difference |Un(x̄)−Un+1(x̄)| for two consec-
utive indices n and m = n + 1. Recall that we used this approach in the
proof of the Contraction Mapping theorem. We have

Un(xn
i ) = Un(xn

i−1) + f(xn
i−1)hn,

and since xn+1
2i = xn

i and xn+1
2i−2 = xn

i−1,

Un+1(xn
i ) = Un+1(xn+1

2i ) = Un+1(xn+1
2i−1) + f(xn+1

2i−1)hn+1

= Un+1(xn
i−1) + f(xn+1

2i−2)hn+1 + f(xn+1
2i−1)hn+1.

Subtracting and setting en
i = Un(xn

i ) − Un+1(xn
i ), we have

en
i = en

i−1 + (f(xn
i−1)hn − f(xn+1

2i−2)hn+1 − f(xn+1
2i−1)hn+1),

that is, since hn+1 = 1
2hn,

en
i − en

i−1 = (f(xn
i−1) − f(xn+1

2i−1))hn+1. (27.23)

Assuming that x̄ = xn
j and using (27.23) and the facts that en

0 = 0 and

|f(xn
i−1) − f(xn+1

2i−1)| ≤ Lfhn+1, we get

|Un(x̄) − Un+1(x̄)| = |en
j | = |

j∑

i=1

(en
i − en

i−1)|

≤
j∑

i=1

|en
i − en

i−1| =

j∑

i=1

|f(xn
i−1) − f(xn+1

2i−1)|hn+1

≤
j∑

i=1

Lfh
2
n+1 =

1

4
Lfhn

j∑

i=1

hn =
1

4
Lf x̄hn,

(27.24)

TS
i

Please check the x in Fig. 27.5 on the right side.
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where we also used the fact that
∑j

i=1 hn = x̄. Iterating this estimate and
using the formula for a geometric sum, we get

|Un(x̄) − Um(x̄)| ≤ 1

4
Lf x̄

m−1∑

k=n

hk =
1

4
Lf x̄(2

−n + . . .+ 2−m+1)

=
1

4
Lf x̄2

−n 1 − 2−m+n

1 − 2−1
≤ 1

4
Lf x̄2

−n2 =
1

2
Lf x̄hn,

that is

|Un(x̄) − Um(x̄)| ≤ 1

2
Lf x̄hn. (27.25)

This estimate shows that {Un(x̄)}∞n=1 is a Cauchy sequence and thus
converges to a real number. We decide, following Leibniz, to denote this
real number by ∫ x̄

0

f(x) dx,

which thus is the limit of

Un(x̄) =

j∑

i=1

f(xn
i−1)hn

as n tends to infinity, where x̄ = xn
j . In other words,

∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xn
i−1)hn.

Letting m tend to infinity in (27.25), we can express this relation in quan-
titative form as follows:

∣∣∣∣∣

∫ x̄

0

f(x) dx −
j∑

i=1

f(xn
i−1)hn

∣∣∣∣∣ ≤
1

2
Lf x̄hn.

At this point, we have defined the integral
∫ x̄

0
f(x) dx for a given Lipschitz

continuous function f(x) on [0, 1] and a given x̄ ∈ [0, 1], as the limit of the
sequence {Un(x̄)}∞n=1 as n tends to infinity. We can thus define a function
u : [0, 1] → R by the formula

u(x̄) =

∫ x̄

0

f(x) dx for x̄ ∈ [0, 1]. (27.26)

We now proceed to check that the function u(x) defined in this way
indeed satisfies the differential equation u′(x) = f(x). We proceed in two
steps. First we show that the function u(x) is Lipschitz continuous on [0, 1]
and then we show that u′(x) = f(x).
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Before plunging into these proofs, we need to address a subtle point.
Looking back at the construction of u(x), we see that we have defined u(x̄)
for x̄ of the form x̄ = xn

j , where j = 0, 1, . . . , 2n, n = 1, 2, . . . , . These are
the rational numbers with finite decimal expansion in the base of 2, and
they are dense in the sense that for any real number x ∈ [0, 1] and any
ε > 0, there is a point of the form xn

j so that |x − xn
j | ≤ ε. Recalling the

Chapter Real numbers, we understand that if we can show that u(x) is
Lipschitz continuous on the dense set of numbers of the form xn

j , then we
can extend u(x) as a Lipschitz function to the set of real numbers [0, 1].

We thus assume that x̄ = xn
j and ȳ = xn

k with j > k, and we note that

Un(x̄) − Un(ȳ) =

j∑

i=1

f(xn
i−1)hn −

k∑

i=1

f(xn
i−1)hn =

j∑

i=k+1

f(xn
i−1)hn

and using the triangle inequality

|Un(x̄) − Un(ȳ)| ≤
j∑

i=k+1

|f(xn
i−1)|hn ≤Mf

j∑

i=k+1

hn = Mf |x̄− ȳ|,

where Mf is a positive constant such that |f(x)| ≤ Mf for all x ∈ [0, 1].
Letting n tend to infinity, we see that

u(x̄) − u(ȳ) =

∫ x̄

0

f(x) dx −
∫ ȳ

0

f(x) dx =

∫ x̄

ȳ

f(x) dx, (27.27)

where of course,

∫ x̄

ȳ

f(x) dx = lim
n→∞

j∑

i=k+1

f(xn
i−1)hn,

and also

|u(x̄) − u(ȳ)| ≤
∣∣∣∣
∫ x̄

ȳ

f(x) dx

∣∣∣∣ ≤
∫ x̄

ȳ

|f(x)| dx ≤Mf |x̄− ȳ|, (27.28)

where the second inequality is the so-called triangle inequality for integrals
to be proved in the next section. We thus have

|u(x̄) − u(ȳ)| ≤Mf |x̄− ȳ|, (27.29)

which proves the Lipschitz continuity of u(x).
We now prove that the function u(x) defined for x ∈ [0, 1] by the formula

u(x) =

∫ x

a

f(y) dy,
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where f : [0, 1] → R is Lipschitz continuous, satisfies the differential equa-
tion

u′(x) = f(x) for x ∈ [0, 1],

that is
d

dx

∫ x

0

f(y) dy = f(x). (27.30)

To this end, we choose x, x̄ ∈ [0, 1] with x ≥ x̄ and use (27.27) and (27.28)
to see that

u(x) − u(x̄) =

∫ x

0

f(z)dz −
∫ x̄

0

f(y)dy =

∫ x

x̄

f(y)dy,

and

|u(x) − u(x̄) − f(x̄)(x − x̄)| =
∣∣∣
∫ x

x̄

f(y) dy − f(x̄)(x− x̄)
∣∣∣

=
∣∣∣
∫ x

x̄

(f(y) − f(x̄)) dy
∣∣∣ ≤

∫ x

x̄

|f(y) − f(x̄)| dy

≤
∫ x

x̄

Lf |y − x̄| dy =
1

2
Lf (x− x̄)2,

where we again used the triangle inequality for integrals. This proves that
u is uniformly differentiable on [0, 1], and that Ku ≤ 1

2Lf .
Finally to prove uniqueness, we recall from (27.15) and (27.16) that

a function u : [0, 1] → R with Lipschitz continuous derivative u′(x) and
u(0) = 0, can be represented as

u(x̄) =

m∑

i=1

u′(xi−1)(xi − xi−1) + Eh,

where
|Eh| ≤ Ku(x̄− a)h.

Letting n tend to infinity, we find that

u(x̄) =

∫ x̄

0

u′(x) dx for x̄ ∈ [0, 1], (27.31)

which expresses the fact that a uniformly differentiable function with Lip-
schitz continuous derivative is the integral of its derivative. Suppose now
that u(x) and v(x) are two uniformly differentiable functions on [0, 1] sat-
isfying u′(x) = f(x), and v′(x) = f(x) for 0 < x ≤ 1, and u(0) = u0,
v(0) = u0, where f : [0, 1] → R is Lipschitz continuous. Then the difference
w(x) = u(x)−v(x) is a uniformly differentiable function on [0, 1] satisfying
w′(x) = 0 for a < x ≤ b and w(0) = 0. But we just showed that

w(x) =

∫ x

a

w′(y) dy,
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and thus w(x) = 0 for x ∈ [0, 1]. This proves that u(x) = v(x) for x ∈ [0, 1]
and the uniqueness follows.

Recall that we proved the Fundamental Theorem for special circum-
stances, namely on the interval [0, 1] with initial value 0. We can directly
generalize the construction above by replacing [0, 1] by an arbitrary bound-
ed interval [a, b], replacing hn by hn = 2−n(b − a), and assuming instead
of u(0) = 0 that u(a) = ua, where ua is a given real number. We have now
proved the formidable Fundamental Theorem of Calculus.

Theorem 27.1 (Fundamental Theorem of Calculus) If f : [a, b] → R
is Lipschitz continuous, then there is a unique uniformly differentiable func-
tion u : [a, b] → R, which solves the initial value problem

{
u′(x) = f(x) for x ∈ (a, b],

u(a) = ua,
(27.32)

where ua ∈ R is given. The function u : [a, b] → R can be expressed as

u(x̄) = ua +

∫ x̄

a

f(x) dx for x̄ ∈ [a, b],

where ∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xn
i−1)hn,

with x̄ = xn
j , xn

i = a+ihn, hn = 2−n(b−a). More precisely, if the Lipschitz
constant of f : [a, b] → R is Lf , then for n = 1, 2, . . . ,

∣∣∣
∫ x̄

a

f(x) dx −
j∑

i=1

f(xn
i−1)hn

∣∣∣ ≤ 1

2
(x̄− a)Lfhn. (27.33)

Furthermore if |f(x)| ≤Mf for x ∈ [a, b], then u(x) is Lipschitz continuous
with Lipschitz constant Mf and Ku ≤ 1

2Lf , where Ku is the constant of
uniform differentiability of u : [a, b] → R.

27.9 Comments on the Notation

We can change the names of the variables and rewrite (27.26) as

u(x) =

∫ x

0

f(y) dy. (27.34)

We will often use the Fundamental Theorem in the form
∫ b

a

u′(x) dx = u(b) − u(a), (27.35)
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which states that the integral
∫ b

a f(x) dx is equal to the difference u(b) −
u(a), where u(x) is a primitive function of f(x). We will sometimes use the
notation [u(x)]x=b

x=a = u(b)−u(a) or shorter [u(x)]ba = u(b)−u(a), and write

∫ b

a

u′(x) dx =
[
u(x)

]x=b

x=a
=

[
u(x)

]b
a
.

Sometimes the notation ∫
f(x) dx,

without limits of integration, is used to denote a primitive function of f(x).
With this notation we would have for example

∫
dx = x+ C,

∫
xdx =

x2

2
+ C,

∫
x2 dx =

x3

3
+ C,

where C is a constant. We will not use this notation in this book. Note that
the formula x =

∫
dx may be viewed to express that “the whole is equal to

the sum of the parts”.

27.10 Alternative Computational Methods

Note that we might as well compute Un(xn
i ) from knowledge of Un(xn

i−1),
using the formula

Un(xn
i ) = Un(xn

i−1) + f(xn
i )hn, (27.36)

obtained by replacing f(xn
i−1) by f(xn

i ), or

Un(xn
i ) = Un(xn

i−1) +
1

2
(f(xn

i−1) + f(xn
i ))hn (27.37)

using the mean value 1
2 (f(xn

i−1)+f(xn
i )). These alternatives may bring cer-

tain advantages, and we will return to them in Chapter Numerical quadra-
ture. The proof of the Fundamental Theorem is basically the same with
these variants and by uniqueness all the alternative constructions give the
same result.

27.11 The Cyclist’s Speedometer

An example of a physical situation modeled by the initial value problem
(27.2) is a cyclist biking along a straight line with u(x) representing the po-
sition at time x, u′(x) being the speed at time x and specifying the position
u(a) = ua at the initial time x = a. Solving the differential equation (27.2)
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amounts to determining the position u(x) of the cyclist at time a < x ≤ b,
after specifying the position at the initial time x = a and knowing the
speed f(x) at each time x. A standard bicycle speedometer may be viewed
to solve this problem, viewing the speedometer as a device which measures
the instantaneous speed f(x), and then outputs the total traveled distance
u(x). Or is this a good example? Isn’t it rather so that the speedometer
measures the traveled distance and then reports the momentary (average)
speed? To answer this question would seem to require a more precise study
of how a speedometer actually works, and we urge the reader to investigate
this problem.

27.12 Geometrical Interpretation of the Integral

In this section, we interpret the proof of the Fundamental Theorem as
saying that the integral of a function is the area underneath the graph of
the function. More precisely, the solution u(x̄) given by (27.3) is equal to
the area under the graph of the function f(x) on the interval [a, x̄], see
Fig. 27.6. For the purpose of this discussion, it is natural to assume that
f(x) ≥ 0.

u(x)−
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x

y

x̄

y = f(x)

Fig. 27.6. Area under y = f(x)

Of course, we also have to explain what we mean by the area under
the graph of the function f(x) on the interval [a, x̄]. To do this, we first
interpret the approximation Un(x̄) of u(x̄) as an area. We recall from the
previous section that

Un(xn
j ) =

j∑

i=1

f(xn
i−1)hn,
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where xn
j = x̄. Now, we can view f(xn

i−1)hn as the area of a rectangle with
base hn and height f(xn

i−1), see Fig. 27.7.

x

xn0 xn1 xn2 xni−1 xni xnj

y = f(x)

area f(xni−1)hn

Fig. 27.7. Area f(xni−1)hn of rectangle

We can thus interpret the sum

j∑

i=1

f(xn
i−1)hn

as the area of a collection of rectangles which form a staircase approxi-
mation of f(x), as displayed in Fig. 27.8. The sum is also referred to as
a Riemann sum.

x

xn0 xn1 xn2 xni−1 xni xnj

y = f(x)

area
∑j
i=1 f(xni−1)hn

Fig. 27.8. Area
∑j
i=1 f(xni−1)hn under a staircase approximation of f(x)

Intuitively, the area under the staircase approximation of f(x) on [a, x̄],
which is Un(x̄), will approach the area under the graph of f(x) on [a, x̄] as n
tends to infinity and hn = 2−n(b−a) tends to zero. Since limn→∞ Un(x̄) =
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u(x̄), this leads us to define the area under f(x) on the interval [0, x̄] as
the limit u(x̄).

Note the logic used here: The value Un(x̄) represents the area under
a staircase approximation of f(x) on [a, x̄]. We know that Un(x̄) tends
to u(x̄) as n tends to infinity, and on intuitive grounds we feel that the
limit of the area under the staircase should be equal to the area under the
graph of f(x) on [a, x̄]. We then simply define the area under f(x) on [a, x̄]
to be u(x̄). By definition we thus interpret the integral of f(x) on [0, x̄]
as the area under the graph of the function f(x) on [a, x̄]. Note that this
is an interpretation. It is not a good idea to say the integral is an area.
This is because the integral can represent many things, such as a distance,
a quantity of money, a weight, or some thing else. If we interpret the integral
as an area, then we also interpret a distance, a quantity of money, a weight,
or some thing else, as an area. We understand that we cannot take this
interpretation to be literally true, because a distance cannot be equal to
an area, but it can be interpreted as an area. We hope the reader gets the
(subtle) difference.

As an example, we compute the area A under the graph of the function
f(x) = x2 between x = 0 and x = 1 as follows

A =

∫ 1

0

x2 dx =

[
x3

3

]x=1

x=0

=
1

3
.

This is an example of the magic of Calculus, behind its enormous success.
We were able to compute an area, which in principle is the sum of very
many very small pieces, without actually having to do the tedious and
laborious computation of the sum. We just found a primitive function u(x)
of x2 and computed A = u(3)−u(0) without any effort at all. Of course we
understand the telescoping sum behind this illusion, but if you don’t see
this, you must be impressed, right? To get a perspective and close a circle,
we recall the material in Leibniz’ teen-age dream in Chapter A very short
course in Calculus.

27.13 The Integral as a Limit of Riemann Sums

The Fundamental Theorem of Calculus states that the integral of f(x) over
the interval [a, b] is equal to a limit of Riemann sums:

∫ b

a

f(x) dx = lim
n→∞

2n∑

i=1

f(xn
i−1)hn,

where xn
i = a+ ihn, hn = 2−n(b − a), or more precisely, for n = 1, 2, . . . ,

∣∣∣
∫ b

a

f(x) dx−
2n∑

i=1

f(xn
i−1)hn

∣∣∣ ≤ 1

2
(b− a)Lfhn, TS

j

TS
j In the hardcopy, this equation is labelled (27.38), please check it.
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where Lf is the Lipschitz constant of f . We can thus define the integral∫ b

a f(x) dx as a limit of Riemann sums without invoking the underlying dif-
ferential equation u′(x) = f(x). This approach is useful in defining integrals
of functions of several variables (so-called multiple integrals like double in-
tegrals and triple integrals), because in these generalizations there is no
underlying differential equation.

In our formulation of the Fundamental Theorem of Calculus, we em-
phasized the coupling of the integral

∫ x

a f(y) dy to the related differential
equation u′(x) = f(x), but as we just said, we could put this coupling in
the back-ground, and define the integral as a limit of Riemann sums with-
out invoking the underlying differential equation. This connects with the
idea that the integral of a function can be interpreted as the area under
the graph of the function, and will find a natural extension to multiple
integrals in Chapters Double integrals and Multiple integrals.

Defining the integral as a limit of Riemann sums poses a question of
uniqueness: since there are different ways of constructing Riemann sums
one may ask if all limits will be the same. We will return to this question in
Chapter Numerical quadrature and (of course) give an affirmative answer.

27.14 An Analog Integrator

James Thompson, brother of Lord Kelvin, constructed in 1876 an ana-
log mechanical integrator based on a rotating disc coupled to a cylinder
through another orthogonal disc adjustable along the radius of the first
disc, see Fig. 27.9.TS

k The idea was to get around the difficulties of realiz-
ing the Analytical Engine, the mechanical digital computer envisioned by
Babbage in the 1830s. Lord Kelvin tried to use a system of such analog in-
tegrators to compute different problems of practical interest including that
of tide prediction, but met serious problems to reach sufficient accuracy.
Similar ideas ideas were taken up by Vannevar Bush at MIT Massachus-
setts Institute of Technology in the 1930s, who constructed a Differential
Analyzer consisting of a collection of analog integrators, which was pro-
grammable to solve differential equations, and was used during the Second
World War for computing trajectories of projectiles. A decade later the dig-
ital computer took over the scene, and the battle between arithmetic and
geometry initiated between the Pythagorean and Euclidean schools more
than 2000 years ago, had finally come an end.

TS
k In the hardcopy, is here a reference of Fig. 27.10, please check it.
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Fig. 27.9. The principle of an Analog Integrator

Chapter 27 Problems

27.1. Determine primitive functions on R to (a) (1 + x2)−22x, (b) (1 + x)−99,
(c) (1 + (1 + x3)2)−22(1 + x3)3x2.

27.2. Compute the area under the graph of the function (1+x)−2 between x = 1
and x = 2.

27.3. A car travels along the x-axis with speed v(t) = t
3
2 starting at x = 0 for

t = 0. Compute the position of the car for t = 10.

27.4. Carry out the proof of the Fundamental Theorem for the variations (27.36)
and (27.37).

27.5. Construct a mechanical integrator solving the differential equation u′(x) =
f(x) for x > 0, u(0) = 0 through an analog mechanical devise. Hint: Get hold of
a rotating cone and a string.

27.6. Explain the principle behind Thompson’s analog integrator.

27.7. Construct a mechanical speedometer reporting the speed and traveled
distance. Hint: Check the construction of the speedometer of your bike.

27.8. Find the solutions of the initial value problem u′(x) = f(x) for x > 0,
u(0) = 1, in the following cases: (a) f(x) = 0, (b) f(x) = 1, (c) f(x) = xr, r > 0.

27.9. Find the solution to the second order initial value problem u′′(x) = f(x)
for x > 0, u(0) = u′(0) = 1, in the following cases: (a) f(x) = 0, (b) f(x) = 1,
(c) f(x) = xr, r > 0. Explain why two initial conditions are specified.
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27.10. Solve initial value problem u′(x) = f(x) for x ∈ (0, 2], u(0) = 1, where
f(x) = 1 for x ∈ [0, 1) and f(x) = 2 for x ∈ [1, 2]. Draw a graph of the solution
and calculate u(3/2). Show that f(x) is not Lipschitz continuous on [0, 2] and
determine if u(x) is Lipschitz continuous on [0, 2].

27.11. The time it takes for a light beam to travel through an object is t = d
c/n

,
where c is the speed of light in vacuum, n is the refractive index of the object and
d is its thickness. How long does it take for a light beam to travel the shortest
way through the center of a glass of water, if the refractive index of the water
varies as a certain function nw(r) with the distance r from the center of glass,
the radius of the glass is R and the thickness and that the walls have constant
thickness h and constant refractive index equal to ng .

27.12. Assume that f and g are Lipschitz continuous on [0, 1]. Show that∫ 1

0
|f(x) − g(x)|dx = 0 if and only if f = g on [0, 1]. Does this also hold if∫ 1

0
|f(x) − g(x)|dx is replaced by

∫ 1

0
(f(x) − g(x))dx?

Fig. 27.10. David Hilbert (1862–1943) at the age of 24: “A mathematical theory
is not to be considered complete until you have made it so clear that you can
explain it to the first man whom you meet on the street”


