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Preface

I admit that each and every thing remains in its state until there
is reason for change. (Leibniz)

I’'m sick and tired of this schism between earth and sky.
Idealism and realism sorely our reason try. (Gustaf Froding)

This book, together with the companion volumes Introduction to Computa-
tional Differential Fquations and Advanced Computational Differential Equa-
tions, presents a unified approach to computational mathematical modeling
using differential equations based on a principle of a fusion of mathematics and
computation. The book is motivated by the rapidly increasing dependence on
numerical methods in mathematical modeling driven by the development of
powerful computers accessible to everyone. Our goal is to provide a student
with the essential theoretical and computational tools that make it possible to
use differential equations in mathematical modeling in science and engineering
effectively. The backbone of the book is a new unified presentation of numerical
methods for differential equations based on Galerkin methods.

Mathematical modeling using differential and integral equations has formed
the basis of science and engineering since the creation of calculus by Leibniz and
Newton. Mathematical modeling has two basic dual aspects: one symbolic and
the other constructive-numerical, which reflect the duality between the infinite
and the finite, or the continuum and the discrete. The two aspects have been
closely intertwined throughout the development of modern science from the de-
velopment of calculus in the work of Euler, Lagrange, Laplace and Gauss into
the work of von Neumann in our time. For example, Laplace’s monumental
Mécanique Céleste in five volumes presents a symbolic calculus for a mathe-
matical model of gravitation taking the form of Laplace’s equation, together
with massive numerical computations giving concrete information concerning
the motion of the planets in our solar system.

However, beginning with the search for rigor in the foundations of calculus
in the 19th century, a split between the symbolic and constructive aspects
gradually developed. The split accelerated with the invention of the electronic
computer in the 1940s, after which the constructive aspects were pursued in the
new fields of numerical analysis and computing sciences, primarily developed
outside departments of mathematics. The unfortunate result today is that

xi
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symbolic mathematics and constructive-numerical mathematics by and large
are separate disciplines and are rarely taught together. Typically, a student
first meets calculus restricted to its symbolic form and then much later, in a
different context, is confronted with the computational side. This state of affairs
lacks a sound scientific motivation and causes severe difficulties in courses in
physics, mechanics and applied sciences building on mathematical modeling.
The difficulties are related to the following two basic questions: (i) How to
get applications into mathematics education? (ii) How to use mathematics in
applications? Since differential equations are so fundamental in mathematical
modeling, these questions may be turned around as follows: (i) How can we
teach differential equations in mathematics education? (ii) How can we use
differential equations in applications?

Traditionally, the topic of differential equations in basic mathematics edu-
cation 1s restricted to separable scalar first order ordinary differential equations
and constant coefficient linear scalar n’th order equations for which explicit so-
lution formulas are presented, together with some applications of separation of
variables techniques for partial differential equations like the Poisson equation
on a square. Even slightly more general problems have to be avoided because
the symbolic solution methods quickly become so complex. Unfortunately, the
presented tools are not sufficient for applications and as a result the student
must be left with the impression that mathematical modeling based on sym-
bolic mathematics is difficult and only seldom really useful. Furthermore, the
numerical solution of differential equations, considered with disdain by many
pure mathematicians, is often avoided altogether or left until later classes,
where it is often taught in a “cookbook” style and not as an integral part of
a mathematics education aimed at increasing understanding. The net result is
that there seems to be no good answer to the first question in the traditional
mathematics education.

The second question is related to the apparent principle of organization of
a technical university with departments formed around particular differential
equations: mechanics around Lagrange’s equation, physics around Schrodinger’s
equation, electromagnetics around Maxwell’s equations, fluid and gas dynamics
around the Navier-Stokes equations, solid mechanics around Navier’s elasticity
equations, nuclear engineering around the transport equation, and so on. Each
discipline has largely developed its own set of analytic and numerical tools for
attacking its special differential equation independently and this set of tools
forms the basic theoretical core of the discipline and its courses. The organi-
zation principle reflects both the importance of mathematical modeling using
differential equations and the traditional difficulty of obtaining solutions.

Both of these questions would have completely different answers if it were
possible to solve differential equations using a unified mathematical methodol-
ogy simple enough to be introduced in the basic mathematics education and
powerful enough to apply to real applications. In a natural way, mathematics
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education would then be opened to a wealth of applications and applied sci-
ences could start from a more practical mathematical foundation. Moreover,
establishing a common methodology opens the possibility of exploring “multi-
physics” problems including the interaction of phenomena from solids, fluids,
electromagnetics and chemical reactions, for example.

In this book and the companion volumes we seek to develop such a unified
mathematical methodology for solving differential equations. Our work is based
on the conviction that it is possible to approach this area, which is traditionally
considered to be difficult and advanced, in a way that is comparatively easy to
understand. However, our goal has not been to write an easy text that can be
covered in one term in an independent course. The material in this book takes
time to digest, as much as the underlying mathematics itself. It appears to us
that the optimal course will involve the gradual integration of the material into
the traditional mathematics curriculum from the very beginning.

We emphasize that we are not advocating the study of computational algo-
rithms over the mathematics of calculus and linear algebra; it is always a fusion
of analysis and numerical computation that appears to be the most fruitful.
The material that we would like to see included in the mathematics curriculum
offers a concrete motivation for the development of analytic techniques and
mathematical abstraction. Computation does not make analysis obsolete, but
gives the analytical mind a focus. Furthermore, the role of symbolic methods
changes. Instead of being the workhorse of analytical computations requiring
a high degree of technical complexity, symbolic analysis may focus on analyti-
cal aspects of model problems in order to increase understanding and develop
intuition.

How to use this book

This book begins with a chapter that recalls the close connection between inte-
gration and numerical quadrature and then proceeds through introductory ma-
terial on calculus and linear algebra to linear ordinary and partial differential
equations. The companion text Advanced Computational Differential Fqua-
tions widens the scope to nonlinear differential equations modeling a variety of
phenomena including reaction-diffusion, fluid flow and many-body dynamics as
well as material on implementation, and reaches the frontiers of research. The
companion text Introduction to Computational Differential Fquations goes in
the other direction, developing in detail the introductory material on calculus
and linear algebra.

We have used the material that serves as the basis for these books in a
variety of courses in engineering and science taught at the California Insti-
tute of Technology, Chalmers University of Technology, Georgia Institute of
Technology, and the University of Michigan. These courses ranged from math-
ematically oriented courses on numerical methods for differential equations to
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applications oriented courses in engineering and science based on computation.
Students in these kinds of courses tend to have a diverse preparation in mathe-
matics and science and we have tried to handle this by making the material of
this book as accessible as possible and including necessary background material
from calculus, linear algebra, numerical analysis; mechanics, and physics.

In our experience, beginning a course about solving differential equations
by discretizing Poisson’s equation presents an overwhelming array of topics to
students: approximation theory, linear algebra, numerical solution of systems,
differential equations, function spaces, etc. The sheer number of topics in-
troduced at one time in this approach gives rise to an almost insurmountable
hurdle to understanding topics which taken one at a time are not so difficult.
To overcome these difficulties, we have taken a different approach.

In the first part of this book, we begin by considering the numerical solution
of the simplest differential equation by quadrature and we develop the themes of
convergence of numerical methods by giving a constructive proof of the Funda-
mental Theorem of Calculus. We also show the close relationship between con-
vergence and error estimation by studying adaptive quadrature briefly. Next,
we present background material on linear algebra and polynomial approxima-
tion theory, following a natural line started with the first chapter by applying
this material to quadrature. After this, we introduce Galerkin’s method for
more general differential equations by considering three specific examples. In
this chapter, we also raise the important issues that are addressed in the rest of
the book. This part concludes with an introduction to the numerical solution
of linear systems.

In the second part of the book, we discuss the discretization of time or
space dependent ordinary differential equations. The basic theme of this part
is to develop an intuitive sense of the classification of differential equations into
elliptic, parabolic, and hyperbolic. By discretizing model problems representing
these basic types, we can clarify the issues in discretization and convergence.
We also develop a sense of the kind of behavior to be expected of approximations
and their errors for the different kinds of problems.

Finally in the third part of the book, we study the discretization of the clas-
sic linear partial differential equations. The material is centered around specific
examples, with generalizations coming as additional material and worked out
in exercises. We also introduce the complexities of multi-physics problems with
two chapters on convection-diffusion-absorption problems.

While we advocate the arrangement of the material in this book on peda-
gogical grounds, we have also tried to be flexible. Thus, it is entirely possible
to choose a line based on a particular application or type of problem, e.g. sta-
tionary problems, and start directly with the pertinent chapters, referring back
to background material as needed.

This book is a substantial revision of Johnson ([10]) with changes made
in several key ways. First, it includes additional material on the derivation
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of differential equations as models of physical phenomena and mathematical
results on properties of the solutions. Next, the unification of computational
methodology using Galerkin discretization begun in the precursor is brought to
completion and 1s applied to a large variety of differential equations. Third, the
essential topics of error estimation and adaptive error control are introduced at
the start and developed consistently throughout the presentation. We believe
that computational error estimation and adaptive error control are fundamen-
tally important in scientific terms and this is where we have spent most of our
research energy. Finally, this book starts at a more elementary level than the
precursor and proceeds to a more advanced level in the advanced companion
volume.

Throughout the book, we discuss both practical issues of implementation
and present the error analysis that proves that the methods converge and which
provides the means to estimate and control the error. As mathematicians, a
careful explanation of this aspect is one of the most important subjects we can
offer to students in science and engineering. However, we delay discussing cer-
tain technical mathematical issues underlying the Galerkin method for partial
differential equations until the last chapter.

We believe that the students’ work should involve a combination of mathe-
matical analysis and computation in a problem and project-oriented approach
with close connection to applications. The questions may be of mathemat-
ical or computational nature, and may concern mathematical modeling and
directly relate to topics treated in courses in mechanics, physics and applied
sciences. We have provided many problems of this nature that we have assigned
in our own courses. Hints and answers for the problems as well as additional
problems will be given in the introductory companion volume. The book is
complemented by software for solving differential equations using adaptive er-
ror control called Femlab that is freely available through the Internet. Femlab
implements the computational algorithms presented in the book, and can serve
as a laboratory for experiments in mathematical modeling and numerical solu-
tion of differential equations. It can serve equally well as a model and toolbox
for the development of codes for adaptive finite element methods.

Finally, we mention that we have implemented and tested a reform of the
mathematics curriculum based on integrating mathematics and computation
during the past year in the engineering physics program at Chalmers University.
The new program follows a natural progression from calculus in one variable
and ordinary differential equations to calculus in several variables and partial
differential equations while developing the mathematical techniques in a natural
interplay with applications. For course material, we used this book side-by-side
with existing texts in calculus and linear algebra. Our experience has been very
positive and gives clear evidence that the goals we have stated may indeed be
achieved in practice. With the elementary companion text, we hope to ease
the process of fusing the new and classical material at the elementary level and
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thereby help to promote the reform in a wider context.

Acknowledgements

We wish to thank the students at Chalmers and Georgia Tech who have
patiently borne the burden of the development of this material and who have
enthusiastically criticized versions of this book. We also thank our colleagues,
including K. Brattkus, M. Knaap, M. Larson, S. Larsson, M. Levenstam, A.
Ruhe, E. Siili, A. Szepessy, L. Wahlbin, and R. Williams, who read various
parts of early versions of this book and made many useful, and necessary,
suggestions and criticisms.

We would also like to thank M. Larson, M. Levenstam, A. Niklasson, and R.
Williams for help with several computational examples and pictures, and the
generous permission of the Gottfried-Wilhelm-Leibniz-Gesellschaft and Prof.
E. Stein in Hannover to include pictures from the life and work of Leibniz.

D. Estep and C. Johnson wish to thank the Division of International Pro-
grams at the National Science Foundation for supporting D. Estep’s visits to
Sweden during which much of this book was written. D. Estep also wishes to
thank the Computational Mathematics Program in the Division of Mathemat-
ics at the National Science Foundation and the Georgia Tech Foundation for
the research support they have generously given.



Part 1

Introduction

This first part has two main purposes. The first is to review some
mathematical prerequisites needed for the numerical solution of differ-
ential equations, including material from calculus, linear algebra, nu-
merical linear algebra, and approximation of functions by (piecewise)
polynomials. The second purpose is to introduce the basic issues in the
numerical solution of differential equations by discussing some concrete
examples. We start by proving the Fundamental Theorem of Calculus
by proving the convergence of a numerical method for computing an in-
tegral. We then introduce Galerkin’s method for the numerical solution
of differential equations in the context of two basic model problems from
population dynamics and stationary heat conduction.






The Vision of Leibniz

Knowing thus the Algorithm of this calculus, which T call Differen-
tial Calculus, all differential equations can be solved by a common
method. (Leibniz)

When, several years ago, I saw for the first time an instrument
which, when carried, automatically records the number of steps
taken by a pedestrian, it occurred to me at once that the entire
arithmetic could be subjected to a similar kind of machinery so
that not only addition and subtraction, but also multiplication and
division could be accomplished by a suitably arranged machine
easily, promptly and with sure results.... For it is unworthy of
excellent men to lose hours like slaves in the labour of calculations,
which could safely be left to anyone else if the machine was used....
And now that we may give final praise to the machine, we may say
that it will be desirable to all who are engaged in computations
which, as is well known, are the mangers of financial affairs, the
administrators of others estates, merchants, surveyors, navigators,
astronomers, and those connected with any of the crafts that use
mathematics. (Leibniz)

Building on tradition going back to the ancient Greek philosophers, Leib-
niz and Newton invented calculus in the late 17th century and thereby
laid the foundation for the revolutionary development of science and
technology that is shaping the world today. Calculus is a method for
modeling physical systems mathematically by relating the state of a sys-
tem to its neighboring states in space-time using differential and integral
equations. Because calculus is inherently computational, this revolution
began to accelerate tremendously in the 1940s when the electronic com-
puter was created. Today, we are seeing what is essentially a “marriage”
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of calculus and computation in the creation of the field of computational
mathematical modeling.

“ m Wit ol o e s i “ jv
1
| |

' Moc probat antorems mens magss wlla e ~
7

WAL |
e
Figure 1.1: Gottfried Wilhelm Leibniz, 1646-1716.

Actually, Leibniz himself sought to realize a unification of calculus
and computation, but failed because the mechanical calculator he in-
vented was not sufficiently powerful. The next serious effort was made
in the 1830s by Babbage, who designed a steam powered mechanical
computer he called the Analytical Engine. Again, technical difficulties
and low speed stopped his ambitious plans.

The possibility of realizing Leibniz’ and Babbage’s visions of a uni-
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versal computing machine came with the invention of the electronic valve
in the 1930s, which enabled the construction of high speed digital com-
puters. The development took a leap during the World War II spurred by
the computing demands of the military. Until this time, large scale com-
putations were performed by rooms of people using mechanical adding
machines. The war provided an immediate pressure to speed up the pro-
cess of scientific development by using mathematical modeling to hone a
physical problem down to a manageable level, and mathematicians and
physicists became interested in the invention of an electronic comput-
ing device. The logical design of programmable electronic computers
was developed by the mathematician von Neumann, among others. By
the late forties, von Neumann was using the first ENIAC (Electronic
Numerical Integrator And Calculator) computer to address questions in
fluid dynamics and aerodynamics.

The subsequent development of computer power that has resulted in
desktop computers of far greater power than the ENIAC, has been paral-
leled by the rapid introduction of computational mathematical modeling
into all areas of science and engineering. Questions routinely addressed
computationally using a computer include: What is the weather going
to do in three days? Will this airplane fly? Can this bridge carry a load
of ten trucks? What happens during a car collision? How do we direct
a rocket to pass close by Saturn? How can we create an image of the
interior of the human body using very weak X-rays? What is the shape
of a tennis racket that has the largest “sweet spot”? What is a design
of a bicycle frame that combines low weight with rigidity? How can we
create a sharp picture from a blurred picture? What will the deficit be
in Sweden in the year 20007 How much would the mean temperature
of the earth increase if the amount of carbon dioxide in the atmosphere
increased by 20 percent?

The physical situations behind these kinds of questions are modeled
by expressing the laws of mechanics and physics (or economics) in terms
of equations that relate derivatives and integrals. Common variables
in these models are time, position, velocity, acceleration, mass, density,
momentum, energy, stress and force, and the basic laws express conserva-
tion of mass, momentum and energy, and balance of forces. Information
about the physical process being modeled is gained by solving for some
of the variables in the equation, i.e. by computing the solution of the
differential /integral equation in terms of the others, which are assumed
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to be known data. Calculus is the basic study of differential /integral
equations and their solutions.

Sometimes it is possible to find an exact formula for the solution
of a differential /integral equation. For example, the solution might be
expressed in terms of the data as a combination of elementary functions
or as a trigonometric or power series. This is the classical mathemat-
ical method of solving a differential equation, which is now partially
automated in mathematical software for symbolic computation such as
Maple or Mathematica. However, this approach only works on a rel-
atively small class of differential equations. In more realistic models,
solutions of differential equations cannot be found explicitly in terms
of known functions, and the alternative is to determine an approximate
solution for given data through numerical computations on a computer.
The basic idea is to discretize a given differential /integral equation to
obtain a system of equations with a finite number of unknowns, which
may be solved using a computer to produce an approximate solution.
The finite-dimensional problem is referred to as a discrete problem and
the corresponding differential /integral equation as a continuous problem.
A good numerical method has the property that the error decreases as
the number of unknowns, and thus the computational work, increases.
Discrete problems derived from physical models are usually computa-
tionally intensive, and hence the rapid increase of computer power has
opened entirely new possibilities for this approach. Using a desktop
computer, we can often obtain more information about physical situ-
ations by numerically solving differential equations than was obtained
over all the previous centuries of study using analytical methods.

Predicting the weather

The progress in weather prediction is a good example for this discussion.
Historically, weather forecasting was based on studying previous pat-
terns to predict future behavior. A farmer’s almanac gives predictions
based on the past behavior, but involves so many variables related to the
weather that determining meaningful correlations is an overwhelming
task. By modeling the atmosphere with a set of differential equations,
the number of variables is reduced to a handful that can be measured
closely, albeit at many locations. This was envisioned by the English
pioneer of numerical weather prediction Richardson in the 1920s, who
proposed the formation of a department of 64,000 employees working
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in shifts to perform the necessary calculations using mechanical calcu-
lators more quickly than the weather changed. After this proposal, the
attitude toward numerical weather prediction became pessimistic. Not
until the development of the modern computer, could the massive com-
putations required be performed sufficiently rapidly to be useful. The
first meaningful numerical forecasts were made by von Neumann and
Charney in the late forties using the ENIAC, but of course the reliabil-
ity was very low due to the extremely coarse discretization of the earth’s
system they had to use. The most recent model for the global weather
uses a discretization grid with roughly 50,000 points horizontally and 31
layers vertically giving a total of five million equations that are solved
in a couple of hours on a super-computer.

There are three sources of errors affecting the reliability of a numer-
ical weather forecast: (i) measurement errors in data (or lack of data)
(ii) approximation errors in modeling and (iii) approximation errors in
computation. The initial data at the start of the computer simulation
are always measured with some error; the set of differential equations in
the computer model only approximately describes the evolution of the
atmosphere; and finally the numerical solution of the differential equa-
tions is only an approximation of the true solution. These sources add
up to form the total prediction error. It is essential to be able to esti-
mate the total error by estimating individually the contributions from
the sources (i)-(iii) and improve the precision where possible. This is a
basic issue in all applications in computational mathematical modeling.

Our experience tells that forecasts of the daily weather become very
unreliable in predictions for more than say a week. This was discussed
in the 1960s by the meteorolgist Lorenz, who coined the phrase “the
butterfly effect” to describe situations in which a small cause can have
a large effect after some time. Lorenz gave a simple example displaying
this phenomenon in the form of the Lorenz system of ordinary differen-
tial equations with only three unknowns. We plot a typical solution in
Fig. 1.2, showing the trajectory of a “particle” being ejected away from
the origin to be attracted into a slowly diverging orbit to the left, then
making a loop on the right, returning to a few orbits to the left, then
back to the right etc. The trajectory is very sensitive to perturbations
as to the number of loops to the left or right, and thus is difficult to
compute accurately over a longer time interval, just as the evolution of
the weather may be difficult to predict for more than a week.
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30 -20

Figure 1.2: A solution of the Lorenz system computed with an error of
.1 or less over the time interval (0,30).

What is this book about?

If we summarize the Leibniz vision as a fusion of mathematical modeling,
mathematical analysis and computation, then there are three fundamen-
tal issues to be addressed:

e How are physical phenomena modeled using differential equations?
e What are the properties of solutions of differential equations?

e How are approximate solutions of differential equations computed
and how can the accuracy of the approximations be controlled?

This book tries to answer these questions for a specific set of problems
and to provide a set of tools that can be used to tackle the large variety
of problems met in applications.

The book begins with some material directly from calculus. Partly
this is a review and partly a presentation of elementary material needed
to solve differential equations numerically. Next, we study the particu-
lar issues that arise in different classes of equations by studying a set of
simple model problems from physics, mechanics and biology. The scope
is then widened to cover basic linear models for heat conduction, wave
propagation, fluid flow and elastic structures. The companion volume



1. The Vision of Leibniz 9

extends the scope further to nonlinear differential equations and sys-
tems of equations modeling a variety of phenomena including reaction-
diffusion, fluid flow and many-body dynamics and reaches the frontiers
of research.

Covering most of the material in this book would provide a good
preparation and a flexible set of tools for many of the problems that are
met in engineering and science undergraduate courses. It is essential to
do a good portion of the problems given in the text in order to master
the subject. We mark the more difficult and tedious problems (but they
must be all the more rewarding, right?) with warnings and often give
hints. A companion volume called Advanced Computational Differential
FEquations leads into graduate level, including material on nonlinear dif-
ferential equations and implementation. Another companion book, In-
troduction to Computational Differential Equations, contains additional
material on calculus and linear algebra, hints to problems in this volume
and suggestions for project work.

The presentation is unified in the sense that it is always essentially
the same set of basic tools that are put to use independently of the level
of complexity of the underlying differential equation. The student will
discover this gradually going through the material. The methodology is
always presented in the simplest possible context to convey an essential
idea, which later is applied to successively more complex problems just
by “doing the same”. This means that a thorough understanding of the
simplest case is the best investment; for the student with limited time or
energy this minimal preparation allows him or her to computationally
address complex problems without necessarily having to go into all the
details, because the main ideas have been grasped in a simple case.
Thus, we seek to minimize the technical mathematical difficulties while
keeping the essence of the ideas.

On the other hand, some ideas cannot be explained in just one appli-
cation. As a result, the presentation in the simple cases may occasionally
seem lengthy, like for instance the careful proof of the Fundamental The-
orem of Calculus. But, the reader should feel confident that we have a
carefully thought out plan in our minds and some reason for presenting
the material in this way.

The book is supplemented by the software Cards and Femlab, where
the algorithms presented in the book are implemented. This gives the
possibility of a problem /project-oriented approach, where the student



10 1. The Vision of Leibniz

may test the performance of the algorithms and his own ideas of appli-
cation and improvement, and get a direct experience of the possibilities
of computational mathematical modeling. Femlab may also be used as a
basis for code development in project-oriented work. Femlab is available
through the World Wide Web by accessing http://www.math.chalmers.se
/femlab. The software is presented in the introductory companion vol-
ume.

MENSIS OCTOBRIS A.IM DCLXXXIV. 467

NOvVA METHODUS PRO MAXIMIS ET ML
Wimis, itemgue tangentibus, que mec fractas, nec irvationales
quantitates movstur; & fingularepro illis caleuls
genusy per G.G. L.

feaxis AX, & curva plures,ut VV, W W, YY, ZZ, quarum ordj-TAP

nata, ad axem normales, VX, WX, YX, ZX, quz vocentur refpe-
Ctive, », W5 Y) 23 &ipﬁ A X abfiffa ab axe, vocetur x, Tangentes {int
VB, W C,YD, ZEaxl occurrentes refpective in pundtis B, C, D, E,
Jamrectaaliqua proarbitrio affumea vocetur dx, & recta qua fit ad
dx,ut» (velw,vely, vel 2)eftad VB(vel W C,vel YD, vel ZE ) vo-
cetordp (veld w, vel dy vel dz) five differentia ipfarum » (vel ipfa-
rum w,aut y, autz) Hispofitiscalculi réguli erunt tales:

Sit a quantitas data conftans, erit dazqualis o, & d axerit zqué
adx;fifit y zqup(feuordinataquaviscurva Y'Y, aqualis cuivis or-
dinatz refpondenticucvae V V)erie dyzqu.dv . Jam Additio & Sub-
tractiot fifitz ey wopax 2qu.p,erit d 2— o wopx fen dv, zqu
dzimd ypd W e x. Mulriplicatio,d x v 2qu. X d pgep dx, feu pofito
yzquxp, fietd yzquxd»sprdx. Inarbitrio enim eft vel formulam,
utx v, vel compendio pro ea literam, ut y,adhibere. Norandum & x
& d xeodem modo in hoc calculo tractari, uty &dy, velaliam literam
indeterminatam cum fua differentiali,. Notandum etiam non dari
femper regreffarn a diffetentiali £quationie, nifi cum quadam cautio-

ne, de quo alibis  Porro Divifia, d” vel (pofitozzqu,”) dz aqu.
derdy Fydr Y ¥

¥y ; . .
Quoad $igna hoc probe notandum, cum in calculo pro litera
fubftituitur fimpliciter ejus differentialis, fervan quiden eadens figna,
& provez feribi o dz, pro —z feribi—d 2, utex additione & fubtra-
&ione paulo ante pofita apparet; fed quando ad exegefin valorum
venitur, feu cum confideratur ipfius z relatio ad x, tunc apparere, an
valor ipfiusdz fitquantitas affirmativa, an nihilo minor feu negativa:
uod pofteriuscum fi, tunc tangens Z E ducitura punéto Z non ver-
us A, fedin partes contrarias feu infraX,id eft runccum ipfz ordinate
Nnn3 z decre-

Figure 1.3: Leibniz’s first paper on calculus, Acta Eruditorum, 1684.



