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For errors in the answers or statements of the problems, please send email to
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Kurser/AnalysA/.

Chapter 3

3.2 17z = 10
35 22=3
3.6 170z = 45(12 — )

Chapter 5

5.1 1) My age, 2) Number of my children, 3) Number of contries that I have
seen, 4) Number of languages that I speak, 5) Number of Vivaldi music
CD that I own

5.5 In m x n = 0 if and only if m = 0 or n = 0, or means either, or i.e. either
m=0orn=0. finpxm=pxn, p=0, then m and n could be
any nonzero ( because 0 x 0 is NOT defined) integer number, (for example
m=17,n=-1).

58 (a) 102=5x18+12
(b) —4301 = —69 x 63 + 46
(c) 650912 = 2106 x 309 + 158
5.9 (a) 40 =23 x 5= {1,2,4,8,10,20,40}|40
(b) 80 =2* x5 = {1,2,4,8,10,16,20,40,80}|80
5.12 (a) 22 x3 x5
(b)
)

25 x 3
2 %7

(c



(d) 3 x43

5.14 (a+b)? = a® + b? is not valid. Simply take a = b = 1, then the left hand
side is 4 while the right hand side is 2.
ac < be implies a < b is an invalid implication. Just take a = 2,b=1,¢c =
—1, then we are getting: —2 < —1 implies 2 < 1, i.e., we derive from a
correct statement a wrong conclusion.
Finally a + bc = (a + b)c. Take, for example, a = b =1 and ¢ = 0, you get
1=0.
515 (a) —2<2x2<20
(b) 8<z <20
(¢) -13<z <25
(d 1<z<3
Chapter 6
6.1 (a) The inductive step: 12+ 22+ 3%+ ... + (n — 1)2 + n? = (the in-
. . (n—1)n(2(n—1)+1) 2 2n®—3n2+n+6n>
ductive assumption) = - tnt = T =
n(n+1)(2n+1)
6
(b) The inductive step: 13+23+3%+ ... 4+ (n—1)3+n? = (the inductive
assumption) = (—("_21)")2 +n? = "4—2"31"2“"3 = ("("2“))2
6.2 Note: error in the problem statement 1/(n + 1) should be n/(n +1). The
inductive step: ﬁ + ﬁ + ﬁ + ...+ m + ﬁ = (the inductive
: _ -1 1 _ (n=1)(n+1)+1 __
assumption) = (nr—b1)+1 + n(n+1) (. nzg—li-l)) - nL—i-l
6.3 (a) The inductive step: 3n? = 3((n—1)+1)2 = 3(n—1)?2+6n—3 > (the
inductive assumption) > 2(n—1)+14+6n—3 = 2n+(6n—4) > 2n+1
(b) The inductive step: 4™ = 4 x 4"~ > (the inductive assumption) >
4n—-1)2=n2+Bn?-8n+4) =n2+3(n—2)2+4(n—2) > n? (for
n > 2)
6.4 Let P,, denote the size of the population year n. The modeling assumption
is that P, = K P2_,, which iterated n times gives P, = K2 ~'P3".
6.5 Let P,, denote the size of the population year n. The modeling assumption
is that Pn = Klpn—l — KQPn2_1.
6.6 Let P, denote the size of the population year n. The modeling assumption
is that P, = KPp,_1 + KP,_».
6.7 —



. . e . p—1[prt! -1
6.8 The inductive step: Since, by long division, — prt

—p" )
p" -1
we getl pn:_ll_ L=pn+ p:%ll = (the inductive assumption) = p® + p" ! +
Chapter 7

7.3 Proof of Commutative law for addition:
(p,q) +(r,s) = (ps, qs) +(qr,qs) = (ps+qr,qs) = (rq+sp,sq) = (rq, sq) +
(sp,sq) = (r,8) + (p,q)
Proof of Commutative law for multiplication:
(p,q) x (r,5) = (pr, qs) = (rp, sq) = (r,5) x (p,q)
Proof of Distributive law:
(,q) x ((r,8) + (t,u)) = (p,q) x (ru + st,su) = (p(ru + st),qsu) = pru+
pst, qsu) = (pru,qsu) + (pst,qsu) = (pr,qs) + (pt,qu) = (p,q) x (r,s) +
(p,q) x (t,u)

7.4 For rational numbers r = :—;, s = z—; and t = %a one has

r r1 Sty + Saot 181ty + 1189t
,«(5+t)=_1( )=_1 1ta + Sat1 _ Tisita +1iS2ty
r2 52 [2) T2 Sata 798219

s1 |t

r181ts | risety 1181 | rity
= = — =rs+rt
To82ly  TaSaty  TeSy  rala

(a) {z€@Q:1<z<5/3}
._4 8
b) {zeQ: -5 <z<3}
() {z€Q:z<—-4orz>1
){zeQ:z<—gorz>32}
7.7 Using the fact that one mile is 5280 feet, and one hour 3600 seconds, the

speed of the runner is 16 miles/hour plus 8.8 feet/second, that is 16 x

_ 165280 , 8.8-3600 _ 84480431680 _ 116160
5280/3600 + 8.8 = “Z250= + S550n = T = 3606 feet/second,

that is 32.26666.. feet/second.

7.8 (a) 0.42857142857142..

(b) 0.153846 153846 15..

(c) 0.204117647058823529411..
7.9 (a) 3.456

(b) 0.5975
7.10 (a) 42/99, that is 14/33



(b) 8811/9999

(c) 42905/99999
7.11 (a) Skippas!

(b)

b) Skippas!

Figure 1:

(d) Skippas!
7.12
7.13 Co(1 + 0.09)"

Chapter 9

9.1

92 (a) (~10,14]
(b) (10,00)
(c) {-14,6,22,30}

9.3 (—00,0) U [, &

9.4 domain: {0,1,2,3,4,5,6,7,8,9},
range: {75,75.01,75.08,75.27,75.64,76.25, ..,82.29}

9.5 Dy = [0,4/50], R = [0,50]

9.6 {1,1,55 15> -}

9.7 Dy = Q = (—00,00). B could be any set containing Ry = (0, 1]

98 (a) {reQ:x# —2and z#4 and z # 5}
(b) {zx€Q:2z+# —2and z #2}
() {z€Q:2z+#—-1/2 and z # 8}

9.9 {0,1,2,3,4}

9.10 Skippas!

9.11 (a) (b), (c) skippas!

9.12 Skippas!

9.13 Skippas!

9.14 Skippas!

9.15 Skippas!



Figure 2:

Chapter 10
101 (a) y=4z -1
(b) y—2=—3(z+4)
(€ y-7=0
(d) y=—-"74z +27
(e) z=-3
) y=-3z+5
102 (a) y=3z-%8
(b) y=—32+3
(c) =13
(d) y=4
(e) y=10z+7
f) y=—-2z-1
103 ¢ =-2L

10.4 See the plot of the functions below.
10.5 Yes!

10.6 Yes!

10.7 (a) (—4/7,2/7)
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Figure 3: A plot of the functions y = 32 (_),y=32—-2(..), y =1z +4 (_)
andy =3z +1 (___). (Problem 10.4)

(b) (35/11,223/11)
108 y = —&(z—3)

109 (a) y=0.1z+1.9
(b) y=—-10z + 12

10.10 21 < x5 < 0 implies 23 — 22 = (z9 + 1) (22 — 1) < 0, because z5 + 21 < 0
and zo — z1 > 0, that is 23 < z2.

10.11 See the plots of the functions below.

10.12 See the plots of the functions below.
10.13 See the plots of the functions below.
10.14 See plot below.
10.15 See plot below
(a) y=2?+4z+5=(z+2)* +1
(b) y=222 -2z -1 =2(x—3)* -1
() y=—222+22—-1=—1(z—3)2+2
10.16 (a) Y0 72
(b) i, (-1)4?



Figure 4: Plot of the functions a) y = 622, b) y
(Problem 10.11)
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10.17

)
)
)
)
)
)
)
) S (=7
10.18 (a) —4+ 6z — 822 + 1123 — 162°
) 48 — T2z + 6% — 872° + 122°
) =2+ 6z + 222 + 62° — zt + 4a2°
) —8z2 + 162° — 621 — 22° + 172 + 2828
) —8+ 12z + 1423 + 4z* — 62° — 727
) 4z? — 223 + 825 — 22° + 27 — 42°
) —8 + 12z — 222 + 152 + 4z — 102° — 77
) —8+ 12z + 42% + 122 + 4z + 225 — 228 — 627 — 42°
) —1622+ 3223 — 122" — 42° + 4225 — 1627 46228 + 22° — 17210 — 28212



Figure 5: Plots of the functions a) y = (z —2)2, b) y = (z + 1.5)%, and ¢)y =
(z +0.5)2. (Problem 10.12a)

22 + 2za + a?

(a)

(b) z* + 3z%a + 3za® + a®
)
)

(c) 23 — 3z%a + 3za® — a®

(d) z* +4z%a + 62%a® + 42a® + a*

.2 .
10.20 pips = Y5 Xt g2t

10.21 The polynomial p(z) = 360z — 94222+ 9493 — 480z +1302° — 1825 + 27 is
zero for 0,1,2,3,4,5, and has the property that p(z) = +o0o0 when £ — 400
and p(z) - —oo when £ — —o0, see plots below.The polynomial can be
factored into p(z) = z(z — 1)(z — 2)(z — 3)*(x — 4)(x — 5), which explains
the behavior.

10.22 (a) Has increasing/decreasing been defined in the book? A function f is
increasing in an interval (a,bd) if a < 2 <y < b implies f(z) < f(y).
From 2° — y3 = L(z — y)(z® + y® + (z + y)?) it is seen that z° — y*
has the same sign as x — y, hence z° is increasing.
(b) A function f is decreasing in an interval (a,b) if a < z <y < b
implies f(z) > f(y). From z* —y* = (z — y)(z + y)(z? + y?) it is
seen that 2 <¢*if 0 <z <y, and z* > y* if z <y < 0.

10.23 Reformulation of problem: Plot the monomials for —2 < z < 2. See the
plot below.
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Figure 6: Plots of the functions a) y = 22 —3,b) y = 22+2, and ¢) y = 22 —0.5.
(Problem 10.13a)

10.24 Reformulation of problem: Plot the polynomials for in the intervals z* —
2,2* 4+ 2], where z* are the symmetry or anti-symmetry point of the poly-
nomial. The point z* is symmetry point if for any z, p(z* +1z) = p(z* —x),
correspondingly z* is antisymmetry point if p(z* + z) = —p(z* — ). See
the plots in figure below.

10.25 See plots below of piecewise polynomials.

Chapter 11

111 (a) {z€R:z# 1 and z # 1}

(b) {reR:z#0and x #2 and z # —
c) {zeR:x#0}
d) {zreR:2#0and z # —

)
)
(d)
e) {freR:z#2andz # 4}
)
)
)
)

(

(

(

11.2 (a 2101( + 1)z(z — 1)* (Note misprint: 100 should be 102!)
(b Zz_l T—1

11.3 (a) Note misprint: f(z) = ax+bshould be f(z) = azx. Proof: f(x+y) =
a(z +y) = ax +ab = f(z) + f(y)-

f) {z€eR:z# —2and z # -1}




30

Figure 7: Plots of the functions a) —1(z — 1) + 2, b) 2(z +2)? — 5 and ¢)
é(x —3)2 —1 for —=3 < z < 3. Note the 2- and y-coordinates of the extreme

points, (the points where the function has max or min value). (Problem 10.14)

(b) Proof: g(z+y) = (z+y)? = 2° +2zy +y? and g(z) +g(y) = 2* + 92,
that is g(z +y) # g(x) + g(y) unless z =0 or y = 0.

1.4 (a) ©H22=8 — 4543

(b) 2z =Te=t — 4

(c) %=4w—22+ﬂ

(d) e85 48042 — 2 4 g 4]

(e) %:%x—2+%

(f) 2t bed —y2_ 5y

(8) &=t =2+ 2? +w_1

(h) 5l =gl 42 4o o? o= Y0 o
115 (a) 3(222 +1) — 5 = 622 — 2

(b) 2(5)*+1=2%+1

)

4
3z—5

(d) 32(2)2+1)-5=3(Z+1)-5=2%

11.6 Note misprint z/x® should be 1/z. fiofo =4(2)+2 = 2+2 and
frofi =1 3 are not equal, for example for z = 1.

10
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Figure 8: Plots of the functions a) (z +2)2+1,b) 2(z — )2 -1 and ¢) —%(z —
3)2 +2 for —3 <z < 3. (Problem 10.15)

11.7 fiofs = a(cz+d)+b= acz+ad+band faofi = c(ax+b)+d = cax+cb+d
are equal if and only if ad + b = ¢b + d, which is the case for example if

a=1and ¢ =1, for any b and d, or otherwise if d = flb__lb or b= “Cd__ld.
11.8 (a) {r€eR:z#0and z # 1}

(b) {reR:z#1andz # 5 andz # 3}
Chapter 12
12.1 Since |f(z1) — f(z2)| = |2 — 23| = |21 + 22]|21 — 22|, We have |f(z1) —

f(z2)| € 16|z1 —x2]| for 1,22 € [-8,8], and | f(z1) — f(z2)| < 800|z1 — z2|
for z1,x9 € [—400,200].

12.2 For a,b € [10,13] one has |f(a) — f(b)| = |a® — b?| = |[(a + b)(a — b)| =
|a + b||a — b| < 26|a — b

12.3 For a,b € [—2,2] one has |f(a) — f(b)| = |4a — 2a® — (4b — 2b%)| = |4(a —
b)—2(a+b)(a—b)| = [(4—2a—2b)(a—Db)| = |[4—2a—2b||la—b| < 12|a—b|,
because |4 —2a — 2b| < 4 +2|a| +2|b| <4+4+4 =12, for a,b € [-2,2].

12.4 Since |f(z1) — f(z2)| = |23 — 23| = |71 — z2||2? + T172 + 23| < (4 +4 +
4)|z1 — x2|, we have L = 12.

12.5 Show that for all z1,z2, we have ||z1]| — |z2|| < |21 — x2|. Thus |f(z1) —
f(@2)| = lle1] = |a2|| < |21 — 2| and L = 1.

11



50

|
o
10

x 10

o 4

—2000 b

—-4000 I I I I I I
=1 0 i 2 3 4 5 6

Figure 9: Three plots of the polynomial 360z — 9422 4 94923 — 4802* + 130x° —
182% + 27, the top figure shows with matlab notation x = —0.1 : 0.001 : 5.1,
the middle x = —2 : 0.001 : 7, and bottom z = —1 : 6. The matlab notation
x=x0:dx:x1, means that x are the values starting with x0 and increasing with
interval dx until x1 is reached. (Problem 10.21)

12.6 Realize (by plotting f(x)) that, given |z1 — za|, |f(z1) — f(z2)| attains its
greatest value near r; =~ x2 =~ £2. Take 1 = 2 and 22 = 2 — ¢, where € is
a small number. Then show that |f(z1) — f(z2)| = 32|21 — 22|

12.7 For a,b € [1,2] one has |f(a) — f(b)| = |5 — =] = |bz2—b‘f| = |(b+23§)’;_“)| =
%Ha — b| < 4|a — b|, because |a + b| < 4 and a?b? > 1.

12.8 Show that |f(z1) — f(z2)] < ﬁm — y|. For 1,29 € [-2,2]
then show the Lipschitz continuity with L = 4. It is, however, possible to
do better and get L = 3\/3/8, which is the maximum value attained by

|21+ at 1 = z9 = +1/4/3. See the plot of this function below.

T (+a3)
129 (a) L =100
(b) L = 10000

(c) L = 1000000

12.10 For z # y the Lipschitz inequality may be written | f(z)— f(y)|/|z—y| < L.
Let z =1/n,y =1/2n,n=1,2,3,... and observe that |f(z) — f(y)|/|z —
y| = 2 xn?, which is greater than any L for n > /L/2.

12.12 (a) For z # y one can write the Lipschitz inequality as |f(z) — f(y)|/|z —

12
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Figure 10: Plots of a) °, b) z* and c) z°. Note that z° and z® are odd while
z? is even. (Problem 10.23)

y| < L. With £ =0 and y = —1/N we have f(z) — f(y)|/|z —y| =
|0 —1]/|0 — (=1/N)| = N, which is larger than any L for N > L.

(b) Yes!

12.13 If the Lipschitz constant L is extremly large then the function is close to
discontinuous from a practical point of view.

12.14 Note misprint: fo — f3 should be f; — f» and the Lipschitz constant of cf;
should be [c[f;. We have |(f1(2) — f2()) — (f1(y) — f2(9))] < [f1(2) —
Hi@)+1f2(2) = fo(y)| < (Lo+Lo)|z—y| and [cfi(z) —cfr(y)] < |e| [ f1(2) -
Hi(@)] < L]z -yl

12.15 Note first that a Lipschitz constant for f(x) = 2™ on [—c¢, ] is nc™™1, see
Problem 12.14. Then using Theorem 12.1 we readily obtain the desired
result.

12.17 Observe that 1/ f is Lipschitz mith Lipschitz constant 1/m?, since |1/ f2(z)—
1/f2(y)| < |f2(z) — fa(y)|/m?. Now the Theorem follows from Theorem
12.4.

12.18 (a) Lipschitz with L = 133 using the formula in 12.14.
(b) Lipschitz with L = 16/9.

(¢) Not Lipschitz continuous by Theorem 12.3, because not bounded on
the given interval.

(d) Lipschitz with L = 32, use Theorem 12.6.

13



40

Figure 11: a) is plotted in interval [-4,0], b) is plotted in [-1,3], and c) in [-3,1].
(Problem 10.23)

Figure 12: To the left problem a) and to the right b). (Problem 10.25)

12.19 Follows from Theorem 12.5 because ¢;1z + c2(1 — ) > min(c;, ¢2) > 0 for
z €[0,1].

Chapter 13

(~1)7}2,
1+3i}2

14
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Figure 13: A plot of the function —2r22L_ in [=2,2] x [=2,2]. (Problem

(+a1)(1+23)
12.8)
(e) {3i -1}
() {57125
134 (a) |50 — 0l = 57 <e€if3n+1> 8,

that is if n > N where N = 8/=L.
13.5 [r" — 0] < e if (3)" <, that is if 27 > L.
13.6

13.7 (a) Choose any M > 0. Now we have to show that there exists an N
such
that —4n +1 < —M for all n > N. We see that this is true for
N = (M +1)/4.

(b) If le n® = oo then surely

lim n® 4+ n? = oo, since n® < n® + n?
n—oo

for n > 1. So it is sufficient to, for any M > 0, find an N such that
n® > M, for n > N. This is true for N = M/3,

13.8 Correction: Should be r > 1, not |r| > 2.

For any M > 0, we want to show that there exists an N such that r™ > M
for all

15
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n>N.Butr®>M & nlnr >1nM®n>1n(%),
solet N =In(X).

139 () 1=(ts = 2/3

(b) 31+ r =4
(c) 1— ? = 210-
13.10 (a) L,
(B) 1t = 1
13.11 All are equal to {3,%,%,%5, ...}
except (e) which is {%,8,18 . }.

13.12 (a) {Hg(fiiss)z}zo:_zx
(o) {220}

CRE= S

gn—1

13.13 STRYKES, triangelolikheten bor behandlas redan i kap
6, rational numbers.
The task is to prove the triangle inequality: |a + b| < |a| + |b| for all a, b.
Ifa>0,b>0,then |a+bl =a+b=|a| + b
Ifa<0,6>0,a+b>0,then |a+b=a+b< —a+b=|a|+]b|
fa<0,6>0,a+b<0,then|a+b=—-a—b< —a+b=|a|+|b.
The remaining cases are proved in a similar way.
Proof of (13.7): [a—b|=|a—c+c+b| <|a—c| +|c+D|

13.14 The triangle inequality gives |(an —bn) — (A—B)| = |(an—A)— (b, —B)| <
|ap, — A| + |by, — B|, where the right side can be made as small as desired
by taking n sufficiently large. Another proof can be found in
Section 13.5.

13.15 If n is sufficiently large, then
lan, — A| < 1|A| and [b, — B| < ;|B, so that
Janl = lan — A+ A| < |a — A| + |4] < §]4], and
|B| = |B — by + by| < |B —by| + |bn| < 3|B| + |bs], and
|bn| > 1|BJ, and bL < |%|. For large
n we thus get

17



where the right side can be made as small as desired
by taking n sufficiently large.

Another proof can be found in Section 13.5.

13.16 (a) 1

(b) divergent to +o00, because a, = n%(4 — 6n~1) > n? for
n>2

(c) 0, because |a, — 0| = n~2

(d) 1/3

(e) divergent, because a, = 7(;;)_"2 flips
(approximately) between 1 and —1 when n is large

() 2

(g) —4 (all a,, equal —4)

(h) —5/8

(i) divergent to +o00, because

() -1
13.19 |0.99---99, — 1| = (0.1)* = 0.00---01, < €
forn > N,if N is
the index of the first non-zero decimal in e.

Note also that, using the geometric sum,

= 1—(0.1)"
0.99---99, =0 9k§_0(0 DF = 09— =1-(0.1)

Chapter 14

14.2 (a) See (b).

(b) Assume ,/p = a/b where largest common divisor of a and b is 1.
Then b%p = a?, and since p is prime a = pa for some a, and thus
b?p = p?a? or b® = pa® and thus b = pB. This is a contradiction,
since p divides both a and b. Make sure you understand all details.

14.3 41/3,31/4 4174 etc.

14.9 Assumption give [b| =b<b—a<cand |a|]=—-a=(b—a)—b<c—-b<c

18



Chapter 15

15.2 (b) Have that |zy — zy;i| = |(z — @)y +zi(y —9i)| < [(@ —zi)y| + |zi(y —
yi)| = lyllz — =] + |zl ly —vi] < |y|27%+ (|z| +0.1)27*, where we used
the fact |z;| = |(z; —z) + 2| < |z; — 2|+ |2z| <27+ |z| < 0.1 + |=|
for i > 4.

154 7 = 0.373737... and y = v/2 = 1.414213.. give z1y; = 0.3 x 1.4 = 0.42,
Toys = 0.37 x 1.41 = 0.5217, z3ys = 0.373 x 1.414 = 0.527422, etc.

15.5 No, because if the limit  would be less than 1 then d = (1 — z)/2 is

posmve, and 7y = ’t};l 1—z+—121—d:x+dfori<d that is

for i > 1 5 — 1, which contradict the assumption that {75

711} converges to .

158 (a) {x€ R: —2v2< 1z <5/2}
(b) {z€R:2<2v/2—-2/30r x> 2V2+2/3}
15.11 (a) The sequence s {35} (ok to shift the index since we are only concerned
with the limit). For |5 —%| = |&=E| = ‘Jz;; <L =kt b <e
ifi,j >N and N =

1

V2e”

15.12 Assume that 2 is a Cauchy sequence. Choose € > 0 and N, and take
j=N and i =j+ 1. Compute |i? — 52| and derive a contradiction.

15.13 (b) 1/3

15.15 Let ¢ denote the smallest of all ¢:s. Choose an € > 0. Thenc—e<z; < ¢
for all i > N(€). So ¢ is the limit by the formal definition.

15.18 v/2 = 1.414... gives f(1.4) = it = 0.4117647...., f(1.41) = 55 =
1.41348973..., f(1.414) = 0. 4141769185 , etc. (Hmm, looks familiar, like

V2 — 1. Could it be that f(v/2) = =+/2 — 1?7 Check!).

f+2
15.19 6
1523 (a) (—2,4]
(b) (~3,~1)U (-1,
(¢) [-2,-2]U[0,00
(d) (=00,0)U(1,00)
15.24 [2,3)

15.28 For a,b > & one has |f(a) — f(b)| = |v/a — V| = |VeEDa=vB|

\/_ b
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Chapter 16

Problems

16.1

16.2

16.3

16.4

16.5

16.6

16.7
16.8
16.9

16.10

16.11

16.12

16.13

Use the Bisection Algorithm to find a solution, accurate to within 1072,
to the equation z + 0.5+ 2 cosmz = 0 on the interval [0.5,1.5].

Use the Bisection Algorithm to find an approximation to v/3 that is accu-
rate to within 1074,

Find a bound for the number of iterations needed to approximate a solu-
tion to the equation z® + 2 —4 = 0 on the interval [1,4] to an accuracy of
1073,

A trough of water of length L = 10 feet has a cross section in the shape
of a semicircle with radius » = 1 foot. When filled with water to within
a distance h of the top, the volume V = 12.4ft® of the water is given by
the formula

12.4 = 10[0.57 — arcsin h — h(1 — h%)*/2].
Determine the depth of the water to within 0.01 feet.

Suppose f(z) has only simple roots in (a,b). If f(a)f(b) < 0, show that
there are an odd number of roots of f(z) = 0 in (a,b). If f(a)f(b) > 0,
show that there are an even number (possibly zero) of roots of f(z) =0
in (a,b).

Tngl1—T
Tn—T

Show that the Bisection method converges linearly, that is, lim,,_,
is constant.

Find all the roots of the function f(z) = cosz — cos 3z.
Find the root or roots of In[(1 + z)/(1 — z?)] = 0.

Find where the graphs of y = 3z and y = e® intersect by finding roots of
e” — 3z = 0 correct to four decimal digits.

Consider the bisection method, determine how many steps are required to
guarantee an approximation of a root to six decimal places (rounded).

By graphical methods, locate approximations to all roots of the nonlinear
equation In(1 + z) + tan(2z) = 0.

Equation ze® — 2 = 0 has a simple root = in [0,1]. Use the bisection
method to estimate r within seven decimal digits.

Use the bisection method to find, as accurately as you can, all real roots
for each equation.

(@) 2> —2> —2-1=0
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(b) 22 = e~

72
(¢) In|z| =sinz

16.14 A certain technical problem requires solution of the equation

4
21.13 — ? —5.081logT =0

for a temprature T'. Technical information indicates that the temperature
should lie between 400° and 500°. Use the bisection method to estimate
the desired temperature to nearest degree.

16.15 Use the bisection method with some calculus to find the minimum value

of f(z) =sinz/x on interval [r, 27].

Answers
16.1 r; = 0.711
16.2 V3 ~ r14 = 1.7320
16.3 1o = 1.3787
16.4 h ~ r13 = 0.1617 so the dept isr — h ~ 1 — 0.1617 = 0.838 feet
16.7 {0, £7/2,£m, £37/2,£2x....}
16.8 z =0
16.9 0.61906, 1.51213
16.10 20 steps

16.11 {0, T +¢, %Tﬂ +e, E{T’r +¢,...}, where € starts at approximatelt 1/2 and
decreases.

16.12 r = 0.8526055
16.14 475°

Chapter 18

182 Yes L=1, §=1/3
18.3 (b), (c)

18.4 No

18.6 No
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y=X

y=g(x)=100+0.2x

100

Figure 14: Problem 19.1

Chapter 19

19.1 Break even if sales  equals expenses 100+ 0.2z, that is if z = g(z) where
g(z) =100 + 0.2z.

19.2 (a) For example f(z) = W:J:; —z=0or flz) =2 - 1-z(z+2) =
22 —2?2—-2r-1=0
3

(b) For example f(z) =2° —2* +4—z=0or f(z) = wz:i -1=0.

19.3 (a) For example z = g(z) = z — 0.1(72° — 42® + 2) or ¢ = g(z) =
(125 + L)1/
(b) For example z = g(z) =  + 0.3(2 —2%) or z = g(z) = 2 or
2 = 9(a) = (32 + Z)/4

19.4 Skippas

functionx = fixedpoint(g,x0,max iter,tol)

iter = 0;

xold = x0;

x = x_o0ld;

x new = eval(g);

19.5 whileiter < max.iter&abs(xnew —x.0old) > tol

x = x_0ld;
x-new = eval(g);
iter = iter 4+ 1;

end

X = X_new;

19.6 Rewrite the equation z(0.02 + 2x)? = 1.8107° as 100 z(2+2100z)? = 18,
and rescale by introducing y = 100z to obtain y(2 + 2y)? = 18. Writing

this asy = g(y) = ﬁ, the fixed point iterations y;+1 = g(y;) does not
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19.7

19.8

converge. Try instead y = g(y) = (y + ﬁ) /2 for which the iteration

2.00000000000000
1.06944444444444
1.06010396178350
1.06020866771593
1.06020713377205
1.06020715618506
1.06020715585756
1.06020715586235

Yj+1 = g(y;) with yo = 2 gives the sequence

that is, z = y/100 ~ 0.010602071559.

Rewrite the equation £(0.037+2x)? = 1.57 10~ with y = 1000z as y(37+
2y)? = 1.57. Write this as y = g(y) = % and compute y;11 = 9(y;)
with yo = 1 to obtain

1.00000000000000
0.00114669453395
0.00114668034327
0.00114668034503

that is, z = y/1000 ~ 0.0000011466803.

Rewrite equation 1 = w‘f—ﬁ)z withz = Rasz = g(z) = z— 1.5((31;5—;)2 -1)

and compute iterates zj41 = g(x;) with z; = 2. This gives the sequence

of iterates
2.00000000000000
1.27225415228543
1.09935039113477
1.02928661189918
1.00771903960222
1.00195760369188
1.00049119586678
1.00012291204137
1.00003073509157
1.00000768421569
1.00000192108160
1.00000048027213
1.00000012006814
1.00000003001704
1.00000000750426
1.00000000187607
1.00000000046902
1.00000000011725
1.00000000002931

converging to 1.

Iterating with g(z) = = + 20((31Jf—$z)2 — 1) and zy = 8 gives a sequence of
iterates
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8.00000000000000
8.98369412815009
9.00182407284279
8.99979747927866
9.00002250420120
8.99999749955665
9.00000027782733
8.99999996913030
9.00000000342996
8.99999999961889
9.00000000004234

converging to 9. (Equation can also be solved analytically for R)

19.9 Rewrite the equation (2 + 23)(V —0.011) =3 x 15 with z = V as ¢ =
g(z) = 0.011 + 45/(2 + 50/z?) and compute iterates z;j+1 = g(z;) with
zo = 20 to obtain

20.00000000000000
21.32406304182749
21.33843041035536
21.33992672744253
21.34008240256070
21.34009859707175
21.34010028172915
21.34010045697786
21.34010047520834
21.34010047710479
21.34010047730207
21.34010047732259

19.10 Proof by induction: True for n = 3. Assume true for n. Then

— 1 1 _1¢1 n 1 1
Tnt1 = §%n + i 1m0+ 220, 1) ++Z1
- _1 ntl 1 T 1 ntl 1
= Ay, T Dics 7t 1= g, t Dic e

showing that formula valid for n + 1.

19.11 (a) &, = 2"xg + + 37, 2

(b) For any given M > 0 we have that z, > M if n is large enough,
because Y7, 2 = (1 — 27H1)(1 —2) = 27+! — 1.

n i—1
1912 (a) 2, = E)"+ X1, 3

S 3i=1 _ Ly (3yi 11-D+1) 1 1 _ 4
i=1 2 —324=1\1) T3 13 T 313 73

19.13 z,, = m"x + bi=m"

1-m
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19.14

19.15

19.16

19.17

19.18

y=9(x)

19.14

Figure 15: Problem 19.16.

We show that g(xz) = maz + b is a contraction mapping: |g(z) — g(y)| =
|mz +b— (my +b)| = |m||z —y| = L|z —y|. L <1so g is a contraction
mapping and the fixpoint iteration has a unique solution by Theorem 19.1.
The solution is Z = b/(1 — m).

Draw for example the function g(z) = 2z — 3 for which g(z) € [0, 1], when
z € [1.5,2].

Need to know the specific fixpoint functions used in the 19.3 problem to
solve this problem.

If ¢’(x) is bounded in the interval then g(z) is Lipschitz continious in the
interval. ¢'(x) = (HQ%)Q = L = max,c[q, |(1+2$)2| <1 =g: [ab —
[a,b], that is g is a contraction mapping. By theorem 19.2 we now have
that if the starting point in the fixed point iteration z¢ € [a,b] then the
sequence given by the iteration converges to a Z € [a, b].

Using |z541 — 2x| < L*|21 — 20| we compute (|zgy1 — x| /|z1 — 20|)1/* for
k =1,2,3,4 with data from the table. The result is 0.875 for k = 1,2, 3,4,
hence L = 0.875.

If ¢’(x) is bounded in the interval then g(z) is Lipschitz continious in the
4z3(10—z)%+2(10—z)z*

interval. ¢'(z) = (10=2) =
_ 423(10—z)24+2(10—z)z* | _ 4 2 _ 38
L = maxze[—1,1]| (10—x)* | = |(10—1)2 + (1071)3| = 729 <

0.053 <1 = g is a contraction mapping.By theorem 19.2 we now have
that if the starting point in the fixed point iteration z¢ € [—1, 1] then the
sequence given by the iteration converges to a T € [—1,1]. g is not a con-

3 2 4
traction mapping in [-9.9,9.9]. L = max,c[_g.9,9.9] | iz (10—(:c1)0:;2)(410—w)w | =
3 4 . .
|(1gf;f9)2 + (1339.9)3 | < 2-107, which is larger than 1.
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19.19 Using the method from Problem 19.17 we get the estimates for the Lip-
schitz constant to be 0.6954, 0.6152, 0.5867, 0.5683 for k = 1,2,3,4, re-
spectively. Alternatively we can compute |zpy1 — zk|/|Tr — Tx—1| which
gives 0.6954 , 0.5443 |, 0.5334 , 0.5165 for k = 1,2, 3,4, respectively. Both
these computations show that the convergence is not linear.

19.20 (a) If ¢'(z) is bounded in the interval then g(z) is Lipschitz continious in
the interval. ¢'(z) = 22%. L = max,e_1/2,1/9 |9’ (@) = 2 (3)?] =

0.5.

(b)

(c) zi = g(zi—1) = g(T +zi-1 —Z) = 2(T + (zi—1 — Z))*. Using the fact
that Z = 0 we get: |z; — Z| = |3 (zi—1 — 2)?|

19.21 Use amongst other things that z;_; =~ V2.

19.22 (a) 2°+2—-6=0 — 2(z+1)=6 — z = (chn' The error is estimated

_ _ 6(T—x;— =
by [i — 2] = lg(@i1) — 9(@)| = s—py — 507 < |2Emm=1)| < 2z —

x;—1|, when the sequense of the fixed point iteration has converged
and z;_1 < I.

(b) 22 +z—6 = 0 adding =2 on each side gives: 222 +2 =22 +6 — z =
z‘2+6

5s11- The error is estimated using z = 2 and z; = g(Z+(z;-1—7)) =
i—i—(mi_ —5)2-‘1-6 _ 4z +2+(zi_ —1)2 — (Zi_ —E)Q _
2(i+(zii1—i))+1 = ST i -F =2+ 5 —-2|=

| lai=a)
5

19.23 The equation for the line through the points (z;—1, f(z;—1)) and (x;, f(x;))
is given by y = f(z;—1) + —==(f(x;) — f(z;—1) which for y = 0 has the

solution x; 11 = z;—1 — f(fvzazx_,l— xi—1)/(f(z;) — f(x;—1)). Convergence
factor?
Chapter 20

20.1 Proof (example, analytical) of A(ua) = (Au)a: By definition

AMua) = (a1, a2)) = Apa, pag) = (Mpar), A(uaz))-

and
(Am)a = (Ap)(ar,a2) = ((Aw)ar, (Aw)as).

The desired identity thus follows from the associative law for real number
multiplication.

20.2 f(z) =2+ 2(Py(z)z — ) = 2P, () —z = 27,z a — z. The corresponding
matrix is

k-1 oy
2
g 2k

26
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20.3

20.4

20.5

20.6
20.7
20.8

20.9

20.10

20.11

20.12

20.13
20.14

20.15

20.16

20.17

(2) VI3 (b)) V17T (c) V52 (d) VB (e) (3,2)/v13 () (1,4)/v1T7

|l =1, ) = ()2 + () = “2: aite _ 1=1
fa] [al? Tal la] [a] ol + 1o laP?

(b) a-b = |alb|cos(9) < lal[b]. (a) |a+ B> = (a1 + b1)* + (a2 + b2)®
ai +a3 + b2 + b3+ 2a1 b1 + 2asby = |a* + |b]* +2a-b < |a]? + |b]? + 2|a|b|
(lal + [0])?

@7 ()5 ()0

(a), (c) and (e) makes sense.

0 = arccos( \/513%)

All @ = (ay,a2) such that 2a; + as = 2. A line in the a1, a2 plane, with
normal (2,1) passing through, for example, the point (0, 2).

(a) Po(a) = b = 5(1,2) = (1,2) (b) Py(a) = 3(1,2) = (0,0) (c)
Py(a) = 8(1,2) (d) Py(a) = 2¥2(1,2)

b=c+dwhered =b—cand (a) c = P,(b) = &t a = 12(1,2) (b)
c=F(21) (©c=322 @)c="LV2V

le)?> = |a=b|?* = (a1 —b1)?+(aa—b2)? = a?+a3+bi+b3—2(ar1b; +asb—2) =
lal” +[b]* — 2a - b = |a|* + [b]* — 2|alb| cos(¢)

|
?|
e

See previous problem.

(a) Az = (5,11)T and ATz = (7,10)7 (b) Az = (3,7)T and ATz =
(4,6)"

19 22 23 34 26 30 17 23
(&) (43 50) (b) (31 46) (©) (38 44) (@) (39 53)
19 43 19 43 -2 1 —4 3
(€) ( 22 50 ) ® ( 22 50 ) (&) ( 1.5 —0.5 ) ) ( 3.5 —2.5
. 12.5 -5.5 . 1 0
(@) ( ~10.75  4.75 ) () ( 0 1 )
The matrix element in row 4 and column j of (AB)" (which is the same
as in row j and column ¢ of AB) is the scalar product of row j of A and
column i of B. The matrix element in row i and column j of BTAT is
the scalar product of row i of BT and column j of AT, that is, of column

i of B and row j of A. That is, the matrices (AB) " and BT AT have the
same elements and are therefore equal.

(a) A is symmetric. (b) A is invertible with inverse B.

27
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20.18 The 2 x 2-matrix P corresponding to the projection P, (b) is

i a? a1as
|a|2 aias ag

Obviously, PT = P. Computing, one finds that

PP — 1 [ a} +aja3 ajas + aa3 _ 1 a?lal? ala?|a|2 _p
la|* \ da}az + aia3 a?a3 + a3 la|t \ aiaz]al? a2|al?

20.19 c'os(G) — sin(0) 1) rotates = the angle 6 counter clock-wise.
sin(#) cos(6) T2

20.20 See the section about Reflection above!

20.21 (a) —4 (b) 0 (c) 10

Chapter 21

21.2 Only the rightmost one.

21.4 (=7,2,1)

21.5 2

21.6 \/72/2

21.7 (a) arccos(\/g\/g) (b) \/gﬁ (1,1,1) (c) (1,0,-1)/+/2 (or (—1,0,1)/+/2)
21.8 (—1,0,1)

21.9 (a) true, (b) true, (c) true

21.12
1 0 0 cos(d) 0 —sin(f) cos(#) —sin(d) 0
0 cos(f) —sin(h) ] [ 0 1 0 ] [ sin(d) cos(d) O
0 sin(9) cos(d) sin(d) 0  cos(f) 0 0 1
(1)
21.14
10 0
[ 01 0 ] 2)
0 0 -1

21.17 (—1,-3,6), exception.

21.18 Intersection of the two planes: A(2,—1,—1), intersection of two planes
with the z1 — x5 plane: (0,0,0), of course.

21.20 r + Ab(a — 2P,a), (A > 0), where (see figure) b = a — 2P, a, P,a = %n
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Chapter 22

222 (@) 53 ()& (0 FHLifz=z+iy.

22.3

[\
w
+
~.
[\

) (b) 771731'22 (C) 342322
) v/2(cos(45°), sin(45°))
) (cos(90°),sin(90°))

%(COS(G — ¢),sin(d — ¢)), where 0 = Arg(2 + 3i), ¢ = Arg(5 + 4i).

)
) 21 = (cos(45°),sin(45%)), z2 = (cos(135°),sin(135°))
) z; = (cos(i x 45°),sin(i x 45°)), i = 1,2, .., 8.

¢) 21 = —3+4/r(cos(0/2),sin(6/2)) and z, = —%++/r(cos(6/2+180°),sin(8/2+
180°)), where r = | —3/4 — i| = 5/4 and 8 = Arg(—3/4 —i).

) hint: first solve for w = 22 to find that

wy = g(l + 2i) + v/r(cos(0/2),sin(0/2))

and

wy = 2(1 +20) + /7 (cos(8/2 + 180%), sin(6/2 + 180%)),

where r = |27/4 — 15i] and § = Arg(27/4 — 15i). Then solve 22 = w;,
i=1,2.

22.7 (a) {(0,y) : y €} (To see why, rewrite as |z — (—i)| = |z — i)
(b) {(z,y) : 2y = 1} (Because 2> = (2 — y?, 2ay))

(©) {(z,9) : ly| <z}

22.8 If z = r(cos(f),sin(f)) and ¢ = p(cos(¢), sin(¢)), then z/{ = (r/p)(cos(60—
¢),sin(6 — ¢)).

22.10 (a) The complex plane is first rotated around the origin the angle Arg a
and streched by the factor |a|, through the mulitiplication of z by a, then
translated by the addition of b.

(b) The complex number z = r(cos(f),sin(d)) is mapped onto the com-
plex number 72 (cos(26), sin(26)), that is the argument is doubled and the
modulus squared.

Chapter 23

23.1 Write 2° = (z + x — 7)® = 2% + 32%(z — Z) + 3Z(z — Z)? + (z — )*. This
leads to the identity z® = 2° + 3z%(z — Z) + E¢(z, &), with the error term
Ef(z,z) = 3%(z — ) + (z — %)%. Note that |E¢(z,Z| = |22 + z|(z — T)?,
and thus the derivative of 2 is 3z2. The proof for z* is similar.
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23.2 The error term is Ef(z,Z) = /T — VT

(e - B)/2E = ((JF +
VZ) — 1/2y/Z)(z — ). Furthermore 1/(y/z + VZ) — 1/2V/Z = V7 —
VZ) (VT +/1)2v/Z = (2 —2) | (VZ + /T)?>2/Z. Collecting the results we
get Ef(z,z) < K¢(z,z)(z — )2 with Kf(z,z) = 1/|(VZ + V2)?2VZ| ~
1/8%%/2  for x close to Z.

23.3 We calculate the derivative of \/z at Z = 0.5 using the difference quotient

(&) ~ f1(x) = (f(@ + h) — f(&))/h for hj = 279 for j = 0,1,...,40
using matlab. Then we calculate the error in the numerical approxima-
tion en(z) = |f'(z) — fi(x)|. Using formula (23.27) we get hoptimar =
\eps/ Ky, where eps is the smallest number in Matlab and Kf(z,Z) =
1/(823/?). See the figure.

10° —

10°F

10°

Figure 16: The error ey, in the numerical derivative as a function of h and the
predicted optimal choice of h marked by a vertical dashed line. Note that this
is a log-log plot! (Problem 23.3)

23.4

23.5

Using Taylors formula and proceeding in the same way as in Chapter
23.13 we get the following formula for the optimal choice of h: hoptimar =
(eps/K;)'/3, with K; = f"(z)/6. For f(z) = /= we show the error
in the difference quotient as a function of h as well as the the predicted
optimal h (vertical dashed line).

For simplicity, compute the derivative at T = 1. Then the relative error for
A4h)"—1
a specific choice of h = x—7 is e, (h) = —2——". The relative errors for

a few different choices of n are plotted as function of A in the figure below.
For n = 1 one should choose a large value of h since the linearization error
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0k

1072 L L L L 1 L L
0™ 107 107 10° 107° 10 107 10°

Figure 17: The error ep, in the numerical derivative as a function of h and the
predicted optimal choice of h marked by a vertical dashed line. Note that this
is a log-log plot! (Problem 23.4)

23.6

23.7

23.8

23.9

is zero and we only need to worry about round-off/computational error.
For larger n there is an optimal value of h.

Perhaps the correct answer to this question is no, since we have not yet
defined sin(z) and cos(z), but we still may find the correct answer.

Two alternatives: (i) Realize geometrically that sin(z) ~ =z for small
|z|. Then use the relations sin(z) — sin(z) = 2sin (25Z) cos (Z£Z) and
cos(z) — cos(T) = —2sin (Z52) sin (ZEZ). (ii) The second alternative is
to realize directly geometrically that the derivative of sin(x) is cos(z) and
the derivative of cos(z) is — sin(z).

Use Theorem 23.1 to get a lower bound for L and then show that the
function is really Lipschitz continuous with this L.

Use the fact that f(z;) = f(0) + (z — 0)f'(0) + Ef(x;,0) and g(z;) =
9(0) + (z — 0)g'(0) + E4(x;,0), which gives f(z;) = zf'(0) + Ey(z;,0) for
f and the same for g. Divide by = and realize that the limit is f'(0)/g’(0).
This problem should perhaps be in the next chapter?

Generalize I’Hopital’s rule to ; — T and compute the derivatives at T = 1.
The limits are 1/2 and r.
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10°

-10

107
-14

10

Figure 18: Comparision between the results in Problem 23.3 and 23.4. Note the
improvement using the symmetric difference formula.(Problem 23.4)

Chapter 24

24.1 The rules for differentiating =", the quotient rule, and the chain rule gives:

111 1 o
D il + 3 = | 112104
=11 4 .'El'l
2\/1.11 + z.111

Pl U B

N 1 1].].51}110(.7}_1'1 + IL'l'l) _ .'13'111(—1.].33_2'1 + 11.%.01))

5 TR (z 11 4 gl1)2
m

24.2 2L = (42 4 £3)02y(2? + x3) = 4a3

oz oz

24.3 We plot g, for n = 21,22, ... 2'%: By increasing n, we find that ¢, con-
verges to 0.6931... = In2. Now, in the Chapter A Very Short Course

in Calculus, we saw that lim(1 + —)" = e. We see the connection to
— 00 n

lim (14 )" — 2, by noting that lim g, = D2%(0) and De?(0) = 1
n n—o00

n—o0

24.4 Let f(x) = 2% and suppose that we know f'(0) (see Problem 24.3) We
have 2% = 27227 ie., f(z) = f(x —Z)f(Z). The chain rule gives f'(z) =
f'(z — 2)f(2), so that f(z) = f'(0)f(z).

245 (i) a+b=1 (match the two pieces at z = 1)
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Figure 19: Relative errors for the numerical derivative as function of h. (Prob-
lem 23.5)

(ii) @ = =2, b = 2 (match also the left- and right-handderivatives at
z=1)

Chapter 25

25.4 ¥ = {-3.3027,—-1.6180,0.3027,0.6180, 1}, Note that the answers have not
been rounded off.

25.5 & = 3.0608
25.7 Probably an error in the assignment. zo = 1/+/3 is more interesting.

258 (a) Eg. 2; —Z = ﬁ(xl —g(z;))

-9
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Figure 20: Problem 24.3.
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