Abstract

A three dimensional parametric model is constructed to represent
the simplified geometry of a waterjet duct. The number of variables
in the model is not fixed. The motivation behind the model is to get
a solution to the CFD (computational fluid dynamic) problem related
to the flow of water in the duct. The parametric model is implemented
in a computer program, which enables the geometry to be generated
in the preprocessor of a CFD solver. The preprocessor converts the
parametric geometry to a mesh, that becomes the implicit geometry
existing in the solver. In the computer program algorithms are imple-
mented to read, write, work with and manipulate this mesh.

The solver produces data files, where the solution values are stored
after solving the CFD problem. The computer program can read
these files. By using the program the information in a data file, for a
mesh of a parametric duct can be modified to be used as initial data
for another parametric waterjet duct. The quality of the initial data
will be of good if the geometries of the ducts are similar.

Sammanfattning

En tredimensionell, parametrisk model av en forenklad geometri
av ett vattenjet ror konstrueras. Antalet variabler i modellen ar inte
fixerat. Modellen anvands till att 16sa fluidflédesproblemet, som &r
kopplat till vattenflodet i réret. Modellen implementeras i ett dat-
aprogram, vilket mojliggor att geometrin kan genereras i preproces-
sorn till en fluidflédeslésare. Preprocessorn omvandlar geometrin till
ett berdkningsnat, som blir den implicita geometri som existerar i
losaren. Algoritmerna i dataprogrammet konstrueras sa att program-
met kan lisa in, skriva ut, arbeta med och modifiera beridkningsnitet.

Losaren genererar data filer, innehallande 16sningsvardena, nar flu-
idflodesproblemet &r 1ost. Aven dessa filer kan programmet lasa.
Genom att anvianda programmet kan informationen i en data fil fran
ett parametriskt ror modifieras sa att den kan anvidndas som ini-
tiallosning till ett annat vattenjet ror. Kvaliteten pa den genererade
initiallésningen blir hég, om geometrierna av vattenjet réren inte &r
alltfor olika.

Preface

The work presented here completes my studies in Problem Solving in Science at
Goteborg University, leading to the degree Master of Science. The idea behind
the problem came from the cooperation between the two companies Kamewa and
Caran Automotive. The great support and interest from the people at Kamewa,
who has commissioned this work has been a great inspiration to me and I am
grateful that they gave me this opportunity.

It has been a’ privilege to be able to get knowledge from both the industry and the
academic world and I would like to thank both my supervisors Johan Lennblad
at Caran Automotive and Klas Samuelsson at Chalmers University of Technol-
ogy and Goteborg University for making this possible, and for all the input and
support through out the whole project.

Contents

1

2

Background
Problem description

Physical background to the fluid flow problem

3.1 Modelling of incompressible viscous fluid low
3.2 Turbulent behaviour in viscous fluid flow
3.3 The flow in the waterjet duct

The computational fluid dynamics program Fluent5
4.1 Communicating with Fluent5

Solving the problem
5.1 Modelling the waterjet duct
5.1.1 The parametrisation
5.1.2 Implementation of the parametric model to generate
geometry in Gambito 0L
5.1.3 Advantages and limitations of the parametric model . .
5.2 Changing coordinates between the Cartesian and the para-
metric coordinate systems
5.3 The comparison of two grids and mapping solutions between
themo
5.3.1 Finding the corresponding cell in another mesh .
5.3.2 Moving the solution.

The computer implementation
6.1 A short introduction to C++
6.2 Main-functions using the computer program files
6.2.1 Creating a Pipe object and printing a journal file
6.2.2 Reading the mesh from a msh file and copying it to
another Pipeobject
6.2.3 Creating two Grid objects from two msh-files, reading
the solution for one of the grids from a dat-file, and

13
14
14

17
18

19

21
21
24

26
28
29
29

from this generating an initial solution to the other grid 31

6.3 Description of the four classes and their functions
6.3.1 The Pipe class and its functions
6.3.2 The Grid class and its functions
6.3.3 The DataToGrid class and its functions
6.3.4 The AllDataToGrid class and its functions

33

7 Computational example of a waterjet duct
8 Conclusions

9 Discussion on possible further work

46

52

53

1 Background

While technology is getting more advanced, the related problems are getting
more complicated. In the search for new and improved technology many sorts
of mathematical tools are used When the solution of a problem is impossi-
ble to find using practical testing, theoretical methods became a necessary
compliment. For example, in most construction problems, the question is to
optimise a free form geometry, which is described by a large number of vari-
ables. In these cases, mathematical optimisation is a useful tool, though the
large number of parameters involved makes it difficult to find a workable opti-
misation method. Therefore there is a growing need for parametric geometry
models, from which geometries easily can be generated, with a few param-
eters. These geometry models can then be combined with optimisation tools.

The work presented here is a first attempt to approach such a problem. The
application is to enable optimisation of the geometry of a waterjet duct in
order to minimise the pressure loss and the fluctuations in the outflow. An
industry interested in this problem is Kamewa, situated in Kristinehamn,
who has commissioned the study. The basic idea is to find a parametric
model of the jet-tube, which can be generated easily to fit the solver for the
fluid flow problem in the duct. It is an advantage if the number of parameters
in the parametric model is small, because these are the variables that will be
varied to find the optimal solution.

Because of the difficulties of finding a numerical solution for a viscous turbu-
lent fluid flow problem, a lot of iterations has to be made before the solution
converges. If the problem has a good initial solution the numerical solution
will converge more quickly. Without an initial solution, an optimisation loop
would be very costly, because of the high number of iterations that is needed
for each geometry that enters the optimisation loop. The idea is to make
small changes in the geometry during the optimisation process so that the
initial solution can be generated from the calculations of the previous geom-
etry.

The fluid flow problem to be evaluated in the optimisation is to be solved
by existing software tools. The specifications from Kamewa is that the com-
mercial program Fluentb shall be used, and the geometry shall be generated
in Gambit, the preprocessor to Fluent5.

2 Problem description

The work done here is a prerequisite of the fluid flow problem to make opti-
misation possible. The optimisation step itself is not at all addressed here.
In general terms the work consists of making a parametric model of the wa-
terjet duct, and mapping of a solution between two different meshes.

As stated before there is a need to make a mathematical model of the wa-
terjet duct, which describes the geometry in a good way. The model has to
have a small number of variable parameters and it needs to be very flexible
so a large number of different geometries can be generated.

It is very time consuming to perform large CFD (computational fluid dy-
namics) computations. A large number of iterations has to be made to get a
numerical convergent solution. In the process of optimising the geometry a
large number of different geometries are to be evaluated, and with that a very
large number of fluid flow problems will be solved numerically in an iterative
process. Due to the limited computational power available, the iterations
that solve the CFD problem have to be minimised, and this is the main issue
addressed here. The general idea is that a solution from one geometry can be
used as an initial solution to a similar geometry. If the solution fits the new
geometry well, less iterations are necessary to get a convergent numerical
solution and the computational power can be used to produce many CFD
results, that can be compared in the optimisation process. When mapping
the meshes the parametric model of the geometry will be used. By solving
the fluid flow problem for one parametric waterjet duct, initial solutions for
all other ducts, generated by the same parametric model can be generated.
The quality of the initial data will of cause depend on how similar the geome-
tries are. However, there will always be possible to map a solution, because
even if the meshes do not have a Cartesian coordinate frame in common, the
parametric coordinates will always be comparable. The general idea behind
the mapping is that cells will inherit the solution values of the cells with the
corresponding parametric values in the mesh, for which the fluid flow has
been solved. Figure 1 shows the connection between two cell centre points
in two different meshes, through the parametric space.

The main result of the work is a computer program written in the pro-
gramming language C++. The functionality of the program is:

e to generate files which contain information about the geometry of the jet
duct, which can be read by the solver.

Geometryl, meshl Geometry2, mesh2

Structured help grid

T /
04 ¥1,21) (s1,0) 0 Y2 2)

Figure 1: The figure shows how the parametric space connects the two different geometries

and meshes.

e to read the mesh from mesh files, generated in the preprocessor of the
solver.

e to compare cells in two different geometries, with different meshes, to en-
able the computed solution to be moved from one geometry to another.

e to map a mesh to a new geometry, while keeping the logical connection
and deliver the information about the mesh to the solver.

e to read the solution values from the data files, which are created by the
solver, after it has found a solution to the fluid flow problem

e to "move” the solution of one mesh and one geometry to another mesh of
another (or the same) geometry

e to write a file containing the solution data to give a new mesh an initial
solution.

In the following seven sections of the report, the above problem is further
discussed and a solution is presented. Section 3, contains the theory behind
the fluid flow problem. This section intends to give a reader, unfamiliar to
fluid flow problems, an introduction to the subject and the background in-
formation needed to understand the problem addressed.

Before implementing the algorithms of the above items a lot of prepara-
tory work, had to be done. This involved studying the solver, which was
going to be used, to get an understanding about how to communicate with
the program. Also an understanding about the formats of the files had to be
achieved. The concerned files were those containing the input data, that the
program reads, and the files, containing the output data which the program
generates. Information gained during this study of importance to under-
standing this report, can be found in Section 4.

The main problems related to the algorithms to be implemented are pre-
sented in Section 5, together with a description of how these problems are
solved.

The description of the computer implementation, which is the main result, is
found in Section 6. General remarks and descriptions are made about what
can be done using the program files, as well as detailed descriptions of the
functions.

Section 7 contains an example of calculations made on a waterjet duct gen-
erated by the program files. Here it can be seen how the different programs
interact, with the solver and the complete chain that the programs are part
of becomes clear. Comments are also made about the result of the example,
which gives an idea about how well the programs work in practice.

Conclusions are given in Section 8, and the report ends with Section 9, where
recommendations are given about what can be improved by further work on
the software and the algorithms.

3 Physical background to the fluid flow prob-
lem

In this section the aim is to point out what makes it difficult to solve a fluid
flow problem. This difficulty is part of the motivation behind the present
work. The fluid flow problem addressed here is assumed to be a viscous,
incompressible fluid flow, with constant temperature. In the following section
the general way to model viscous flow is presented, including the Navier-
Stokes equations. In Section 3.2 the behaviour of turbulence is described
and the special conditions for the application of the waterjet duct can be
found in Section 3.3.

3.1 Modelling of incompressible viscous fluid flow

The motion of the fluid flow can be described by four partial differential
equations, which enforces conservation of mass and momentum [6]. The
conservation of mass is described by

o B
T + div(pu) = 0, (1)

where p is the density and u = u(z, y, z) is the velocity vector. It can easily
be seen that the equation sets the rate of increase of mass in a fluid element
equal to the net rate of flow of mass into the fluid element. In the case of
incompressible fluids, where p is constant the equation for mass conservation
is reduced to

div u = 0. (2)

The momentum of the fluid is conserved, when the rate of increase of momen-
tum of a fluid particle equals the sum of forces working on the fluid particle.
There are two different kinds of forces working on the fluid particle, that is
the body forces ant the forces resulting from surface stress. The body forces
(gravity force, centrifugal force, Coriolis force and electro-magnetic force) are
usually summed and put in a source term, while the different forces (pressure
forces and viscous forces), caused by surface stress, are described separately.

The magnitude of the forces resulting from stress is the product of the stress
intensity and area. The state of stress of the fluid element is defined in
terms of pressure and nine viscous stress components. The viscous stress
is modelled to be a function of the local deformation rate. There are both
linear and volumetric deformation rates. The linear deformation is du/dx,
where x = (z,y, z) and the volumetric deformation is div u. For Newtonian
fluid viscous stress is proportional to the rate of deformation, and there are
two proportionality constants. One is called the dynamic viscosity, u, and is
linked to the linear deformation. The other constant is A, which is linked to
the volumetric deformation. For an incompressible fluid there is only linear
deformation because div u = 0. The viscous stress terms 7 are therefore for
incompressible flow twice the local rate of linear deformation, as Equations
3-8 shows.

O,

Tex = 21 oz (3)
ou

Tyy = 2“3—; (4)
ou,

Toe = 2H (5)
Uy

vy = Ty = 4

: auy> (6)

(
— = (G2 + 52) 7)
=

T+ o) ®)

= U

9

The continuity equations for momentum are found by setting the rate of
change of the momentum in the x-direction of a fluid particle equal to the
total force in the x-direction, due to surface stress, working on the particle
plus the rate of change of the momentum in the x-direction, due to sources
(body forces). Equation 9-11, show this equality for the momentum in the
X, y and z direction respectively, where p is the pressure. Sarz, Samy and Sy,
are the changes of momentum due to sources.

dugy O(—p+Tuy) OTyy 0Ty

P at ox + oy + 0z S)
duy O(Tgy) O(—p+Ty) Oy

9 = S 10

P dt ox + oy + 0z + oMy (10)
du, 01y, 0ty O(—=p+T.,)

_ ; 11

P dt ox * oy + 0z S (11)

Equations 2, 9, 10 and 11 constitute the Navier-Stokes equations for incom-
pressible viscous fluid flow at constant temperature.

3.2 Turbulent behaviour in viscous fluid flow

The random velocity fluctuations characteristic for the turbulent flow, give
rise to additional stresses on the fluid. There is a close relation between the
turbulence of the flow and its Reynolds number, which measures the relative
importance of inertia forces and viscous forces of a fluid flow [6]. The tur-
bulent behaviour increases with higher values of the Reynolds number, and
for each type of flow there is a critical Reynolds number at which turbulence
first occurs. The Reynolds number Re is described by the characteristic ve-
locity U, the length scale of the main flow L and the kinematic viscosity v
according to Re = UL/v. The turbulence can be seen as eddies of different
length scales. The wide range of length scales of the eddies that occur in
the same fluid flow is a difficulty for the numerical methods, because it is
too costly to adapt the mesh according to the smallest length scales. The
eddies contribute to mix the flow effectively, which results in high diffusion
coefficients for mass, momentum and heat. Turbulence is also inherently in-
stationary, while the interest most often is in stationary flows.

To overcome the problem with different length scales various models for tur-
bulence is used. One of these models is the two equation method called the
ke-method. This method uses the time averaged Navier-Stokes equations,
and accounts for the small scales that can not be fitted into the mesh by
also modelling the turbulent kinetic energy k£ and the rate of dissipation of
turbulent kinetic energy e.

10

3.3 The flow in the waterjet duct

The flow in a waterjet is characterised by high Reynolds numbers. The
Reynolds number depends on the flow rate through the waterjet and the
dimensions of the inlet. Typical Reynolds numbers of waterjets are of the
order of 107, based on the diameter of the inlet [8]. The turbulent behaviour
is most apparent in a layer close to the walls of the duct, while there is a
more uniform flow in the centre of the duct. In the centre flow the inertia
effects dominate, while in the layer closest to the walls the viscous forces
are equal in magnitude, or larger than, the inertia forces. This viscous layer
becomes larger the more the pipe bends. For example, the boundary layer
may develop to cover one-half of the cross section area, in a pipe that bends
about 90 degrees [8]. Such a large boundary layer would have great impact
on the the mean flow. It is therefore essential to have a good mesh, along the
walls and as far into the duct as the boundary layer reaches, to accurately
calculate the boundary layer development.

When solving these kinds of problems numerically, the cells closest to the
walls are treated somewhat differently than the other cells, in the iterative
process. This because the behaviour in the boundary layers successfully can
be described with simple laws, included in the so called wall functions, which
has been developed through both dimension analysis and studies of exper-
imental data. The mean flow velocity close to the wall, only depends on
the distance y, from the wall, the density p and the viscosity p of the fluid
and the wall shear stress 7,4;. By finding a relation between the wall shear
stress, and the mean velocity, the mean velocity profile for the cells on the
boundary, can be calculated.

The boundary layer of the flow in a pipe, with solid walls, can be divided into
three different sub layers. At the solid surface the fluid is stationary, that is
the velocity at the boundary is zero. In a very thin layer close to the wall
there can also be no motion due to turbulence. This leaves only the impact
of shear stress. Because the thickness of the layer, the shear stress can be
approximated to be constant and equal to the wall shear stress. In the next
layer, in which y still is very small, the turbulent and viscous effects are both
important. In the last layer, the turbulent effects are the most dominating [6].

The large Reynolds number of these types of applications causes problems
when calculating the numerical solution. A large Reynolds number indicates
that transportation is the dominating force, compared to diffusion, in the
flow. When calculating a numerical solution this means that small local

11

computational errors upstream can amplify and spread, so that the solution
downstream in the next iteration is greatly affected. This is why so many
iterations are needed to find a convergent solution. The accuracy of the nu-
merical solutions are also influenced by the stability of the physical problem.

4 The computational fluid dynamics program
Fluent5

The computational fluid dynamics program Fluent5 is a widely used com-
mercial program. It uses the finite volume method to solve both laminar and
turbulent fluid flow. The range of different schemes include among others:
first and second upwind schemes and the QUICK scheme. There are several
turbulence models available in the program. The most popular model, is the
ke-model with wall functions|7]. This partly because the constants involved
are quite well known, and the model is considered to be adequate for many
problems.

4.1 Communicating with Fluent5

To be able to communicate with Fluentb it is important to know how the
information is handled internally. Below it is described where and how in-
formation is used in Fluent5.

The geometry is created in Gambit, the preprocessor of Fluentb, either by
”drawing” the geometry in Gambit and letting Gambit record this geometry
in a journal file, or running a journal file generated outside Fluent5. The
latter is what is done here. The mesh is also created in Gambit, using the
information in the journal file, which apart from the geometry also includes
mesh size and the types of the boundary conditions.

In Fluent) no explicit geometry exists. The geometry is implicitly described
by the nodes in the mesh. To enable the mesh to be read by the solver Flu-
ent5, the mesh is exported by Gambit to a msh-file. The mesh file contains
the coordinates of the nodes, together with information about how the dif-
ferent cells are constructed from the nodes.

When solving the flow problem, using Fluent), first the msh-file has to be
read. Additional to the information in the msh-file, the solver needs informa-
tion about the boundary conditions, and physical properties, such as density
and viscosity. The initialisation is done by setting a velocity magnitude and

12

User C++ program
% Reads, writes and modifies

geo, jou, msh and dat-files
mshfile dat-file msh-file
(joufile | GAMBIT FLUENT5
Preprocessor
of Fluent5 CFD-solver
msh-file

Figure 2: The information flow between the different programs

direction at the inlet. All of these specifications are given manually by the
user in the user interface of the program. When all information is gathered
a case-file is made, that holds all this information, so the process of setting
the boundary conditions and other initialisation has to be done only once for
each mesh. If there is a data file, which can be used as initial data, also such
a file should be read before the iterative process to find a solution starts.
If there is no data file, the solution will be set to zero in all cells as initial
solution. Consequently only the case file is necessary for the solver.

When the numerical solution is found the user commands the program to
write a new data file, where the solution is stored. The stored solution val-
ues in the data file are of two types. Some of the values are calculated
through the iterative process, and are therefore situated in the centre of the
cell. The other solution values are found through calculations based on the
the centroid values. These post-processed solution values are situated on the
cell faces.

5 Solving the problem

The general purpose of this work is to generate a computer program, that
can serve as a compliment to Fluent5 and Gambit. Figure 2 shows a vi-
sual presentation of how the computer program will work and interact with
Fluent5 and Gambit. The computer program should fulfil the items below.

e Generate a parametric geometry of a waterjet duct, and store the infor-
mation about the geometry and the mesh size in a journal file, which
can be read by Gambit, the preprocessor of Fluent5.

13

e Read the information about the mesh in the msh-file that Gambit cre-
ates, when it has executed all the commands in the journal file. The
information should also be sorted and stored adequately.

e Read and sort the computed solution from the data files created by
Fluent), and relate the solution to a grid.

e Compare cells in two different geometries, with different meshes, to en-
able the computed solution to be moved from one geometry to another.

e Meshing a new geometry, by using the parametric values of the nodes in
an already existing mesh, and writing a new msh-file, so the new mesh
can be communicated to Fluent5.

e Mapping the solution of one mesh and one geometry to another mesh
of another (or the same) geometry

e Write the dat-files containing the computed or moved solution to give
a new mesh an initial solution.

Before writing the program some principal problems have to be solved. This
section deals with the principal solutions to these problems, while the com-
puter implementation is described in Section 6.

The first problem is to give a parametric description of the geometry of
the waterjet duct. The general idea is then to use the parametric coordi-
nates to map different meshes. There is therefore a need to find a way to go
from the parametric coordinates to the Cartesian coordinates and the other
way around. The last part is to create a way to move solution values of
one geometry to another. All these problems are discussed separately in the
following sections.

5.1 Modelling the waterjet duct
5.1.1 The parametrisation

As a first approximation, the waterjet duct is assumed to be shaped as a
cylindrical bended pipe. The bending of the pipe is described through a
nurb curve (non uniform rational B-spline curve), which is situated in the
centre of the pipe [1]. All points on the curve corresponds to a parametric
value s, which goes from zero at the inlet to one at the outlet, i.e. 0 < s < 1.
In this way all points on the curve can be described through just a one di-
mensional parameter, instead of the three coordinates describing the location
in the Cartesian coordinate system. By knowing the parametric value s a
plane perpendicular to the curve is found. All points on this plane can then

14

Figure 3: The figure shows the parametric model of the water jet duct. The nurb curve
describing the bending of the pipe can be seen in the centre of the duct. From inlet to outlet
the parameter s takes values between zero and one. Four elliptic cross sections of the duct
are also shown. In each plane the parameter radius take values between zero and one and

the angular parameter 6 values between zero and 2m.

be described by setting the distance from the centre curve (the radius r) and
the angle 0, between the normal of the centre curve and the vector, going
from the centre curve to the point being described. Figure 3 shows the para-
metric geometry of the waterjet duct.

Below the general b-spline representation is shown. The weighting functions
that are connected to rational b-splines are not accounted for, because in
this application the weights are set to one, and the rational b-splines thereby
becomes ”ordinary” b-splines.

The polynomial that defines the centre curve is created from i, piecewise
defined, polynomials and a set of control points Vj. The knots s; set the
interval sizes for the so called blending functions, N;(s), which are of de-
gree (k-1) and are C*~2 continuous, see Figure 4. The only requirement on
the knots are that they are of nondecreasing order, that is s; < s;41, and
the value may not be the same for more than k knots. The relation between
the order of the blending functions and the number of control vertices and
knots is that the order should amount to the difference between the number
of knots and the number of control vertices.

15

Ni+2, k

Ni+1, k
Ni+3, k

i+4, k

r 1 1 1 1 T
Si Si+1 Si+2 Si+3 Si+4 Si+5

Figure 4: Non uniform b-spline basis functions N;(s)

Below, in Equation 12 it can be seen how the one dimensional value of s
together with the scalar base functions and the matrix, with the control
points give the three dimensional function value P(s), R — R3. The vec-
tor P(s) corresponds to the x, y and z coordinates of the point on the nurb
curve

P(S) = iNi,k(s)Vi; 0 S S S 1. (12)

The definition of the blending function on each interval i is:

1 fors; <s< 8541
0 otherwise

Nia(s) = {

and the recursive definition:

(s — s:) (Sitk — $)

Nik(s) = (ior 1 —) Nig-1(s) + (S1p — $i+1)Nz+1,k—1(5)-
The variable parameters that control and change the centre curve of the pipe
are the control points. Only a few points are needed to get a smooth curve,
and because the model shall be used for optimisation, as few parameters as
possible is preferred. When implementing this parametric model four control
points are used. This seems to be a reasonable number of points, regarding
both to maximise the flexibility of the geometry, while the number of pa-
rameters to be optimised is minimised. In the case where the position of the
centre point of the inlet and outlet are fixed, there would only be two free
control points.

To get a pipe with smooth walls, but at the same time not need too many
different variable parameters, also the radii from the centre curve to the walls
are described by nurb curves. A special two dimensional nurb curve is cre-
ated to include information about the two radii a and b, that are needed to
get an elliptic cross section. In this way all cross sections of the pipe are set.

16

This curve is called ab-curve, and also for this nurb curve four control points
are used. These are the rest of the variable parameters.

If one assumes that the centre point of both the inlet and outlet are fixed,
the total number of variable parameters in the parametric model becomes
two three dimensional points on the centre curve and four two dimensional
points on the ab-curve defining the cross sections.

A summary of the variables describing a point in the parametric space is
given below.

s , is the scalar value, of the nurb curve in the centre of the duct. The
parametric value defines the different cross sections of the pipe, when
0<s<1.

r , is the radius, or more specifically the distance from the centre curve to
the point, in the plane set by s. The radius r is scaled by the distance
from the centre curve to the wall, so 0 < r < 1.

0 ,is the angle between the radius r and the normal vector to the centre curve
in the plane defined by s. The angle lies in the interval 0 < 6 < 27.

5.1.2 Implementation of the parametric model to generate geom-
etry in Gambit

The parametric model is used to generate a geometry in Gambit (the prepro-
cessor to Fluent5). Gambit uses vertices, edges and faces to create volumes,
so the first step is to calculate the coordinates of the vertices that shall de-
fine the pipe. To enable a good structured mesh the geometry consists of
five different volume segments, as shown in Figure 5. Therefore there is a
need to calculate both the vertices defining the walls of the pipe and those
defining the inner structure of the different volume segments.

By evaluating the normal and binormal along the centre curve, at certain
parametric values, the cross section planes are found, see Figure 3. Eight
vertices are calculated for each cross section, by using the normal and bi-
normal vectors and evaluating the radii at the given parametric value, see
Figure 5. The vertices are then used to form eight edges. A command in
Gambit is used, which interpolates the vertices to get a smooth nurb curve.
Because the information, about how Gambit creates these nurb curves, is
not available, the calculations are made at several cross sections to ensure
that Gambit creates the intended geometry. The inlet and outlet of the pipe
are also made of nurb curves. The vertices, which shape the curve, describe

17

r0+ b * Binormal

r.-a* Norma Binormal r +a* Norma
0 o [Normal 0

" b * Binormal

Figure 5: Elliptic cross section, of a pipe, perpendicular to the tangent of the centre curve
in the pipe. The cross section is divided into a diamond shaped section in the middle, which
corresponds to the cross section of the inner volume of the pipe, and four sections around
the diamond, corresponding to the cross sections of the four outer volumes.

ellipses in this model, but this could easily be changed if desired.

To form faces in Gambit all that is needed is a closed set of edges. Four
faces are formed using the four edges describing the walls and the inlet and
outlet curves, each split into four separate edges. In a similar way, faces are
constructed in the inner structure of the pipe. The faces are then stitched
together to form five volumes. The reason for making these five different
volumes, is the importance of meshing of the boundary layer correctly. One
volume is situated in the middle of the duct, where the flow is easier to
numerically resolve. This volume need not be meshed as fine as the other
four, which are situated along the walls, see Figure 5. The dimensions of the
volumes can be varied in the program, by setting the inner vertices closer or
further away from the centre. If the geometry represents a very bended pipe,
the outer volumes should be enlarged, so that the whole boundary layer is
fitted into these.

5.1.3 Advantages and limitations of the parametric model

Often in computational problems a great difficulty may be just to generate
or find a way to represent the geometry. A parametric representation makes
it easy to generate many different, but yet similar geometries.

One additional purpose of the parametric model is to limit the variables
describing the geometry to enable optimisation. When using the nurb curve

18

to describe the shape, the information that lies in the three coordinates can
be described by only one parametric value. Another great advantage is the
flexible form of the nurb curve. This is an important aspect when the para-
metric model is used for optimisation, because the wish might be to find a
global optimum, and not just a local optimum for the geometry. This means
that it is necessary to be able to not only make small changes in the geometry
during the optimisation loop. A lot of different geometries can be made with
the nurb curve describing the bending of the pipe and the shape of the inlet
and outlet, though there are some limitations.

One limitation is that the centre nurb curve lies in one plane. This limi-
tation is caused by the way the vertices, that Gambit uses to generate the
geometry, are calculated. When the z-coordinate is not constant the nor-
mal starts to spin around the centre curve, and the way that the vertices,
along the normal and the binormal, are calculated will no longer work. Also
for s-shaped curves the normal will at some point change direction, which
means that these kinds of curves are also not allowed in the model. One way
of eliminating this problem would be letting also the radii change directions
along the centre curve. This is however not in the scope of the present work.

When the meshes of two geometries are compared it is a great advantage
to be able to use the parametric variables, instead of the normal Cartesian
coordinate system. The parametric coordinates make it easy to copy and
stretch one mesh from one geometry to fit another geometry.

5.2 Changing coordinates between the Cartesian and
the parametric coordinate systems

One method to compare two meshes, based on different geometries, is to com-
pare the parametric node values. To enable this kind of comparison there
is a need to be able to make transformations back and forth the parametric
coordinates.

When going from Cartesian coordinates to parametric coordinates, the para-
metric value of the nurb curve is calculated. However, before doing this the
closest point on the curve has to be found. This is done by finding the param-
eter s, which corresponds to the minimum distance between the point, which
coordinates are being converted, and the nurb curve in the centre of the duct.
This can also be described as minimising the function f(s) = |x — xo(s)|,
where x is the vector with the x, y and z coordinates of the point that is

19

being transformed and xo(s) is a point on the centre curve, depending on s.
The optimum is found through an iterative procedure.

The next parameter to be calculated is the radius. This is done by sub-
tracting the coordinates of the point found on the centre curve from the co-
ordinates of the point that is being evaluated. This vector is named v;. The
radius is then scaled, by being divided by the centre to wall radius Ry, cor-
responding to the distance between the centre of the duct and the wall in the
direction given by vy. This radius is given by Rya = (a? cos? §+b? sin? §)1/2,
where @ and b are the radii of the ellipse, see also Figure 6

The angular parameter is now easy to compute. This parameter 6 cor-

BO:atan(\B/\(])

6 =1m- 6,
6 =1+ 6,
6 =2r-6,
I‘:Vl/Rwa“

Figure 6: Cross section of the waterjet duct, showing the parametric variables the angle
0 and the radius r. See also the different values of the angle depending on the quadrant.

responds to the angle between the normal vector and v;. The angle is calcu-
lated using arctan of the length of the projection of v; on to the binormal,
and the length of the projection of v; on to the normal. The angle is later
adjusted according to which quadrant vy is in. The following adjustments
are made in the different quadrants:

The first quadrant: 8 = 6,

The second quadrant: # = 7 — 6,
The third quadrant: 8 = 7 + 6,
The fourth quadrant: 6 = 27 — 6,

Going from parametric coordinates to Cartesian coordinates is more straight
forward. First the parametric s value is used, to determine which cross
section of the duct the point is located on. By using equation 12 the Carte-
sian coordinates are found, for the point on the centre curve located on the
cross section in question. Both the normal (z,,y,, 2,) and the binormal

20

(Zbn, Yon, 2on) Of the centre curve are evaluated at the parametric value. The
Cartesian coordinates for the point, that is being converted is then obtained,
by

x:ro’w—{—r*(CL*COSH*xn—Fb*Sine*xbn)a (13)
Yy="10y+1*(a*cost*y, +b*sinb * yy,) and (14)
2="To,+ 7% (axcoslxz, + bxsing * zp,). (15)

In the equations r(, is the x-coordinate for the point on the centre curve,
oy the y-coordinate and 7, , the z-coordinate. The radii of the elliptic cross
section are called a and b, see also Figure 5.

5.3 The comparison of two grids and mapping solu-
tions between them

The whole idea of moving a solution from one mesh to another, is based on
the possibility to compare cells in the two meshes. First the concept of how
cells in one grid correspond to cells in another grid will be discussed, and
then some ideas of how the solution can be moved and modified to make a
good initial solution for the second mesh is presented.

5.3.1 Finding the corresponding cell in another mesh

Due to the parametric coordinates two meshes, that are based on different
geometries, can be compared. To exemplify the discussion two meshes are de-
fined, mesh1 and mesh2. These meshes may be of different size and be based
on different geometries. In this whole discussion mesh2 is the mesh that has
a solution, and mesh1 is the mesh, to which the solution is moved. The cor-
responding cell, cell2, in mesh2 to a cell, celll, in meshl, is here defined as
the cell that contains the transformed centroid of celll. The transformation
of the centroid, consists of first converting the Cartesian coordinates of the
centroid in celll in meshl to parametric coordinates using the geometry of
meshl. Then the parametric coordinates are converted to Cartesian coor-
dinates using the geometry of mesh2. These coordinates are those that are
compared with the nodes of cell2 in mesh2, see also Figure 7

The simplest way to find the corresponding cell, is to check all cells in mesh2,
for each cell in mesh1, until the right cell is found, but when the meshes are
large this is too costly. It is clear that the number of operations will be
proportional to N x N, where N is the number of cells. This problem can
be solved by using the parametric coordinates to relate all cells in the two

21

Geometry1, meshl Geometry2, mesh2

Structured help grid
[
(4, v1.21) (sr1,0) (%, ¥2,29)
Vinis the directly mapped solution from mesh2 v the calculated solution
\, is the mapped solution from mesh2, vector for mesh?

adjusted to fit geometryl

Figure 7: The figure shows how a cell centroid corresponds to a point in another geometry,
and points out the difference between a directly mapped solution vector and an adjusted
one. When adjusting the vector the local coordinate system, with the base consisting of the

normal, the binormal and the tangent is used.

meshes to a help mesh, which is a totally structured mesh. The three dimen-
sional cell numbers, of the structured mesh, corresponds to the parametric
values. By using this help mesh as a reference the search for the cell can start
in an area close to the correct cell. The process of relating the meshes to the
help mesh is not very costly. However, if the difference between the size of
the two meshes, that are compared, is large, some problems may arise. The
size of the help grid is based on the smallest distance between two neighbour
cells found in the two meshes. By looking at the parametric coordinates of
the centroid of the cell in the "real” mesh the related cell in the help grid is
found. In the same way the help cell is related back to the cell in the "real”
grid. This means that in places where the mesh is coarse a lot of help cells
will not be given a reference to a cell in the ”real” grid. The whole idea of
going from one mesh to the other via the help grid is then spoiled, because
the chain of information between the two meshes that are being compared is
broken. To overcome this problem the ”empty” help cells are given references
to those cells that the neighbour help cells are related to. This problem is
illustrated in Figure 8.

Another consideration regarding the help grid, is that if the help grid is
made too coarse, more than one cell in the real grid will be related to the
same cell in the help grid. As this is implemented here only one cell can be
referred to per help cell. This means that only the first cell related to the
help cell, will in fact be referred to. Note that the cell stored in the help grid

22

+—— Centroidy3 of Cell
. Celisinreal mesh | | 1 idice3 k+3
77777 Hlo entroid +20f Cell k42

Cell

Celli+3j+6

Related Cells

Celljj<-> Cell |

Ce||i+1‘j -> Cell jor Cell 41

fffffffffffffff

Celljsgj+6<-> Cell ki o //

Centroidy.q of Cell 1

Celljsgj+6 < Cell k43

Centroid yof Cell i

Cell jj Cellisg

Figure 8: The figure shows how references are made to the parametric structured help
grid from the "real grid”, and the other way around. When a help cell does not include
a centroid of a cell in the "real grid”, a reference is given to the same cell as one of the
neighbouring help cells refers to. If a help cell has several centroids located inside it, the
cell with the lowest cellnumber will be referred to, because only one reference can be made
per cell.

is close to the cell not used. Also this problem is illustrated in Figure 8. It
is difficult to make the help grid in the right size. If the mesh is made very
fine then the problem with overwriting information is solved, but then the
algorithm that fills the empty help cells will be very costly.

When using this algorithm, with its intrinsic weaknesses, there is a need
to control that the transformed centroid of celll in meshl really is situated
in the cell, referred to by the help grid. By expressing the centroid in local
cell coordinates it is possible to decide if the point lies inside or outside the
cell. If the centroid is not situated in the cell, the neighbour cells are inves-
tigated, and so on. If the related cell for celll in meshl is not found in the
first three layers of neighbours, a loop is made of all the cells in mesh2 to
find the related cell.

Yet another difficulty appeared, when working with the grid. Because of
the way the preprocessor sets the nodes in the mesh, some nodes are set
outside the parametric space, and the linear interpolation between the nodes
contribute to that parts of the geometry is put outside the mesh. This im-
mediately produces a problem when two meshes are compared, because even
if a centroid is part of the parametric space and the mesh in one geom-
etry, it is not certain that it is located inside the other mesh. This means

23

that even if all cells are checked in the other grid no related cell will be found.

This problem gives rise to a need for another way of defining a correspond-
ing cell in the other grid. The new way of finding a corresponding cell is
to choose the cell, that has the centroid situated closest to the transformed
coordinates of the centroid in question. The problem with this way of finding
the corresponding cell is that all cells in the other grid must be investigated,
because there is no way of knowing how close the closest centroid is located,
before all cells are checked. This is a time consuming task that should be
avoided if possible.

One way of avoiding looping through all cells is to just check those cells
that are suspected to be situated close to the centroid. The cell that is re-
ferred to in the help grid should of cause be checked, and also its neighbours.

If the parametric coordinates of the centroid are larger than the parametric
space allows, the parametric help grid is enlarged, to handle also the cells,
who has nodes outside the parametric space.

In the implementation there are several functions that find the related cell
in the other grid. These functions all use slightly different combinations of the
methods described above. The functions are getRelatedCellsInOtherGrid,
getRelatedCellsInOtherGrid2, getRelatedCellsInOtherGrid3 and the
algorithms of these functions are found in Section 6.3.2, where the Grid class
is described. The function mentioned first is the most ”accurate” one, but it
is also the one that takes the longest to run. The last one is quickest, and
probably ”accurate enough”.

5.3.2 Moving the solution

When the corresponding cell in the other mesh is found, as a first step, the
initial solution for the cell is set to the solution of the corresponding cell
centre. The solution values that are situated on the cell faces that also are
given in the data file from Fluent), are not used in the present work.

The scalar solution values are mapped over to the new geometry without
any adjustment, but the solutions that are vectors are treated in a special
way. As can be seen in Figure 7 vectors mapped directly to the new geometry,
without any adjustments, can be directed in an inaccurate way. In Figure
v the original vector solution, v,, is the directly mapped vector solution,
and v, is the adjusted mapped vector solution. A local coordinate system,

24

which is unique for every cross section of the pipe, is used to map vectors.
If the base is composed of the normal, the binormal and the tangent of the
centre curve, the length of the vector can be preserved, while the direction is
adjusted. The vector is written as a linear combination of the base vectors,
for the cross section that it is "moved” from. These base vectors are called
T2, Nmo and B,,2. The expression for the vector solution becomes

vV = at*ng—}—an *Nm2+ab*Bm2. (]_6)

Because of the ortonormality of the base the coefficients are a; = v - T2,
Gn = V- Nmp2 and a, = v - Bha. The adjusted moved solution is written as
a linear combination of these coefficients and the base vectors given by the
tangent, the normal and the binormal in the cross section, where the solution
vector is put in the other mesh. The base vectors in the cross section, to which
the solution is moved are called Ty,1, N1 and By,;. The adjusted vector
then becomes

Va = 0;Tm1 + @, N1 + @B (17)

Because of the ortonormality of both bases the length of the original solu-
tion vector is preserved, but the direction is somewhat adjusted to better fit
the geometry where it has its new location. Figure 7 points out the impor-
tance of adjusting the direction of the mapped solution vector by showing
two geometries that are exactly the the same, but the pipe bends in oppo-
site directions. The situation when the geometry of the water jet duct is
optimised, will not be this drastic, and the changes in the direction of the
adjusted solution vector will not be this great, but hopefully this adjustment
will make the mapped solution a better initial solution.

By mapping the solution in the ways described above, all cells get a so-
lution value, and these are the values that later on is given to Fluent) as
the initial solution to the new fluid flow problem. The quality of the total
initial solution may though be quite bad, especially if the mesh sizes are
very different. Even if the meshes were of exactly the same size, the initial
solution may be bad, because the solution of the Navier-Stokes equation is
dependent on the shape of the geometry. If a method of mapping could be
found analytically that takes both the geometry, equations and the solution
into account, then the converged solution could be found directly. To find
the exact way to map is however impossible, dealing with the Navier-Stokes
equations and these relatively complicated geometries.

To improve the initial solution, more than one cell in the other grid may
be accounted for. If the mesh, that the initial solution shall be moved to,

25

is finer than the original mesh, where the solution is taken from, linear in-
terpolation, is a better idea. For the interpolation also the solution in the
neighbouring cells, to the corresponding cell, can be used. In this way the
moved initial solution becomes smoother and more of the information hidden
in mesh?2 is used.

In the case where the solution is moved to a coarser grid, some kind of
average value of the corresponding cell and those other cells whose centroids
lie in the celll in meshl, should be used. It seams reasonable to weight the
solution values according to the distance to the centroid of celll that is given
the initial solution.

Even further improvements of the initial solution, would be to adjust the
solution values so that continuity would be fulfilled for all the cells. That
is the velocities should be adjusted so the mass flow into each cell would be
equal to the mass flow out of the cell.

6 The computer implementation

The result of the present work is not one single program. What is accom-
plished is a number of functions that can be used when making different
smaller programs. To enable separate treatment of the geometry, mesh and
solution values the computer implementation consists of four different parts,
which are connected to each other.

The geometry of the waterjet duct is represented by a Pipe object. The
Pipe object is described by a centre curve and another nurb curve, describ-
ing the geometry of the elliptic cross sections of the waterjet duct.

To each Pipe object there is also a Grid object. The Grid object contains the
information about the mesh. In Gambit the mesh is represented by different
faces that constitute cells. Each cell then consists of six (quadratic elements)
or four (tetrahedral elements) faces. The faces consists of four or three nodes.
The parameters describing the mesh, are therefore nodes, faces and cells. For
each face the number of cells sharing the face is given. In this way one knows
how the cells are connected. This information is also computed and stored
the Grid object.

The Grid object also has a Pipe object, in the same way as the Pipe ob-
ject has a Grid object . The geometry parameters are essential when the

26

mesh is compared to another mesh, and this is why the two are linked. To
the Grid object there is also a DataToGrid object, which holds the informa-
tion about all the solution values. To each cell there is a solution value, and
the solution value is situated in the centre of the cell because Fluent 5, uses
a collocated finite volume method.

To each Grid object there are several types of solution. Velocity and pressure
are two of those. To ease the handling of all these DataToGrid objects, all
the DataToGrid objects that are connected to one Grid object is gathered in
a AllDataToGrid object.

Figure 9 shows an overview of the class objects that constitute the spine of

AllDataToGrid

Collects all the DataToGrid objects,
that are related to the same Grid object
The variables are a pointer to Grid object
and the DataToGrid objects: pressure,
ted, tke, density, mu_lamb, mu_turb,
body_forces, x-, y-, z-velocity.
The functions include scan and print
functions and functions that can set or get
all the private variables

Pipe object Grid object DataToGrid object

Includes the geometry parameters Includes the mesh parameters Nodes,

Includes the solution parameters
Centercurveand ABCurveandthe | | Facesand Cellsand therelated ||

and the related functions. Also has

related functipns) f_uncti ons, used to compare o_eilsin pointer to a Grid object.
It has also a Grid object different meshes. Also has pointers
to aPipe and a DataToGrid object.

Figure 9: Overview of the classes in the program, consisting of the geometry class Pipe,
the mesh class Grid, the solution class DataToGrid and the class AllDataToGrid which

contains the solutions values of all solution types.

the program. Before further descriptions are made about the program files
Section 6.1 gives a short introduction to the programming language C++,
so that a reader unfamiliar to C++ can follow the discussions related to the
computer implementation. In Section 6.2 some examples are given of what
can be done using the functions. This in done in the form of main-functions,
together with descriptions of what they are used for and also what the func-
tions in the main-functions do in very general terms. In the Section 6.3 more
detailed information is given about the classes and the related functions.

27

6.1 A short introduction to C++

Typical for the object oriented, programming language C++, are ”classes”
that are the building stones of the programs written in C++. These classes
are made to hold and handle information that is related and should be treated
as an item. Each class has variables, in which the data is stored, and mem-
ber functions that handle the variables, and thus the data. The variables
are usually ”private”, which means that the variables can not be reached
outside the class. These variables are set or accessed through special mem-
ber functions, which are ”public”, and therefore can be used outside the class.

By using these larger building blocks the programs get easier to grasp, and
easier to handle by the user. Also these classes can be used independently in
other programs.

The different classes are defined in header files called ”classname.h”. In
these files the variables and member functions are declared. In the file ” class-
name.C” the implementation of the functions is found. The program itself is

defined in a main.C file, where the header files of the classes that are included
files.

A C++ function is declared as follows. First the type, returned by the
function, is stated. The type could be either an ”ordinary” type as integer
or float, but could also be of abstract type, i.e. a class, defined by the user.
If nothing is returned the type is void. Then the class that the function
belongs to is stated followed by ”::” and then the name of the function. The
arguments that the function takes are inside parentheses after the function
name and each argument type is declared before the argument name. For
example a function, named testFunction, that is of the class Pipe, which re-
turns nothing and takes the integer variable ”testnumber” as an argument,

is declared void Pipe::testFunction(int testnumber).

When using the class functions, the object that the function shall be used on
is stated, followed by a dot, and then the function name. In the parenthesis
behind the function the information that the function needs is stated. This
can be done, either by making a copy of a variable that exists outside the
function, and sending this copy into the function, or by giving a reference
to a variable, that exists outside the function, to the function. In the first
case, only the copy can be changed by the function, and the original vari-
able is kept intact. As for the other case the variable itself is treated by the
function, and changes can be made, on the variable, that is remembered out-

28

side the function. When variables are sent as references into functions, the
type declaration before the argument is followed by a &, when the function
is declared. Assuming that the variable ”"testnumber”, is given as a refer-
ence to the function declared above, the declaration would instead be void
Pipe: :testFunction(int& testnumber). When using the function no type
is specified in the parenthesis, and therefore no & symbol is used.

In addition to the classes made here also classes that defines vectors and
matrices are used. These classes are called MV_Vector and MV_ColMat. The
last class handles two dimensional matrices.

6.2 Main-functions using the computer program files

The following examples of main-functions are those that has been made to
fulfil the demands that has been put on the programming work. The require-
ments are itemised below.

e To enable generation of the simplified geometry, of a waterjet duct in
Gambit, that easily can be changed and modelled.

e To easily generate meshes for different geometries.

e To "move” the solution from one mesh to another, where the meshes
may be based on different geometries.

e To communicate information about the mesh and solution to Fluent5.

6.2.1 Creating a Pipe object and printing a journal file

One of the goals with the program was to generate a volume using the para-
metric model and make the information about the geometry readable for
Fluentb or rather its preprocessor Gambit. This is achieved by the main
function below, which uses functions from the Pipe class.

int main(int argc,char **args)

{

Pipe pipel("pipel_in");

int no_mesh_intervals_length in=60;

int no_mesh intervals_each part ellipse in=10;
int no_boundary pts_in=30;

int no_pts_on ellipse in=60;

int no_mesh_intervals_short_edge_in=10;

double a dist_ inner volume;

29

double b dist inner volume;
int jderiv=0;

pipel.printStructMeshedVolume (no_boundary pts_in,
"journal_pipel.jou",
jderiv, no_mesh intervals_each part_ellipse_in,
no_mesh_intervals_length in,
no_pts_on_ellipse_in, no_mesh intervals_short_edge_in,
a dist inner volume, b dist inner volume);

}

First a Pipe object is created through the constructor that takes a file name
as argument. In this file the control points, for the centre curve and the
ab-curve, i.e. the minor and major axis of the cross section ellipse, are set in
advance by the user. If the file does not exist, the function will let the user
know this by printing a message in the command window. The constructor
reads the file and creates the object, which is called pipel. The next func-
tion printStructMeshedVolume that is used demands that a few parameters
regarding the mesh size, and the number of cross sections that should be cal-
culated, are set by the user before the function is used. These parameters are
arguments to the function, together with the name of the journal file that is
written, when the program is run.

6.2.2 Reading the mesh from a msh file and copying it to another
Pipe object

When there is a grid available for one geometry, it is of great use if this
grid can be adapted to fit another geometry. This could be an alternative to
using Gambit, the preprocessor to Fluent5. The advantage of this method
is that a new msh-file for the new geometry can be printed, based on the
information from the old grid. The data file to the old grid can therefore be
used as input to an initial solution, without any adjustments. The following
main-function creates a new Grid object, with a new geometry, by copying
and stretching a mesh from another Grid object, with another geometry, to
fit the new geometry.

int main(int argc,char x*args)

Pipe pipel("pipel_in");

int no_faces_per cell in=6;

30

Grid gridl(pipel, no_faces_per_cell_in);
gridl.scanGridMSH("pipel_a.msh", no_faces_per_cell_in);

Pipe pipe2("pipe2_in");
Grid grid2(gridl, pipe2);
grid2.printMSHfile("grid2_pipe2.msh");

return O;

}

The main-function consists of two different parts. In the first part the Grid
object is created. It is then used to create the new mesh to the other geome-
try. By using the Pipe constructor that reads a file, the geometry is set and
a Pipe object is created. After this the number of faces that constitute a cell
is set, because this is one of the input parameters to the constructor, which
creates the Grid object. The other parameter used by the constructor is the
pipe object that has been created. To set the coordinates of the nodes the
function ”"scanGridMSH” is used, where the file that should be read is set in
the argument. At this point all information about the grid is set, and the
second part, where the grid is ”copied” to another Grid object, starts.

First a new Pipe object is created, as before, but the information about
the geometry is now collected from another file. The new Grid object is then
created by the special constructor, that calculates new coordinates for the
grid based on the ”"old grid”, the ”old geometry”, and the new geometry of
the new Grid object. The constructor also copies the faces and how they
are situated. Finally a new msh-file is printed for the new Grid object by
the function ”print MSHfile”. The name of this file is given in the argument.
This file can then be read directly by Fluent5.

6.2.3 Creating two Grid objects from two msh-files, reading the
solution for one of the grids from a dat-file, and from this
generating an initial solution to the other grid

When there are two msh-files available, that have been generated by Gambit
based on two different Pipe objects, and an iterative solution is found by
Fluent), for one of the meshes, then the wish might be to use the existing
solution to generate an initial solution to the other mesh. If the initial solu-
tion can be put in a dat-file, Fluentb can use it to get a convergent solution
for the mesh, with less iterations.

31

To enable the generation of the initial solution the following main file can be
used.

int main(int argc,char **args)

{

int no_faces_per cell in=6;

Pipe pipel("pipel_in");
Grid gridl(pipel, no_faces_per_cell_in);

gridl.scanGridMSH("pipel.msh", no_faces_per cell in);
Al1DataToGrid alldata_gridl(gridl);
alldata_gridl.readAllSolutionsFromDatFile("pipel.dat");

Pipe pipe2("pipe2_in");

Grid grid2(pipe2, no_faces_per_cell_in);
grid2.scanGridMSH("pipe2.msh", no_faces_per_cell_in);
AllDataToGrid alldata_grid2(grid2);
alldata_grid2.moveAllSolutionsToOtherGrid(alldata_gridl);
alldata_grid2.printAllSolutionsToDatFile("pipe2.dat");
return O;

}

First the Pipe object (pipel), corresponding to the mesh, with the calcu-
lated solution, is created. Then the Grid object (gridil) that will carrying
the information about this mesh is created. The mesh information is given
to the grid object by the function scanGridMSH, which reads the msh-file
pipel.msh that Gambit has created. After this the AllDataToGrid object
that will contain all solution values for the mesh is created, and the solution
values are set by the function readA11SolutionsFromDatFile.

Next the other Pipe and Grid objects are created, and set in the same way.
Also a new AllDataToGrid object is created. The solution values of this ob-
ject is set by the function moveAllSolutionsToOtherGrid, which uses some
of the solution values of the other AllDataToGrid object. Finally the data
for grid2, is printed to a dat-file, by using the function
printAllSolutionsToDatFile.

32

6.3 Description of the four classes and their functions

In this section a detailed description follows, of the functions, the program
consists of, to enable the making of further main-files.

6.3.1 The Pipe class and its functions

To create a Pipe object, the parameters, centre curve and ab-curve, the nurb
curve describing the radius of the duct at the four cross sections of the duct,
which are the private member variables, have to be initialised. This is done
by setting the control vertices and the knot vector for each nurb curve, see
Section 5.1. This can be done through one of the constructors described be-
low, which also calculates the base functions and initialises the nurb curves.

Pipe::Pipe() Constructor that initialises the private variables by set-
ting the control vertices to standard values.

Pipe::Pipe(char *file) Constructor that reads the coordinates of the
control vertices from a file, written by the user, and initialises the private
variables centre curve and ab-curve. The file that provides the information
about the coordinates, should first set the four three dimensional control ver-
tices on the centre curve, and then the four control vertices for the ab-curve,
the nurb curve describing the radius of the duct at the four cross sections of
the duct.

Pipe::Pipe (const double x_coord_in[], const double
y_coord_in[], const double z_coord_in[], const double
a _coord in[], const double b coord in[]) Constructor that takes the
control vertices as arguments and initialises the private variables centre curve
and ab-curve. This constructor takes vectors with four elements, that is four
control vertices are used to set the nurb curves.

Pipe::Pipe(const Pipe& pipevolume) Constructor that creates a Pipe
object by copying the Pipe object in the argument.

void Pipe::operator = (const Pipe& pipe) Copies a Pipe object
to a new Pipe object, by copying all the private variables of the object.

Pipe::"Pipe() Default destructor.

To get the information, stored in the private variables, there is a need for

33

functions that return these variables. For the Pipe class these functions are:

NurbCurve& Pipe::getCentercurve() Returns a reference to the centre
curve which is of the type NurbCurve, which is a parametric description of
the bending of the waterjet duct.

NurbCurve& Pipe::getABCurve() Returns the ab-curve that holds the
information about the radius of each elliptic cross section.

void Pipe::evalCentercurve(double par value, double coord[],
double normal[], double binormal[], double tangent[], int
jderiv) Evaluates the Cartesian coordinates, the normal, the binormal and
the tangent of the centre curve at the parametric value par_value.

When a Pipe object is made the information about the geometry can be con-
verted to the format that Gambit requires by printing a journal file. There
are two different print functions which are specified below:

void Pipe::printVolume(int no_boundary_pts_in, char xfile,
int jderiv, int no_pts_on_ellipse_in, double
a _dist inner volume,
double b _dist_ inner volume) Generates a journal file with only informa-
tion about the geometry of the Pipe object that the function is used for. The
number of boundary points, along the walls, and the number of points on
the inlet and outlet ellipses are given as arguments. Also the name of the file
created by this function is set by the user and the proportions of the inner
and outer volumes are set by the last parameters in the argument list.

void Pipe::printStructMeshedVolume (int no_boundary_pts_in,
char *file, int jderiv, int no_mesh_intervals_each part_ellipse_in,
int no_mesh_intervals_length in, int no_pts_on_ellipse_in, int
no_mesh_intervals_short_edge, double a_dist_inner volume, double
b dist_inner volume) Generates the same kind of journal file as printVol-
ume, but this journal file also includes the mesh. Apart from the parameters
mentioned earlier for printVolume this function also takes the number of
mesh intervals on the inlet and outlet ellipse, on the outer walls and on the
edges in the inner structure of the duct.

In addition to the functions described earlier and functions that return the

class members, the class also has member functions that converts coordinates
from Cartesian coordinates to the parametric coordinates described in Sec-

34

tion 5.1 and from parametric coordinates to Cartesian coordinates. These
functions are:

void Pipe::changeXYZCoordToSRTheta(double x_value, double
y_value, double z_value, double& s, double& r, double& theta)
Converts the Cartesian coordinates, given as argument, to the parametric
coordinates also given in the argument list. How the conversion is done more
specifically can be read in Section 5.2.

void Pipe::changeSRThetaCoordToXYZ(double& x, double& vy,
double& z, double s value, double r value, double theta value)
Converts the parametric coordinates to Cartesian coordinates. All these pa-
rameters are given as arguments to the function. How the conversion is done
more specifically can be read in Section 5.2.

These functions are primarily used when working with different meshes. The
use of parametric coordinates enables a comparison of cells in different ge-
ometries.

6.3.2 The Grid class and its functions

The class Grid has private member variables that holds information about a
mesh. Each mesh generated by the program corresponds to a pipe geometry,
and therefore the Grid class also has the corresponding Pipe geometry, as as
a member variable. This because the handling of the grid demands knowl-
edge about the Pipe geometry. The member functions consist of functions,
which creates the Grid object, reads the mesh and functions that handle and
compare different grids.

The functions creating the Grid objects (the constructors) are all rather
different. Some are quite straight forward as those in the Pipe class but

there are also more complicated. Below all constructors are described.

Grid::Grid() Creates a default grid by setting the private variables to
default values.

Grid (const Grid& grid_1) Creates a Grid object by copying an al-
ready existing Grid object.

Grid::Grid(int no_nodes_per_ cell_in, int
no_faces_per_cell _in, int no_nodes_per_face_in) Creates a Grid ob-

35

ject for which not all variables are set to default values. The parameters in
the argument are set by the user.

Grid::Grid (Pipe& pipe_1, int no_faces_per cell in) Constructor,
where the private variables, pipe geometry and no_faces_per cell, are set.

Grid::Grid(Grid& grid_old_geometry, Pipe& new_geometry)
Constructor that creates a complete, new Grid object, with the geometry pa-
rameter set to new_geometry and the mesh is based on the mesh in the Grid
object grid_old_geometry. All private variables except the pipe geometry
and the coordinates of the nodes are copied from the old Grid object. The
coordinates of the nodes in the new grid are given the same parametric coor-
dinates as the nodes in the old grid. This constructor uses the Pipe functions
”changeXYZCoordToSRTheta” and ”changeSRThetaCoordToXYZ”, to map
the values of the coordinates of the nodes.

void Grid::operator = (const Grid& grid) Copies a Grid object
to a new Grid object, by copying all the private variables of the object.

Grid::~Grid () Default constructor.

Most of the constructors do not create complete Grid objects, because most
variables are just set to default values.To get the information, about how the
mesh is built, there is a need for a tool that reads the mesh files that Gambit,
the preprocessor to Fluent), creates, when the mesh is generated in Gambit.
The following function does just this.

void Grid::scanGridMSH (const char *file, int

no_faces_per_cell _in) Reads the mesh from the msh-file that Gambit
generates from the journal file. This function sets the private variables, such
as the grid size where the nodes are situated and how the different cells are
built from the nodes. In the msh-file first the coordinates of the nodes are set.
Then faces are defined, through a number of nodes (four nodes for hexahedral
elements and three for tetrahedral elements). The two cells (only one cell for
boundary faces) sharing the face are also given here. The function sorts this
information into different matrices. One private variable is the ”cellmatrix”,
where the faces that constitute the cells are stored for each cell. Another is
the matrix ”cellfaces”, containing the node numbers constituting each face.
Also there are three vectors where the information about the coordinates
(x,y,z) of the nodes are stored, respectively.

36

Next comes the group of functions that returns information about the cell
structure, which more or less directly returns the private variables.

int Grid::getNoCells() const Returns the number of cells in the grid.

int Grid::getNoFacesPerCell () const Returns the number of faces
a cell has in the grid.

Pipe& Grid::getPipeGeometry() Returns a reference to the Pipe ob-
ject that is a member variable of the Grid object.

int Grid::getNoNodes () const Returns the number of nodes in the grid.

int Grid::getNoFaces()const Returns the number of cell faces in the
grid.

MVColMat<int>& Grid::getNodesOnFace() Returns the matrix that
holds information about which node numbers the faces that constitute the

cells in the grid, have.

MVColMat<int>& Grid::getCellMatrix() Returns the cellmatrix where
the face numbers for each cell are listed.

double Grid::getNodeXCoord(int i)const Returns the x-coordinate
for node i.

double Grid::getNodeYCoord(int i)const Returns the y-coordinate
for node i.

double Grid::getNodeZCoord(int i)const Returns the z-coordinate
for node i.

MV_Vector<double>& Grid::getNodeXCoord() Returns the vector which
contains the x-coordinates for all nodes.

MV_Vector<double>& Grid::getNodeYCoord() Returns the vector which
contains the y-coordinates for all nodes.

MV_Vector<double>& Grid::getNodeZCoord() Returns the vector which
contains the z-coordinates for all nodes.

37

MV_ColMat<int>& Grid::getCellFaces() Returns the matrix which
holds the information about which cells that share the the same face. For
each face, but the boundary faces, there are two cells sharing each face.

MV_ColMat<int>& Grid::getIdZonesFaces() Returnsinformation about
how the faces are sorted into identification zones. These zones are created
by Fluent5, and are needed to correctly communicating the grid information
back to Fluent5.

int Grid::getNoIdZonesFaces() Returns the number of identification
zones that the faces in the grid consists of.

The next group of functions are those that are used to get more compli-
cated information about the grids. For example these functions are used
to identify related cells in two different grids, by looking at the parametric
values of the centre points of the cells. For those functions where it is not
obvious how they work there is a short description of the algorithm.

void Grid::getSortedNodesForCell(int cellnumber, MV_Vector
<int>& nodes_reordered) Returns the node numbers for a cell in the same
order as a reference cell, see Figure 10. First the nodes for two opposite faces

Node 8 Node 7

Nodg'4 Nodg'3

Node 5 Node 6

Node 1 Node 2

Figure 10: A reference cell, showing the order of the nodes, that is required by the
function Grid: :checkIfNodeIsInCell

in the cell are chosen. Then by looking at the sign of the volume of the tetra-
hedron that is created by three nodes from one of the opposite faces, and
the centre point of the cell, the order is decided. If the sign is negative the
original order is changed. By looking at one of the connecting faces between
the opposite faces the nodes on the other opposite face, that is situated at the
same place as the first node on the first face can be identified, and the correct
start node is found. By looking at the corresponding tetrahedron for this face

38

the order is set. This function is used in the function checkIfNodeIsInCell,
where a local coordinate system is used, and the sorted nodes are therefore
needed.

void initSortedNodesForCell() Function which initialises the private
variable cellnodes, which is a matrix containing the sorted nodes for all cells.

int Grid::getCellNodesCoord(int cellnumber, MV_Vector
<double>& x_coord, MV_Vector<double>& y_coord, MV_Vector
<double>& z coord, MV Vector<int>& nodes) Returns the node num-
bers for one cell, and the coordinates of these nodes.

int Grid::getNeighbourCells(int cellnumber, MV_Vector<int>&
neighbourcells) Returns the neighbour cells in a vector "neighbourcells”
for the cell with the number ”cellnumber”. Apart from the arguments that
are handled, the function returns the number of neighbour cells of the cell.
The neighbour cells are found by looking at which other cells that share the
faces that constitute the cell.

void removeCopies(MV_Vector<int>& vec, int& size) Function
which removes any existing copies in the vector vec that is given in the ar-
gument. The size of the vector size must be given when using the function.
Both the changed vector and size are returned by the function

void Grid::getParCoordforCell(int cellnumber, MV_Vector
<double>& s_array, MV_Vector<double>& radius_array, MV_Vector
<double>& theta array) Returns the parametric coordinates of the cell
nodes. Each of the arrays returned has the same number of elements as the

number of nodes constituting the cell. This function uses the Pipe function
changeXYZCoordToSRTheta.

void Grid::getAllCellCentreParCoord(MV_Vector<double>&
r centre, MV Vector<double>& s centre, MV Vector<double>&
theta centre) Returns the parametric coordinates of the centre point for
each cell. This function first calculates the geometric average of all the
nodes, to get the centre point for each cell. It then uses the Pipe func-
tion changeXYZCoordToSRTheta to get the corresponding parametric coor-
dinates for the centroid of the cells.

void Grid::getCellCentreCoord(int cellnumber, double&
x_centre, double& y_centre, double& z_centre) Returns the x, y and

39

z coordinates for the cell centre point for the cell with cell number ” cellnum-
ber”, by calculating the geometric average of the nodes.

bool Grid::outsideBoundingBox(int e, double x, double y,
double z) Function that creates a bounding box from the maximum x, y
and z values of the nodes of the cell, with number e. The function evaluated
if the point given by the x, y and z values that are given as argument is
situated in the bounding box. If it is not true is returned otherwise false.
The function is used to in an early stage sort out points that definetly is not
located inside the cell.

int Grid::checkIfNodeIsInCell(double x, double y, double

z, int cellnumber, Grid& other grid) Returns true (=1), if the node,
with the coordinates x, y and z, lies in the cell with cell number ”cellnum-
ber” in the grid ”other_grid”. If the node does not lie in the cell the function
returns false (=0). This function can be used when cells in two different
grids are compared. By converting the coordinates of the node to paramet-
ric coordinates and then to Cartesian coordinates using the geometry of the
other grid. If the parametric coordinates that are given by the x, y, z coordi-
nates lie outside the parametric space, the function returns -1. By using the
function outsideBoundingBox in the beginning of the function, nodes that
definetly are not inside the cell can quickly be checked, without using a lot
of computer power.

int Grid ::checkIfNodeIsInCell(double x, double y, double z,
int cellnumber) Returns true (=1) if the node, given by the coordinates
X, y and z, is situated inside cell number cellnumber. This function can
only check nodes located in the same geometry as the cell, opposite to the
function above.

double Grid::calculateMinDistInGrid(Grid& other_grid, double&
r max) Returns the minimum distance between two centre points in two
neighbour cells. Both the grid in the argument and the grid calling the func-
tion are checked, so the smallest distance in both the grids are returned. At
the same time all r-coordinate for the centre points are checked and if there
are points, with the radius greater than one, the largest one of these are
stored. The r max and the minimum distance, returned by the function, are
used to design the size of the help grid.

void Grid::relateCellsToStructuredHelpGrid (MVColMat<int>&
help cell for_cell in_grid, Array3d<int>&

40

cell_in_grid_for helpcell, double min_dist, double r_max) Relates
the cells in one grid to a structured help grid, where the grid size is decided
by the minimum distance from the function calculateMinDistInGrid, and the
maximum value of the radius is set by the value of r max, which comes from
the same function . By the parametric value of the centre point in each cell,
the cell is given a help grid cell. This information is returned in the matrix
help_cell for cell_in_grid. When one cell has matched one cell in the
help grid this information is also stored for these cells in the help grid in the
matrix cell_in_grid_for help grid. Because the help grid normally has
a larger number of cells, some of the cells in the help grid does not match
any cells in the real grid. To enable the use of the help grid, those cells that
do not relate to a cell are set to relate to the same cell as one of its neighbour
help cells.

int Grid::getRelatedCellsInOtherGrid(Grid& other_grid,

MV_Vector<int>& cells_other_grid) For each cell the function returns
the corresponding cell in the other grid, by using the function relateCell-
sToStructuredHelpGrid on both the grids, and use these help grids as a
reference between them. Note that the help grids are of the same size. The
function also checks that the centre point in the cell really lies in the cell found
in the other grid, by also using the function checklfNodelsInCell. If the node
is not in the cell referred to by the function relateCellsToStructuredHelpGrid,
the function also checks if the centre point lies in the neighbour cells of the
cell referred to in the other grid. If the right cell is not found among the six
first layers of neighbours, the function loopOtherGridToFindRelatedCell
is used. If the centre point does not lie in any cell in the other grid, the cell
given by the help grid is taken, alternatively one of its neighbours, depend-
ing on which cell has the smallest distance to the center point. For further
information about how the related cell is found see Section 5.3.

int Grid::getRelatedCellsInOtherGrid2(Grid& other_grid,
MV_Vector<int>& cells_other_grid) For each cell the function returns
the corresponding cell in the other grid, by using the function relateCell-
sToStructuredHelpGrid on both the grids, and use these help grids as a ref-
erence between them. The function also checks that the centre point in the
cell really lies in the cell found in the other grid, by also using the function
checkIfNodelsInCell. If the node is not in the cell referred to by the function
relateCellsToStructuredHelpGrid, the function also checks if the centre point
lies in the neighbour cells of the cell referred to in the other grid. If the right
cell is not found among the six first layers of neighbours, the function
loopAllCellsToFindClosestCentroidInOtherGrid is used. For further in-

41

formation about how the related cell is found see Section 5.3.

int Grid::getRelatedCellsInOtherGrid3(Grid& other_grid,

MV_Vector<int>& cells_other_grid) For each cell the function returns
the corresponding cell in the other grid, by using the function relateCell-
sToStructuredHelpGrid on both the grids, and use these help grids as a ref-
erence between them. The function also checks that the centre point in the
cell really lies in the cell found in the other grid, by also using the function
checkIfNodelsInCell. If the node is not in the cell referred to by the function
relateCellsToStructuredHelpGrid, the function also checks if the centre point
lies in the neighbour cells of the cell referred to in the other grid. If the right
cell is not found among the six first layers of neighbours, the cell given by the
help grid is taken, alternatively one of its neighbours, depending on which
cell has the smallest distance to the center point. For further information
about how the related cell is found see Section 5.3.

int Grid::loopOtherGridToFindRelatedCell(Grid& other grid,
int cellnumber, int& cellnumber_other_grid) Loops all cells in the grid
other grid, to find the related cell (cellnumber other grid) to the cell
with number cellnumber.

void Grid::loopOtherGridToFindRelatedCells(Grid& other grid,
MV_Vector<int>& cells_other grid) Loops all cellsin the grid other_grid,
to find the related cell to each cell in the grid that the function is called for.
The related cells are returned in the vector cells_other_grid

int Grid::loopAllCellsToFindClosestCenteroidInOtherGrid(double
x_centre, double y_centre, double z_centre, Grid& other_grid)
Checks all cells to find the cell, in the other grid, which has the centroid
located closest to the transformed centroid.

void Grid::changeDirectionOfSolutionVectorToFitOtherGrid (int
cellnumber, double solution x, double solution_y, double
solution_z, Grid& other_grid, int cellnumber_other grid, double&
new_solution_x, double& new_solution_ y, double& new solution_z)
Adjustes the direction of a vector moved from one mesh to another, to better
fit the new location. The cellnumber is the cell where the vector is taken
from, and cellnumber other grid is the cell where it is put in the grid
other_grid.

void Grid::copyGridToNewGeometry(Grid& grid_old_geometry,

42

Pipe& new_geometry) Makes a new grid to a Pipe object (new_geometry),
by copying a grid (grid_old_geometry) corresponding to another Pipe ob-
ject and by stretching the grid to fit the new geometry. What is done is that
the coordinates of the cell nodes are changed by setting the nodes in the
new grid to have the same parametric coordinates, and then converting the
coordinates to Cartesian coordinates to fit the format in Fluent5.

When the information about the mesh shall be communicated to Fluent5,
there is a need to convert the information into the format that Fluent) re-
quires, this is done by the following function.

void Grid::printMSHfile(const char *mshfile) Prints the informa-
tion of a Grid object to a mesh (msh) file, so the mesh can be read by Fluent5.

6.3.3 The DataToGrid class and its functions

The DataToGrid class holds the solution values for one of the solution types,
that is given by Fluentb in the dat-file. In addition to the solution values
also the type and the size of the solution are variables. The size is a scalar
(size=1) or a vector (size=3). Furthermore there is a variable for the Grid
for which the solution was found. The functions that are members to the
class are constructors or functions that reads or writes files, with the solu-
tion values, coming from or going to Fluent5. There are also functions that
moves a solution to another grid, and of course also the usual functions that
returns or sets the private variables of the class. First all the constructors are
presented, and then the functions returning and setting the private variables
are described.

DataToGrid: :DataToGrid () Constructor that generates a DataToGrid
object, and sets the solution values to zero.

DataToGrid: :DataToGrid(Grid& grid_in, int id_type_in, char
file) Constructor that generates a DataToGrid object, and sets the grid for
the object.

DataToGrid: : “DataToGrid () Default destructor.

MV_ColMat<double>& DataToGrid::getSolutionValueCells ()
Returns all the solution values in a vector.

43

double DataToGrid::getSolutionValue(int cellnumber, int
vectornumber) Returns the solution value for the cell with cellnumber
cellnumber. The integer vectornumber tells the function, which element
in the solution vector it should return. The integers possible to give to the
function are 0, 1 and 2.

int DataToGrid::getIdType() Returns the identification number of the
solution field, that Fluent5 uses to recognize the solution type.

int DataToGrid::getNoCells() Returns the number of cells in the grid
that the solution belongs to.

int DataToGrid::getSize() Returns the size of the solution. Size=1
if the solution is a scalar and size=3 if it is a vector.

void DataToGrid::setSolutionValueCells(int cellnumber, double
value) Sets a scalar solution value for cell number cellnumber to value.

void DataToGrid::setSolutionValueCells(int cellnumber, double
value 1, double value 2, double value 3) Sets the three different ele-
ments in the solution vector for cell number cellnumber to value 1, value 2
and value 3.

void DataToGrid::initDataToGridObject(Grid& grid_in, int
id_type_in) The function initialises the private variables in the DataToGrid
object, according to the identification number id_type_in, and the grid vari-
able is set to grid_in.

Next the member functions that reads data files, writes data files and moves
solution values from one DataToGrid object to another are described.

void DataToGrid::scanCellDataToGrid(Grid& grid_in, int
id_type_in, char *file) Reads the data file that Fluent5 has created af-
ter solving the fluid flow problem, and stores the data for the solution type,
with the identification number id_type_in. The function also checks that
the grid size corresponds to that for the grid given in the argument grid_in,
to make sure that the correct data file has been read.

void DataToGrid: :moveSolutionToNewGrid(DataToGrid
data_old_grid, MV_Vector<int> cells_other grid) The function sets

44

the solution values of a new DataToGrid object, by taking the solution val-
ues, from data_old_grid, that correspond to the cells given in the vector
cell_sother grid. This vector is created by using the function
getRelatedCellsInOtherGrid, which is a member of the Grid class. When
solutions with size=3 are moved the direction of the solution vector is ad-
justed in the way explaned in Section 5.3.2.

void DataToGrid::printCellDataToGridToDatFile(char *file) The
function writes the solution values of the DataToGrid object to a dat-file with
the name *file.

6.3.4 The AllDataToGrid class and its functions

In the class AllDataToGrid all the types of solutions that belongs to one grid
is gathered to be treated together. All the types of solutions that are avail-
able in the data file from Fluent5 that are solutions set at the centre of the
cells are pressure, turbulent kinetic energy (tke), rate of dissipation of turbu-
lent kinetic energy (ted), body forces, density, laminar viscosity (mu-lamb),
turbulent viscosity (mu-turb), x-velocity, y-velocity and z-velocity. These are
the private variables of the AllDataToGrid class, and all these variables are
DataToGrid objects. The last private variable of the AllDataToGrid class
is the grid that the solutions belong to. Below the member functions are
described.

Al1lDataToGrid: :AllDataToGrid () Constructor that creates a
AllDataToGrid object without setting any private variables.

AllDataToGrid: :Al1DataToGrid (Grid& grid_in) Constructor that cre-
ats an AllDataToGrid object and uses the DataToGrid function
initDataToGridObject to set the private variables.

Al1DataToGrid: : “AllDataToGrid() Default destructor

void AllDataToGrid::readAllSolutionsFromDatFile(char *file)
Reads the data file, that Fluent) has created after solving the fluid flow prob-
lem, and stores all the solution values for the types that correspond to the
private variables of the AllDataToGrid class.

void AllDataToGrid: :moveAllSolutionsToOtherGrid(AllDataToGrid

solutions_old_grid) The function uses the DataToGrid function
moveSolutionToNewGrid to move all the solution values, except those cor-

45

responding to the velocities. This, because the values of the x, y and z
velocities should be treated together as a vector, and not separately as scalar
values. If all the velocity components are treated as a unity, the direction
of the vector can be adjusted to fit the geometry of the AllDataToGrid
object that the solution is moved to. This is done in the same way as
it is done for the DataToGrid objects that are of size=3 in the function
moveSolutionToNewGrid.

void AllDataToGrid::printAllSolutionsToDatFile(char *file)
The function prints all the solution values of the private variables to a data
file, that Fluent5 can read, so that a grid can be given an initial solution.

7 Computational example of a waterjet duct

This example will show how a solution can be mapped from one mesh to
another, in order to generate an initial solution for the mesh. The tools that
are used are the existing main-files, Gambit and Fluent5.

First the geometry of the first pipe is set. This is done by making a geo-file,
containing the control vertices for the two nurb curves, defining the geometry
of the pipe. When this is done, the main file presented in Section 6.2.1, is
used to create the pipe object, and generate the journal file, that can be read
by Gambit. The number of mesh intervals on the edges that describe the
length of the pipe are set to be 60, 15 on all four parts of the inlet and outlet
ellipse, and 10 on the small edges defining the inner volume.

The journal file is then run in Gambit, where the geometry and the mesh is
created. The mesh is exported in Gambit to a msh-file. Figure 11 shows the
generated mesh.

When Fluent5 has read the msh-file, the boundary conditions and the the
characteristics of the fluid are set. The fluid flow problem is then given an
initial solution at the inlet. This is done by setting the size and the direc-
tion of the velocity at the inlet. After this the iterative process of finding
a numerical solution starts. Approximately 50 iterations are made, using
the stable first order upwind scheme. After these iterations the scheme is
changed to second order upwind scheme, which is not as stable as the first
order scheme, but will yield a more accurate. The stability is needed in the
first iterations, but as the solution becomes better the solution also becomes
more robust. Further iterations are made until the solution converges. Ap-

46

2L,

Grid Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 11: The meshed geometry generated in Gambit, shown in Fluents.

proximately 200 iterations are required in this case. The solution is stored in
a dat-file, which Fluent5 writes. The solution of the velocity is visualised,
for the plane corresponding to a cross section (z = 0) in the length direction
of the duct, in Figure 12, using velocity vectors. The pressure at the wall,
where the velocity is zero is visualised in Figure 13

A second geometry is now initialised by making another geo-file, with other
control vertices. The same main-function is used as before, to read the geo-
file, make the new Pipe object and generate a new journal file to Gambit.
The mesh parameters are this time set to 80, 16 and 12. That is, the new
geometry will be meshed almost twise as fine.

The journal file is as before run in Gambit, and the mesh is exported to
a msh-file. Figure 14 shows the mesh of the new geometry

Now the process of comparing the two meshes begin. The main-function
described in Section 6.2.3 is used for the whole process. First the informa-
tion about the geometry is refreshed, by again creating the Pipe objects, and
the information about the two meshes is also stored by the program by read-
ing the msh-files and putting the information in Grid objects. The existing
data file is read and the solution values are put in a AllDataToGrid object.
Another AllDataToGrid object is also created to hold the initial solution for

47

1.56e+01

1.43e+01

1.31e+01

1.18e+01

1.05e+01

9.28e+00
8.02e+00
6.77e+00
5.51e+00

4.25e+00
X

3.00e+00

Velocity Vectors Colored By Velocity Magnitude (m/s) Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 12: The velocity vectors in the waterjet duct, in the a cross section plane z = 0
in the length direction, after (208 iterations) solving the fluid flow problem for the first
mesh.

1.15e+05
1.03e+05
9.17e+04
8.03e+04
6.88e+04
5.73e+04
4.59e+04
3.44e+04
2.29e+04

1.15¢+04 AL
X

0.00e+00

Contours of Static Pressure (pascal) Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 13: The static pressure in the waterjet duct, at the boundary where the velocity
is zero, after (208 iterations) solving the fluid flow problem for the first mesh.

48

Grid Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 14: The figure shows the meshed geometry of a second Pipe object.

1.56e+01
1.43e+01
1.31e+01
1.18e+01 , et 1
1.05e+01
9.28e+00
8.02e+00
6.77e+00
5.51e+00 S

4.25e+00
X

3.00e+00

Velocity Vectors Colored By Velocity Magnitude (m/s) Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 15: The figure shows the moved and patched initial solution for velocity, in a
cross section plane z = 0 in the length direction of the duct, for the new mesh.

49

1.15e+05
1.03e+05
9.16e+04
8.02e+04
6.87e+04
5.73e+04
4.58e+04
3.44e+04
2.29e+04

1.15e+04
X

0.00e+00

Contours of Static Pressure (pascal) Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 16: The figure shows the moved and patched initial solution for the static pressure,

for the new mesh.

the new mesh, and the solution is finally moved to this object. The program
stores the initial solution in a dat-file, which can be read by Fluent5. By
using a function called ”Patch” in Fluent, the face values of the cells in the
mesh are created. These values are calculated from the centroid values by
predefined functions. The new mesh, with the new patched initial solution
for velocity can be seen in Figure 15, and the static pressure can be seen in
Figure 16. A converged numerical solution for the new mesh is obtained in
the same way as for the other mesh, but now the dat-file with the patched
initial data is read before the iterations are made. Unfortunately enough the
solution does not converge as fast as assumed. The possible reasons for this
is discussed below.

For a comparison, the solver is also run for the new mesh, with a zero initial
solution for a great number of iterations. The solution converges short after
300 iterations. Totally 516 iterations are made, and Figure 17 and 18 shows
the plots of the velocity field, and the static pressure field. = When visu-
ally comparing the mapped and patched initial solution to the convergent
solution, the similarity of the solution fields is easy to see. Looking at the
velocity field, it is clear that the vectors in most places are directed correctly.
The pressure is however not correctly suited for the new geometry, where the
most narrow passage is situated half way through the pipe. In the previous

30

1.32e+01

1.19e+01

1.06e+01

9.28e+00

7.97e+00

6.67e+00

5.36e+00

4.06e+00

2.76e+00

1.45¢+00 AL
X

1.46e-01

Velocity Vectors Colored By Velocity Magnitude (m/s) Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 17: The figure shows the converged velocity solution for the new mesh in the z=0

plane. The solution was calculated with zero initial data, and 516 iteration was made.

3.23e+04
2.11e+04
9.95e+03
-1.24e+03
-1.24e+04

-2.36e+04

g
i, [|
pF e
B s

-3.48e+04

-4.60e+04

-5.72e+04

-6.84e+04 AL
X

-7.95e+04

Contours of Static Pressure (pascal) Aug 25, 1999
FLUENT 5.0 (3d, segregated, ke)

Figure 18: The figure shows the converged velocity solution for the mew mesh on the
surface defined by velocity=0. The solution was calculated without initial data, and 516
iteration was made.

ol

geometry the most narrow passage of the duct was the outlet. The velocity
in this region is therefore highest. The initial solution for the new geometry
uses this pressure field as the starting field. This distribution will however
change quite a lot.

Tests have also shown that Fluentb converges faster if also the faces of the
cells are initialised. The patch function helps the solution to converge, but
the result would have been better if the face values could be mapped in the
same way as the centroid values. This seem a bit strange, because the fact
that Fluent5 calculates the face values from the centroid values, but the an-
swer to why this is so can probably be found if the algorithm that Fluent)
uses is investigated.

8 Conclusions

The main result of the work is the program files containing all the func-
tions. The main-functions created fulfils the specifications that was put on
the work, so in this sense the programs are successful. A parametric geome-
try of the waterjet duct is generated and the information about the geometry
is communicated to Gambit, which creates the mesh. Further, the mesh can
be handled and mappings are made between different geometries and meshes.
Finally, initial data is given to a mesh, by using existing data from another
mesh.

However, the general purpose of the program is to make the fluid flow prob-
lem in the waterjet duct to be solved with less iterations, by giving the mesh
a good initial solution. Unfortunately no thorough investigation of how fast
the solution generally converges, if the initial solution is given this way has
been made, due to lack of time. A limited number of tests was performed
and the calculations show that the moved solution, that is used as initial
data, looks pretty good, when it is visualised in Fluentb. However so far the
solution does not converge as fast as expected.

It has been established that the parametric model for the geometry works
well, and is very useful, when comparing grids. The structured parametric
help grid is also a successful tool in this process, and most often the reference
given by the help grid is the corresponding cell, or in some cases one of its
neighbours.

52

9 Discussion on possible further work

The purpose of this work was not to solve all problems, concerning the map-
ping of a solution optimally, and to get a program that works for all possible
scenarios, of modelling the waterjet duct. The aim was to find one way of
mapping a solution. All different parts of the program works, and the chain
of processes that is needed to in the end generate the initial solution holds.
The program is however far from a finished product.

Disregarding all the improvements that can be made on the actual code in
the program files, a first step in proceeding this work is to further investigate
how Fluent5 uses the information in the data file, and what happens between
the iterations. By understanding this more accurate information can be given
to Fluent5, and a lot would be gained. What has been seen already is that
the solution values of the faces of the cell should be calculated and printed to
the data file, where the initial solution is saved. There may also be further
variables that Fluent) is dependent of. One simple way of finding out, what
Fluent5 really needs from the initial solution, is to take a data file of a conver-
gent solution, and remove one variable from the data file at a time, and then
test how fast the solution converges, when this data file is used as initial data.

The algorithm that finds the corresponding cell in another grid seems to
be working well. As it is now the solution values that are given to the cells
are just values taken from one corresponding cell in the other grid. This could
be further developed to make averages of several cell values if the solution is
mapped from a fine grid to a coarse grid, alternatively interpolation can be
used, when the solution is moved from a coarse grid to a finer one.

93

References

1]

2]

3]
[4]
[5]
[6]

7]
8]

V.B ANAND, COMPUTER GRAPHICS AND GEOMETRIC MOD-
ELLING FOR ENGINEERS, Cambridge John Wiley & Sons, Inc.,
1993.

J.J BARTON and L.R NACKMAN, SCIENTIFIC AND ENGINEER-
ING C++, AN INTRODUCTION WITH ADVANCED TECHNIQUES
AND EXAMPLES, Addison Wesley Longman, Inc., 1994

G.K. BATCHELOR, AN INTRODUCTION TO FLUID DYNAMICS,
Cambridge University Press, 1967.

[.G. CURRIE, FUNDAMENTAL MECHANICS OF FLUIDS,
McGraw-Hill Book Company, 1974.

J LIBERTY, LAR DIG C++ PA 3 VECKOR (TEACH YOURSELF
C++ IN 21 DAyYs), Pagina Forlags AB, 1998.

H.K VERSTEEG and W. MALALASEKERA, AN INTRODUCTION
TO COMPUTATIONAL FLuiD DyNAMICS, THE FINITE VOLUME
METHOD, Addison Wesley Longman Limited, Inc., 1995.

Personal Communication

J. LENNBLAD, Caran Automotive (Dynamics Department),
Gothenburg, Sweden, 1999.

G. SeEiL, Kamewa, Kristinehamn, Sweden, 1999.

o4

