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Abstract

This thesis concerns the evaluation process of p-mean options. This
class of options includes the subclasses Asian options and Lookback op-
tions. The first of these subclasses is a very important tool for econom-
ical insurance, while the other presents a chance to gain large profits
but is relatively expensive. Both of these are well known throughout
the literature of financial mathematics, and many papers have been
written on the subject of evaluating these. However, to the best of our
knowledge none has used the Finite Element Method.

We present some results showing that the Finite Element Method
can perform very well in some circumstances. It performs with high
accuracy, even when using fewer degrees of freedom than comparable
numerical methods ([19]).

We also present an approach to a similarity reduction of the fixed
strike Asian call option. This approach is much less complex than the
previously known approach due to Rogers and Shi [13], but has never
been presented before as far as we know.
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1 Introduction

An option gives the holder the right, but not the obligation, to buy or sell a
certain commodity for a price determined by an initially agreed formula at a
settlement date or within a designated period. There are two main purposes
of options. As a tool of speculation, and as a tool of insurance (or indeed
as have been pointed out to us, as a tool for having fun). Take for example
a share X with the price of $1 at the date ¢t = 0. Assume that an investor
were to believe that the share is undervalued, and therefore that the price of
the share is likely to rise within a certain period (say until ¢ = 7). Then the
investor could buy a number of shares, and sell them later to earn money
on his beliefs. If the share price at ¢ = T had risen to $1.10, the investor
would have made a profit of (disregarding the effects of interest rates, and
transaction costs)

the share price at t=T - the share price at t=0 1.10—1 10%
g = 0.

initial investment 1

If instead the investor would have bought a number of options with the
payoff equal to the maximum of 0 and the share value at t=T - $1 for the
price of $ 0.05 (a reasonable price), the profit would have been

the share price at t=T - § 1- initial investment  1.10 — 1 — 0.05
PEETIE = = 100%.
initial investment 0.05

Note that, if the share value dropped to under 1$ the investor would loose
everything. The option described above is very suitable for gaining large
profits compared to the option price.

As an example of an option suitable for insurance purposes, take for
instance the Asian option, which in a certain variant pays the holder of
the option the maximum of 0, and a strike price K minus the average of
the underlying contingent A at expire. This payoff is commonly written
as max(0, K — A). A company Y may have to make large investments in a
foreign currency at a few time instances while continually selling a product
in the same currency. As an example take a manufacturing company based
in Sweden. They buy industrial robots from the USA, once every other
year, but they sell their products back to the USA at a steady rate. This
company is very vulnerable to fluctuations in the US dollar. To insure the
company against changes in the value of the US dollar, the company could
buy a number of the options mentioned above at the time of buying the
robots. If the value of the dollar dropped during the following period, the
value of the option would increase, making up for the decrease of profit from
selling the manufactured product. Of course the options are not for free, so
the company would have to decide what risk they would be willing to take,
bearing in mind the cost of insurance.



The history of options is long and can be divided into two main parts,
pre- and post- Black-Scholes. The first known example comes from Thales
(624-547 BC), who lived in Miletus, Greece. Aristotele wrote:

There is an anecdote of Thales the Milesian and his financial
device, which involves a principle of universal application, but
which is attributable to him on account of his reputation for
wisdom. He was reproached for his poverty, which was supposed
to show that philosophy was of no use. According to the story,
he knew by his skill in the stars while it was yet winter that there
would be a great harvest of olives in the coming year, so, having
little money, he gave deposits for the use of all the olive presses
in Chios and Miletus, which he hired at a low price because no
one bid against him. When the harvest time came, and many
wanted them all at once and of a sudden, he let them out at
any rate which he pleased, and made a quantity of money. Thus
he showed the world that philosophers can easily be rich if they
like...

It is worth mentioning at this stage that astrology is not an accepted
method in the field of option evaluation theory. Whether it is or not in other
parts of financial theory, we can only speculate about. Another notable and
amusing anecdote comes from 17th century Holland. About 1600, huge
amounts of money were paid for tulips, and for tulip bulbs. In order to
insure themselves against sudden drop in prices, the growers bought put
options (i.e. options with the payoff max(0, fized strike-price — the tulip
price)), and the retailers bought call options (payoff max(0, tulip price — fized
strike price)) to insure themselves against steeply rising prices. However, the
market eventually crashed in February 1637 following months of speculation
resulting in outrageous prices, for tulip options.

Option trading has been a reality for a long time, even on official boards.
But it was first after Fischer Black and Myron Scholes presented their con-
sistent treatment of the subject [3], and a reliable valuation model for a
number of simple options, that full-scale trading was allowed. It started
in Chicago, on the Chicago Board Option Exchange in 1973, and has since
spread to all financial corners of the world.

We would like to present some common terminology concerning options.
A put option gives the holder the right to sell an asset, while a call option
gives the holder the right to buy an asset. An Asian option in general
depends not only on the underlying asset price, but also of the time average
of this price. A typical example gives the holder the right to buy an asset
for its average price over some period. Consistently, there exist Asian calls
and Asian puts. When we talk about a simple call option, we are referring
to the type of option with a payoff max(0, the share value at expire date —



fized strike price), and similar for the put. These two kinds are commonly
referred to as vanilla options.

In this thesis, we will study p-mean options and especially the form
of Asian option mentioned in the example of the manufacturing company
above. An Asian call option (or a fixed strike Asian option) is an option
with the payoff maz(0, A — K), A for continuous average of the stock price
and K for the strike price determined beforehand. The meaning of a p-mean
option will become clear in the following sections, and Section 11 is entirely
devoted to numerical results of p-mean options.



2 Fundamental Concepts

The model for the evolution of the stock value S(t) used in this paper is
standard in financial literature, and is commonly referred to as the Bachelier-
Samuelson model. Bachelier was the first to have the idea that the stock
price could be accurately described as a diffusion process, an idea which he
presented in the article “Théorie de la spéculation”! [1], about year 1900.
This point of view became popular first after Samuelson’s “rediscovery” in
1965, where he presented an article in which the stock price evolution was
modeled as a geometric Brownian motion with drift [15]. In this model the
value of a bond is assumed to develop as

dB(t) = B(t)rdt
while the stock value is assumed to develop as
dS(t) = S(t)(udt + odW (t)). (1)

Here, a =y — %2 is the assumed drift of the stock log-price, o the volatility
and W (t) a normalized Wiener process. Let Qr = C[0,T], P be the corre-
sponding Wiener measure and W (t,w) = w(t), w € Qp. Then, W(t) is a
normalized Wiener process with respect to the probability space (Qr, Fr, P),
where Fr = o(W(t);t < T). Define

W(t) = M;Tt—I—W(t). 2)
Furthermore, by letting
PY[A] = P[A — {a}] for A € Fr
and
Wa(t) = W(t) — a(t)

it follows (see [4]) that W%(t) is a normalized Wiener process with respect
to the probability space (Qr, Fr, P*). Let us now state a very important
result in these financial environments.

Theorem 2.1 (Cameron-Martin) Let h € L%([0,T], B([0,T])), and
define a € Qr as
¢
a(t) = / h(\)dA Vi€ [0,T].
0

Then - -
dP*(w) = ello MO ON=5 [y hOPd gp(). (3)

!The greatness of his worked was not understood at the time he wrote the article, and
his contribution was not recognized until after his death in 1946.



For a proof, see for example [4]. So by letting h = —“" and a = f; h(\)dA
in (2) we know that there is a probability measure P such that W () is a

normalized Wiener process with respect to (Q7, Fr, P) and by equation (3),

P and P are equivalent?. The probability measure P, the so-called “risk-
neutral” measure is commonly denoted by ). The definition of the process

W (t) yields
dS(t) = S(t)(rdt + odW (t)). (4)

We will need the following three definitions.
Definition 2.2 (Progressively measurable) If the mapping
(taw) - h’(taw)a (taw) € [OaTO] X QT

is (B[0, To] x Fr,)-measurable for every fized Ty € [0, T, then the stochastic
process h = (h(t))o<i<T is said to be progressively measurable.

Here w denotes a realization of the underlying Wiener process.

Definition 2.3 If the stochastic process h(t,w) = (h(t))o<i<T is progres-
sively measurable, and

T
A|hwwﬁ<mw&[m

for some p € [1,00[, then h € L}, [0,T].

Definition 2.4 If the stochastic process h(t,w) = (h(t))o<i<T is progres-
sively measurable, and
E[| h(t) "] < o0

for some p € [1,00], then h € M¥%,[0,T].
Here W denotes the underlying Wiener process.

Consider a portfolio consisting of hs(t) stocks and h(t) bonds at time
t, where hs(t) and hy(t) are Fi-measurable and with the restriction that
hsS € M%/[O,T], and hy, € L/ [0,T] = L%;V[O,T]. The value of the portfolio

at time ¢ equals
v(t, 5(t)) = hs()S(¢) + ho(t) B(t). (5)

The portfolio strategy 3 is said to be self-financing if () fulfils

do(t,S(t)) = hs(t)dS(t) + hy(t)dB(t)
= hs(t)dS(t) + hy(t)rB(t)dt, ¥Vt € [0,T]. (6)

We will need the definition of a non-arbitrage portfolio-strategy.

2Two positive measures y and v on a measure space (X,.4) are said to be equivalent
ifu(A) =0 rv(A4)=0 VA € A
3 A sequence of holdings in the stock and the bond, i.e. (hs(t),hs(t))o<t<T-



Definition 2.5 A self-financing strategy is said to be free of arbitrage if,
the two conditions v(0) = 0 and v(T') > 0 implies that v(T) = 0 a.s., i.e.
Plv(T) =0] =1.

The existence of the risk-neutral measure guarantees that every self-
financing strategy is a non-arbitrage strategy. To see this, we state the
following theorem were we use the risk-neutral measure Q).

Theorem 2.6 Every self-financing portfolio strategy in the stock and bond
is free of arbitrage.

Proof. Let (v(t), hy(t), hy(t))o<i<T be as above with v(0) = 0 and v(T") > 0.
Define

from which it follows that

d(B(t)X (t)) = hs(t)dS(t)+hy(t)dB(t) = hs(t)dS(t)+ B dB(t)
Define b ()5 (s

olt) = o0
and thus

he(as() = S9BD a4 oari () = @dB(t) + g(t)B(1)dW (1)

Hence
and therefore
Now since g(t) € MI%V[O,T],
X(T ) + / ) = X(0) = E9[X(T)].

To see that EQ[fOT g(t)dW (t)] = 0, consider the step function f € M%/[O,T]

T
/O(f t))%dt = Zf (te) (k1 — tk);

k=0

hence

00 > EY( / f(t)dw)? Z EC[f*(te)] (trsr — th);

10



and therefore f(t,w) € L%(Q), k=0,...,n — 1. Since if in general Y (w) €
Q)

</QT|Y\dQ)2§/QTdQ/QT\Y|2dQ:/QT|Y|2dQ<oo,

by the use of Cauchy-Schwarz inequality, Y (w) € L*(Q) and hence f(t;,w) €
LY(Q), k=0,...,n— 1, and therefore

EQ[/OT fyaw] = ZEQ W (th1) — W (t))]

= ZEQ FER)EC(W (th1) — W (k)] = 0,

since E?[f(tx)] < co. So from the approximation theorem stated below, we
conclude that

B9 /O o di] = o.

If X(0) = v(0)/B(0) = 0, it follows that X(7T) = 0 a.s. [Q], from which
we conclude that v(T) = B(T)X(T) = 0 a.s. [Q] and since [Q] and [P] are
equivalent P[v(T) =0] =1

QED

Theorem 2.7 (Approximation theorem for M (0,T)) Suppose h € M% [0, T).
There exists step functions h, € M2 ERY NS N, such that

i Q
Jim E [ / gn(t ))2dt] =0

For a proof see [11].

From the above it follows that we have no arbitrage in the Black-Scholes
model. It is worth mentioning that it is easy to generalize Theorem 2.6 to
several dimensions (i.e. several underlying stocks).

Another very important and often used tool in financial mathematics is
It6’s lemma.

Lemma 2.8 (Itd) Let u(t,z1,...,Tm) be one time continuously differen-
tiable in t € [0,T] and two times continuously differentiable in x1,...,z,, €
R. Suppose:

n
dX;(t) = ai(t) + Y bir(t)dWi(t)
k=1
where W1 (t), ..., Wy(t) are independent Wiener processes, and
ai(t) € L}, [0,T), bi(t) € L, [0,T) Vi€ (1,...,m),k € (1,...,n).
By letting
X(t) = (X1(t), ..., Xm(t))

11



it follows that

du(t, X (t)) = %(t,X(t))dt+Z%(t,X(t))dXi(t)
i=1 ¢

N 1 & 0%u
2 ig=1 8351835]

(¢, X (2))dX; (t)dX; (). (7)

Furthermore, by definition
(dt)? = 0,dt dW;(t) =0,

AW, (8)dW, () = { 8“ z;;

Lemma 2.9 (Coefficient matching) Ifa; € Lw|[0,T], by € L?,[0,T], k=
1,2 and
a1 (t)dt + b1 (t)dW (t) = aa(t)dt + by (t)dW (t)

then a1 = ay and by = by.

Proof. Set a = a1 — ag, b= b1 — bg, Then
t
X(t) — X(0) = / a(N)dA + bW (A) = 0.
0

Hence dX (t) = 0, and dX2(t) = 0. But dX?(¢) = 2X (t)dX () + b?(t)dt and
we get b?(t)dt = 0. From this we conclude that ¢ = b = 0, and therefore
a1 = a9 and b1 = b2.

QED

We will now derive the so called Black-Scholes pricing formula for an
option with a payoff function of the type

f(S(Tl)a KRN S(Tn))a
based on the following definition.

Definition 2.10 Let P be the set of all continuous non-negative functions
f for which there exists a C' > 0 such that sup{e “1*If(e®);z € R} < 00. A
simple European option with the payoff f(S(T)),f € P, has at time t < T
the theoretical value

’U(t, S(t)) _ 6_T(T_t)E[f(SG(T_UZ/2)(T_t)+GW(T_t))]S:S(t).

12



Again we let
r—Hp

a= t, 0<t<T.

By the use of Cameron-Martins theorem we conclude that

dQ(w) = ¢ F WD -3(54) T3p(w),

which implies that
e N2
dP(w) = e = WM+ () TaQ(w).

Recall that 5
W(t) = W(t) — a(t)
is a normalized Wiener process with respect to the probability space (Qr, Fr, Q).

Theorem 2.11 Assume that f € C(R") and thatt <T} < --- < T, <T.
It follows that

E[f(S(T),- -, S(Tn))|F]
— B[f(se =T M=00Wr, =W0) | oolr=5)(Ta=Oto(Wr, W)} o
Proof.
E°[f(S(T1), ... S(L)17i]
— BR[f(S(t)eb= TN Tt Wn = W) | g (f)eli= T ) Tamt)o(Wa, W) 7
:EQ[f(S() )T~ +o( W, W) (te )T 1)+ oW, W) | £
— EQ[f(se(™" 2 )(T1—t)+o (Wi, — W Se( —é)(Tn_tHg(an W)
e o, st B oy
QED

By Definition 2.10
'U(Tn—l) = e_T(Tn_Tn_l)EQ[f(S(TI), cee 1S(Tn))|an—1]a

which is a function of the type g(S(T1), ..., S(Th—1)), where g is non-negative
and continuous. By considering g to be the payoff of an (fictitious) option
with maturity 7}, 1, we conclude that

0(Tn—p) = ¢ "It BRIG(S(T1), ..., (L)) | P,y -
Set Y = f(S(T1),...,S(Ty)). By induction, we conclude that
ot) = e "M VE T TTIEQ T ERY | Py, ] | Fy]|F]
e "D EQY | Ry,

where we used the Tower Property of Conditional Expectation: If H is a
sub-o-algebra of G, then E[E[X|G]H]| = E[X|H]. This result motivates the
following definition

13



Definition 2.12 The value v(t) at time t of a European option with matu-
rity date T and payoff function Y € L?(Qr,Q),Y > 0, equals

o(t) = e "TNER[Y|F], Vtelo,T).

This is commonly referred to as the Black-Scholes pricing formula.

The above formalism gives rise to the possibility of calculating the op-
tion value as an expectation. By simulating the trajectories of the Wiener
processes involved in determining Y a large number of times, we can easily
calculate an approximate value of this expectation. This method is com-
monly referred to as the Monte-Carlo method and we will use this method
later on.

14



3 Average options

Armed with the theory from the previous section, we will now derive valu-
ation equations for a certain class of options. A subset of these will be the
so called p-mean options. To begin with set

t
2() = [ g(S(), Nax
0
so that
dZ(t) = g(S(t),t)dt.
Consider an option with the payoff function
f(8(T), Z(T)).

To evaluate an option of this form, we assume that the value can be written
in the form?*

v(t) = v(t, S(t), Z(t))- (8)
We recall that by (4),
dS(t) = S(t)(rdt + odW (t)).

Put

We will sometimes write
S(t)=s, Z(t) =z,
and consequently
z = (s,2).

Now, applying It6’s lemma to equation (8), results in
do(t, X (1)) = w(t, X(1))dt + vy(t, X ())dS(t) +v,(t, X (t))dZ(t)  (9)

+% (’u;'s(t,X (1)(dS(t))* + 200, (¢, X ())dS(¢)dZ(t)

ol (t, X (1) (dZ(1))? )
= u(t, X (¢))dt + vi(t, X (¢))dS(t) + v, (¢, X (t))g(S(t), t)dt
S?(t)o?
T

v (t, X (t))dt.

So let v(t, X(t))o<i<T be the value process of a self-financing strategy, and
by equations (6) and (9), coefficient matching yields

hs(t) = v (t, X (¢))

“See for example [18].

15



and

S2(t)a®
2 IUSS

hy(t)rB(t) = vj(t, X (£) + v, (£, X (£))g(S(1), 1) + (t, X (2))-

From equation (5) it follows that

v(t, X(1) = S(t)’vé(t,X(t))+%(v£(t,X(t))

S2(t)o?
2

+o(t, X (1)g(S(1), 1) + vis (£ X (1)),

from which we conclude that (omitting arguments of v)

s?0? ,

5 v —rv=0,5>0,t<T. (10)

vy +rsv, + g(s, t)v;, +
This equation will be used together with the final condition
IU(T7 s’ Z) = f(T7 S’ Z)7

appropriate to the option of interest. In the following sections, we will use
the PDE formulation of evaluating option prices. We will then solve these
PDE’s using the Finite Element Method and compare the results with the
option prices obtained by others and by using the Monte Carlo method.

16



4 Dimensionality reduction

Throughout the literature, different suggestions and approaches (see for ex-
ample [13]) have been made to reduce the dimensionality of equation (10).
We have chosen the simple method of change of variables, to find possible
similarity reductions. Here our work have been concerning p-mean options,
with a payoff function equal to either

F(T,S(T), Z(T)) = max(Z(T)*/? — K,0) (“fixed strike”)
or
f(T,S(T), Z(T)) = max(Z(T)"/? — S(T),0) (“floating strike”)

where

Z(T) = [y 9(S(A),N)dX

g(8(t),t) = SP(t)p(?).
An approach with
z

’U(t, S, Z) = S’U,(t,y), Y= ;
is known to reduce the dimensionality of the floating strike Asian call option,
i.e., with the payoff

f(T,8(T), Z(T)) = max(Z(T) — S(T),0),

(see [18]). By using the transformation v(t,s,z) = h(s)u(t,y), v = y(s,z)
we can write equation (10) as

h' h" , , h o252 "
ut+u('r$% 2 3 )+ uy (rsyl, + gy, + 0”s %yﬁ 5 Yss)

2.2
gs 2..n

(), = 0. (1)

_I_

Consider for instance the payoff

F(T, S(T), Z(T)) = max(Z(T) — K,0), Z(t) = /0 " S()p(N)dA

so here g(S(t),t) = S(t)p(t). We make the ansatz
z— K
P

v(t, s,2) = su(t,y) = h(s)ult,y), y=
Plugging this into equation (11) gives us

1 02520

!
ut—l—u(rss 5 )
! -y 1 2.21—Y a’s* 2y
. t — — < <
+u, (rs +sp()s—|—038 . 5 32)
2 2
a8 —Yy2 n
T (— s )"y
' ! 9202 "
= uy + uy (p(t) — ry) + T Uy = 0, (12)



with the corresponding final condition

v(T,s,2) = smax(z ,0) = smax(y,0) = u(T,y) = max(y, 0).
For an alternative, although a bit more tedious derivation of this formula,
see [13].

To sum up this specific example, we notice that for a discretely sampled
Asian option, p(t) will contain point masses. So by allowing ourselves for a
moment to regard p(t) as being made up by Dirac “functions”, and setting®

o) = [ pvix

w = q(t)+y
ut,y) = plt,w)
equation (12) becomes
2 2
o
uy + uy (p(t) — ry) + yT“Zy

= py — p(t) s, + pl, (p(t) — r(w — q(1))) +
(g(®) —w)o)*

2 ww

— i+ r(a(t) — ), + —o. (13)
Written in this form, we can solve a PDE with numerical PDE-methods
to determine the value of discretely sampled Asian options. Let v(t) be a
function without Dirac-pulses in the interval |©,7T], 0 < © < T, such that
for a €]©,T], p = v + 64- The price of the option must be continuous
with regard to a, which follows from Definition 2.12 and the Dominated
Convergence theorem. Hence the final condition u(7,w) = max(w,0) is
valid even if p has a Dirac-pulse int =T/
Consider now the payoff

T 1 T
FS@), [ o(S(), V) = max(0, (7 [ g(S(), NN - (7))
with
g(s,t) = 5",
and .
Z(t) = /0 9(S(A), A)dA.

Make the ansatz

¥4
’U(t,S,Z) = S’U,(t,y), Y= 8_p

®As suggested by Vecef, [17].

18



Observe that

—N—
ST &
I
:::|>—A",é|,_.

and that
/ pz DYy

Vs = T T T

Differentiate this to deduce that,

2
n _ PY p'—@—i-p—Qy
S

Yog = —5 — — =
88 32 35 32

and substitute these results into equation (11) to obtain

hl 0_282 hll
uy +u(rs—= + % —

r)

h 2 h
h' o2s? o022
+uy (rsyl + gy, +0282fy§ + 5 Yhs) + 5 (W)
, 1 02520
=uy +u(rs— + - —r)
s 2 s
, DY 1 5 51—py  o%s® py  p?
‘|"u,y(’l"87 +8p5—p +o0°s ET + 2 (5—2 + S—Qy))
2.2
o~$s PY.o n
g )
/ ! 2 o? 2 o? 2 1
= wy +uy(—pry +1 = poy + o (py +py)) + 5 (—py) uy,
2 2
oy o
= uy +uy(—pry + 1+ —=(p" = p)) + - (py) uy, = 0.

The payoff will be
su(T,y) = smax(0, (Sip)l/p —1) = smax(0,y'? — 1)

and hence
u(T,y) = max(0,y"/? — 1).

So for the general p-mean option with floating strike, we only have to solve
a PDE in one spatial dimension. Furthermore, by letting p tend to infinity
it should be possible to find a PDE for the floating strike lookback option.

19



5 The FEM approach for solving the value gov-
erning equation

Consider equation (10) with g(s,t) =

5202
vy + rsvl + sPul, + 5 vio—rv=0,s>0,t<T, (14)
and write this in the form
—v, — V- (a(z)Vv) + b(z) - Vo + c(z)v =0, 7= (s,2), (15)
where
0'252 0
a(z) = (2) 0 ], b(z)=—[(r—0%)ssP] and c(z) =7

Multiplying equation (15) by a function (¢, ) and then integrating over
time and over a suitable bounded area of s and z denoted by €2, we obtain

/ / (z)Vv) + b(z) - Vv + c(z)v)pdQdt

-/ / —vlo + (a(2) V) - Vip + (b(e) - Vo)p + c(a)vi)dlt

/ / .idl =0, (16)

using the Gauss divergence theorem. The boundary of 2 is denoted here by
I', and 7i is the from 2 outward oriented unit normal.
The so called weak solution to equation (14), is to find v € W, where

W = L2([0,T]) x Hi(Q), Hi(Q) = {uv: /Q(zﬂ + Vo[2)dQ < 00)}
such that

/ / —vpp + (a(z) Vo) - Vo + (b(z) - Vo) + c(z)vp)dQdt

// )-7dl =0 Vo € W.

However, to find the weak solution is not an altogether easy task, and we
will therefore seek only an approximate solution. Partition the time interval
[0, 7] into 0 = tp < t1 < --- < ty_1 < txy = T where I, = [tp_1,tn], kn =
tn — tn—1. For each I,, let ¢,_1(t) = Eﬂ;—t and 9, (t) = t_,te—:‘l for t € I,.

Subdivide the relevant area €2 into triangles of suitable size, and denote
this triangulation 7. A triangle of this triangulation will be denoted &, hence
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T = {k}. Furthermore, let P, C H(Q2) denote the space of all continuous
piecewise polynomials of degree k defined on 7°. Now, define

W) = {w(t,z) : w(t,z) = Yn_1(t)vp_1(z) + Pp(t)vn (),
Un—1,Vn € Pg, (t,z) € I, x Q}

and
Wy ={w(t,z) : w(t,z) =t°p(z), ¢ € Pi, (t,2) € I, x Q}

and finally . .
W' ={¢:¢|nLxa €W.}, i=0,1.

A possible finite element approximation to the formulation of equation
(14), would be to find v € W' such that

/0 ' /Q (—vlo + (a(z)V0) - Vo + (b(z) - Vo) + c(x)vp)dQdt  (17)
— /T/ o(a(z)Vv) - Adl =0, Yo € WO.
0 JI'

There are several possible ways to make other finite element approxima-
tions to equation (14). One possibility is to use higher order approximation
in time, and define the spaces W9 analogously to W and W'. Another is
to use quadrilateral elements instead of triangular in the subdivision of 2.

For the type of equation that we are trying to solve, the domain of influ-
ence is localized in such a manner that the boundary do not play much role
for the solution within the computational domain. What boundary condi-
tions are enforced is therefore of not much significance to us, because we are
looking for the solution at a point within the domain”. The finite element
method requires us to impose a boundary condition, and by the argument
above, we can choose almost whatever we like. We therefore choose a homo-
geneous Neumann condition on I', rendering the last term of equation (17)
conveniently zero. This localized dependency is fortunate, because there are
no financially motivated boundary conditions in this context (see Zvan et
al. [19]).

We have that Py, = span{¢1, ¢2, .., b (7)}, Where ¢;,i = 1,..., M(T),
are orthonormal, have small support, and are commonly referred to as the
nodal basis for P;®. Let us now expand v, (z) in this nodal basis

M(T)

'Un(x) = Z Vn,z¢z(x)7
1=0

5% will be equal to 1 or 2 in the numerics later on.
"For a further discussion about this see [19].
8See [7].
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and also use the ¢; as test functions, observing that these are indeed piece-
wise constant in time since ¢; = t%¢; = ¢;. Inserting this into equation (17)
yields (with V,, = (Vnyo, Vaas-e-s Vn,M(T)))

k k k
_(Vn_Vn—l)M+7n(Vn+Vn—1)Sl+?n(Vn‘I’Vn—l)SQ‘f‘T(Vn‘}‘Vn—l)M?n =0

where

M = (¢ja¢i)a Sl = (b(saz) ) V¢ja¢i)a S? = (G(S,Z)V¢j,v¢i).
After rearranging, this becomes

kn, kn, kn, kn kn kn,
anl(M(l +T7) + 751 + 752) = Vn(M(l — 7“7) — 75’1 — 752),
We look upon this as a system of linear equations that we can easily solve
for each time step. Our final condition will determine the last V,, = Vy
for us, and we can then successively determine the value of the option for
t = t,, until we reach present date, t = 0.
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6 Duality

For these calculations, only a simple error analysis is done. From the 3D-
solution on €2, we are really only interested in one point. Hence, it is im-
portant to know which is the area that influences the solution at this point,
and spend our computational efforts here rather than somewhere else. By
considering the adjoint operator £*, defined by (Lv,¥) = (v, L*T), ((-,-)
denoting fOT Jq) we can formulate the dual problem to equation (14)°. Re-
membering that
- 0 0 » 0 s20% o2

—a-l-rs%—ks Bz+ 3 @—r,
it is easy to conclude simply by doing the calculations leading to (v, £*)
from (Lv, ), that the dual problem must be

LT = T}, — (r —0°)sV, — LT, (18)
0  o%s?
— —(2r—o%)¥ =
+o (5 ) — (2r = o) 0

U(t=0,8,2) = 05,2
U(t,s,z) = 0, t>0, (s,2)€el.

Now, to see why this is relevant, we multiply the equation above by a func-
tion e, and transfer the derivatives of W, onto e

// r—o)s\IJ's—si”\IJ;
0

) — (2r — 0?)T)e dtd

Os 2
- [ (#0)e() - ¥()e(T))a0

0 0
! 2 I P
—}—/0 /Q(\Ifet+(r o )\Ifas(se) +\I'azs e
252 0
q;;)%(e) — (2r — 0°)We)dtdQ

_ /Q (T(0)e(0) — T(T)e(T))dD

r / / / s%0° "
+/0 /Q\I!(et + rse; + sPe, 5 Css re)dtdS)

T
_ / (T(0)e(0) — T(T)e(T))dR + / / (T Le)dtdD2 = 0.
Q 0 JQ

Choose e = v — V, where v solves equation (14) combined with the
relevant final condition for the option of interest, and V' is the approximate

°For a more extensive discussion of duality see [7].
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solution, i.e. the solution to equation (17) (e for error). Since v(T') is known,
e(T) = 0, and this in combination with ¥(¢ = 0,s,2) = ds,,,,, makes us
conclude that

T
e(t =0,84:2a) = —/ /(lIJEe)dtdQ
0 Jo
T T
- / / (TL(v — V))dtdQ = / / (TLV)dtdS. (19)
0 Ja 0 Ja
We now have a closed expression for the error in a point (s4,2,) at time
t = 0, expressed in terms of the solution to the dual problem (¥) and LV.

The magnitude of LV represents the error we make by solving equation (17)
rather than equation (14).
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7 Results and conclusions drawn from the dual
problem

During the computations P, was chosen sometimes as P; and sometimes as
Pa, corresponding to cG1 and ¢G2 respectively (continuous Galerkin method
of order 1 and 2). In general the latter case gave more accurate results and
was therefore the preferred method. Some of the results in this and following
sections were derived with the cGl-method as well as with the cG2-method,
but we will only present the results for the cG2-method since this is the only
one of the two used throughout all numerics.

Even though the FEM-software developed to solve equation (10) with
g(t,s) = sP, was designed to handle arbitrary p, most of the results in this
thesis is for p = 1, simply because this is a well studied case, and there is
a lot of literature to compare with. We will state some results for p # 1 as
well.

The solution v of equation (17) is defined on a whole surface (2) rather
than in a specific point (sq,2,). We can easily draw the solution surfaces
using MATLAB’s PDE-toolbox, which was also used to initiate and refine
the mesh used for the calculations. The final condition v(7") = max(z— K, 0)
(here p = 1), will generate two planes as the solution surface for t =T (see
the upper left frame of Figure 1). These two planes will thereafter propagate
through the 3D-space as seen throughout the rest of the frames of Figure 1.
It would seem from these figures that a mesh of about 20 — 100 nodes would
suffice. However this is not true, a careful study of the solution-curves for
t # T reveals that the two-plane structure somewhat dissolves and especially
so for the points of interest (i.e. (S(0) = s9,Z(0) = zp = 0)). On the
contrary, the solution requires, in certain areas, a very fine computational
mesh.
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-100 -100 2 .

Figure 1: Above left shows V(¢ = 0), above right V(¢ = T'/4), below left
V(t = 3T/4), and below right shows V (¢t =T).
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Figure 2: Above left, is showing ¥ (¢ = 0), above right (¢ = T'/2), below
left shows ¥(t = T'), and below right shows ¥(t = T') as well, but only
values of ¥ such that ¥ > ﬁ

Consider equation (19). The error depends heavily on ¥ and LV, al-
though of course the choice of {2 and model errors are significant as well.
We might not know much about £V without actually calculating it, but we
do know that for an exact solution it would be equal to zero. However since
we are only approximating the solution numerically, LV will in general not
be equal to zero. But, from the equation it is easy to conclude that if ¥ is
small or even zero for some parts of Q, the error e(t = 0, s4,24) does not
depend on the magnitude of the approximation error |L(v — V)| in these
same areas. For all practical purposes this means that wherever ¥ is small,
we should not waste any computational effort to minimize [£(v —V)|. And,
of course, wherever ¥ is large, we should be extremely careful to make our
solution as exact as possible. We shall therefore use a coarse mesh where W
is small and a fine where U is large. In Figure 2 we can see the result of the
calculations of . The obvious conclusion is that by having a very fine grid
in the immediate vicinity of the point (s, 2,) and then gradually allowing
for a coarser grid further away from that point, we would still get a good
solution.
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We can compare our results with those in the literature using other
methods. In [19], different multidimensional PDE-methods are used than
the ones in this thesis (i.e. the Finite Element Method with and without
streamline diffusion stabilization), and it is therefore a good source for com-
parison. In Tables 1 and 2 we present some basic results to compare these
different approaches.

Option Value

Grid size At K=95 | K=100 | K=105
2853 0.01 | 6.113 | 1.829 0.163
10226 0.005 | 6.118 1.848 0.152
38634 | 0.0025 | 6.119 | 1.852 0.150

Table 1: Asian call option (defined in Section 1) values as computed by Zvan
et al. [19] (¢ = 0). Here, r = 0.1,0 = 0.1,7 = 0.25,S; = 100. Grid size
refers to the number of nodes used in the mesh.

Option Value

Grid size At K=95 | K=100 | K=105
2753 0.01 6.303 | 3.382 1.255
9858 0.005 | 5.812 | 2.232 0.367
38198 0.0025 | 6.001 | 2.061 0.136

Table 2: A first result for Asian call option values as computed by the
methods of this paper (¢ =0). Again, r =0.1,0 = 0.1,7 = 0.25, Sy = 100.
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It should be stated that we use a different mesh than in [19], although
with approximately the same number of nodes. Even so, this preliminary
result is somewhat disappointing. However, the approach is not as bad as
one would think after comparing Tables 1 and 2. The approach does a lot
better for larger 7" and for a larger number of time steps than used in the
above example. In Table 3 we have used a mesh with 9858 nodes as in the

o K | Broman | Foufas | Vecer Zvan MC L.B U.B.

95 | 10.959 | 11.112 | 11.112 | 11.094 | 11.094 | 11.094 | 11.114
0.05 | 100 | 6.679 6.810 | 6.810 | 6.793 | 6.795 | 6.794 | 6.810
105 | 2.995 2.754 | 2.750 | 2.748 | 2.745 | 2.744 | 2.761

90 | 15.360 | 15.416 | 15.416 | 15.399 | 15.399 | 15.399 | 15.445
0.10 | 100 | 6.989 7.042 | 7.036 | 7.030 | 7.028 | 7.028 | 7.066
110 | 1.776 1.422 | 1.421 | 1.410 | 1.418 | 1.413 | 1.451

90 | 15.632 | 15.659 | 15.659 | 15.643 | 15.642 | 15.641 | 15.748
0.20 | 100 | 8.419 8.427 | 8.424 | 8.409 | 8.409 | 8.408 | 8.515
110 | 3.704 3.570 | 3.568 | 3.554 | 3.556 | 3.564 | 3.661

90 | 16.522 | 16.533 | 16.533 | 16.514 | 16.516 | 16.512 | 16.732
0.30 | 100 | 10.228 | 10.231 | 10.230 | 10.210 | 10.210 | 10.208 | 10.429
110 | 5.821 5.750 | 5.748 | 5.729 | 5.731 | 5.728 | 5.948

Table 3: Asian call option values as computed in this thesis (Broman),
Foufas [10], Vetet [17] and Zvan [20] (¢ = 0). The upper and lower bounds
(L.B and U.B.) are due to Rogers and Shi [13], and the Monte Carlo (MC)
simulations are due to Vecef [17]. The parameters are set to r = 0.15,7 =
1,80 = 100, and for these calculations At = 0.01.

previous example, but used At = 0.01. Even though it is an improvement,
this could hardly be described as a very good result. To make a considerable
step in the right direction, we thought of two possible approaches. The first
and simplest idea was to try to find a reformulation of the original equation,
a formulation more suitable for the numerics. The other idea was to try
to compensate for the lack of diffusion in the z direction. By studying the
resulting solution-surface of a calculation (see below right frame of Figure
1), we can see that this is ill-behaved. The curve ”"wobbles” a lot, especially
for large values of s and z, and this is due to the non-diffusive property of
the equation (see [7] for a discussion on hyperbolic equations and hyperbolic
properties of equations). Somehow, we want to compensate for this. The
theory and results of the first approach is presented in Section 9, but first we
take a look at the stabilizing method, referred to as the Streamline Diffusion
Method.
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8 Streamline Diffusion

In this section we briefly describe the idea behind the streamline-diffusion
method. For further reading see [12] or [7]. Equations like the one in this
thesis, with diffusion in only one of the two spatial dimensions, often lead
to certain numerical instability problems. In the spatial dimension lacking
diffusion, the equation becomes hyperbolic in essence, with the associated
difficulties. One approach to resolve this problem is to add a small diffusion
term in the appropriate spatial direction. Ideally we would like to add the
extra diffusion without introducing any errors as the mesh size tends to zero,
e.g. we would like to add an equality to the equation. Recall equation (15),

Ly = —v, — V- (a(z)Vv) + b(z) - Vv + c(z)v =0 (20)

where

a@ =172 o

b(z) = —[(r —0?)s sP], and c(z) =7

The streamline-diffusion approximation to this problem is similar to the
standard finite element approximation, but with one crucial difference, the
term with the sum in the following problem formulation. Find v € W' such
that

BJ('U,(,D) (21)
T
- / (=0}, ) + (aVo, Vi) + (Vo,bp) + (cv, )

0
+ )  6.(L',b-V))dt =0 Vo e WO,
KET

On each element of the triangulation, we have defined
L'v=—v; — V- (P(aVv)) +b- Vv + cv

where (-,-) and (-,), denotes the inner Lo-product on 2 and & respectively,
and P, signifies the orthogonal projection in Lo(k) onto Pj.

The approach is very similar to that of using ¢ + b- Vg as test function
instead of the usual ¢ (see equation (17)). However, this is not the case in
the streamline-diffusion method (commonly referred to as the SD-method)
where b- Vo is instead used as a local test function on each element of the
triangulation 7. We would like to add local equalities to every element in
the triangulation 7, hence introducing no terms involving the boundaries of
the elements. Now, the term of interest in the SD-approach is

S 6.(L'0,b - Vo),
KET
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which contains the term
7 ]
D be(sPv,, 570, )k
KET

This term has the same form as a diffusion-term in the z spatial-direction
would have in the standard FEM-formulation if it had been present in the
original equation. So, we have introduced diffusion by adding

Z 0k (L'v,b- Vo), = Z 0x(V - (aVv) = V - (Pe(aV)),b - V),
KET KET

to equation (17). In the case were a is a constant matrix, this will become
zero. In the general case, we hope that the error we are introducing by not
solving the original equation any more will be small, and indeed smaller
than using the crude approach of simply adding diffusion as mentioned in
the beginning of this section (see [14]).

An error analysis of this method can be found in [5]. In the same way
as in Section 5, the following matrix equation can be derived by using ¢; =
t%; = ¢; as test functions, where v, (z) is expanded in the nodal basis

M(T)

= Z Vn,zqsz (‘T)
=0

Inserting this into equation (21) yields (with Vi, = (Va,0, Va,1,- - Va,m(m)

ky, kn,
(Vo = Vao1) My + —- (V + Voo1)S1 + (V + Vo1)S2
kn kn
+r(Vo, + Vn—l)M7 — (Vo —Vio1)S3 — T(Vn + Vpo1)Ss
ky, kn,
+7(Vn + Vn—1)55 + T?(Vn + Vn—l)SG = 07

where

Ml = (¢Ja¢l)a Sl = (b v¢]a¢l)a 52 = (av¢]’v¢’t)a
S3=3 6u($j,b- Vi), S1= 6x(V+ (Pu(aVv))e;), b+ Vo),

KET KET
S5 = Z O b V¢jab V¢z K3 Se = Z 5 ¢jab V¢’z)
KET KET

We look upon this as a system of linear equations that we can easily solve
for each time step. QOur final condition will determine the last V,, = Vy
for us, and we can then successively determine the value of the option for
t = t,, until we reach present date, t = 0.

As can easily be observed by looking at Figure 3, the SD-method def-
initely smoothes the solution-curve. But, much to our disappointment the
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Figure 3: The two pictures at the top describes the solution curve to equation
(14) without the use of streamline diffusion. This should be compared to the
solution with the use of streamline diffusion to the same problem presented
in the pictures at the bottom. Obviously, the curve is smoothened and shows
a more ”financially feasible” behavior

solution in the point of interest does not improve much! This however is
not very surprising since the solution of the dual shows that the influential
area and the areas that are stabilized by the SD-method are more or less
disjoint! Some (disappointing) results are presented in Table 4. The results
for T = 0.25 follows the same pattern, no substantial improvement (if indeed
any) can be observed. The results are presented in Table 5, and should be
compared with Tables 1 and 2.
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o K | Broman | Foufas | Vecer | Zvan MC L.B. U.B
95 10.962 11.112 | 11.112 | 11.094 | 11.094 | 11.094 | 11.114
0.05 | 100 6.633 6.810 6.810 6.793 6.795 6.794 6.810
105 | 2.966 2.754 | 2.750 | 2.748 | 2.745 | 2.744 | 2.761
90 | 15.398 | 15.416 | 15.416 | 15.399 | 15.399 | 15.399 | 15.445
0.10 | 100 7.042 7.042 7.036 7.030 7.028 7.028 7.066
110 1.480 1.422 1.421 1.410 1.418 1.413 1.451
90 15.623 | 15.659 | 15.659 | 15.643 | 15.642 | 15.641 | 15.748
0.20 | 100 8.476 8.427 8.424 8.409 8.409 8.408 8.515
110 | 3.529 3.570 | 3.568 | 3.554 | 3.556 | 3.554 | 3.661
90 16.476 | 16.533 | 16.533 | 16.514 | 16.516 | 16.512 | 16.732
0.30 | 100 | 10.265 10.231 | 10.230 | 10.210 | 10.210 | 10.208 | 10.429
110 | 5.712 5.750 | 5.748 | 5.729 | 5.731 | 5.728 | 5.948

Table 4: Asian call option values as computed in this thesis (Broman),
Foufas [10], Vecet [17] and Zvan [20]. The upper and lower bounds (L.B. and
U.B.) are due to Rogers and Shi [13], and the Monte Carlo (MC) simulations
are due to Vecef [17]. The parameters are set to r = 0.15,7 = 1, .Sy = 100,
and for these calculations At = 0.01.

Option Value
Grid size At K=95 | K=100 | K=105
2396 0.01 6.043 | 2.878 0.898
8495 0.005 | 5.744 | 2.194 0.424
33079 0.0025 | 5.990 | 2.053 0.211

Table 5: Asian call option values as computed by the Streamline Diffusion
method (¢t = 0). Here, r = 0.1,0 = 0.1,T = 0.25, Sy = 100. Grid size refers
to the number of nodes used in the mesh.
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9 Alternative formulation (Derivation of equation,
Variational formulation and the Dual problem)

9.1 Derivation of an alternative equation

The first part of this section is devoted to finding an alternative formulation
of equation (14). It will follow much the same pattern as in Section 3. Define

Z(t) _ Jog(S(), A)dA

Al == ¢

called the running average of the function g(S(t),t). It follows that

S(t), VA
A = (50D 70,

We are interested in payoff functions of the form
F(S(T), A(T)),
so again it seems reasonable that
v(t) = v(t, S(t), A(t)). (22)
We recall that (equation (4))
dS(t) = S(t)(rdt + odW (t)).

Puttin,
: X(t) = (5(t), A(?))

and applying It6’s lemma to equation (22), results in
dv(t, X (t)) = vi(t, X (t))dt + vi(t, X (t))dS(t) + vy (¢, X (¢))dA(t)

+%(v§'s(t, X(1))(dS(1))? + 2050 (8, X (1)) dS (1) dA(2) + vga(t, X (2)) (dA(1)?)

= v} (t, X (t))dt + vl (t, X (t))dS(t) + v;(t,X(t))(g(S(:)’t) B Az(f))dt
+S2(t)02q);,s(t,X(t))dt.

2
Again, analogously to Section 3 we identify
hs(t) = vi(t, X (t))
and conclude that

hb(t),rB(t) _ Ué(t’X(t))—l-’U;(t,X(t))(g(S(f)’t) _Ait))‘i‘
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So from equation (5) it follows that
v(t, X(t)) = S(t)v

+vg (£, X (2))(

from which we conclude that

vi(t, X (8)) + rS(E)vg(t, X (2)) + ( — = va(t: X (2)
+%v;’s(t,X(t)) —rv(t,X(t)) =0

and with the final condition
o(T,8(T), A(T)) = f(T,S(T), A(T)).

In the case of our p-mean options

o, S(T), AT) = max((ZE)17 — K,0) = max(A(T)7 — K. 0).

We are thus led to the equation

s a 5202
v} + rsvl + (? — E)'Ufz +—

v, —rv=0, t>0,5>0,a>0, (23)
with the final condition
v(T, s,a) = max(a'/? — K,0).

This introduces a singularity in the coefficient of v), for ¢ = 0. However,
since SP(8) Al

lim () — A®) =0,

t—0 t

we will set the coefficient in front of v/, that is

sP—a
t b

equal to zero for the last time step. This is a necessary assumption in
order to implement the numerics (equation (23) will then simply become
the Black-Scholes equation at ¢ = 0), and is used for example in [20].
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9.2 Variational formulation

Our next step will be to derive the weak formulation of equation (23). Re-
formulate this equation as

—vy — V- (e(z)Vv) + b(z) - Vv + c(z)v =0, 7= (s,a),

sP —a

e(@) = | 0(2) 0% @) =—[r— s ] and o(z) = .

As before, integrate (23) over time and over a suitable bounded area of s
and a (a = A(t)) denoted by (2. Using the Gauss divergence theorem gives

/ / —v) — (x)Vv) + b(z) - Vv + ¢(z)v)pdQdt
_ / / —vlp + (e() Vo) - Voo + (b(x) - Vo) + c(x)vp)dQdt
- / / (eV) - 7tdT = 0 (24)
0 Jr
as before. Again we seek the weak solution v € W, where
W = L2([0,T]) x Hi(Q), Hi(Q) = {v: / (v + |Vo[2)dQ < o00)}
Q
as the function v such that
/ / o+ (e(z) Vo) - Voo + (b(x) - Vo) + e(z)vp)dQt

—/ /(p(eV'u)-r‘idF:O, Vo € W.
0 JT

Next we discretise in the usual way. let 0=t <t <+ <ty.1 <
ty =T and I, = [th_1,tn], kn = tn . For each I, define 1, 1(t) =
% and 9, (1) = = t“ L for ¢t € I, We trlangulate Qinto T = {k}. As
before Py, C H1(Q) denotes the space of all polynomials of degree k defined
on each triangle x of (2.

Our finite element approximation to (23) will now be to find v € W
such that

/ / —vlo+ (e(z) Vo) - Voo + (b(x) - Voo + c(z)vp)dQdt
—/ /cp(eV'U) -7idl' =0 Vo € WO, (25)
0 Jr
(see Section 5, for the definitions of W°, and W1).
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Figure 4: Above left shows V(¢ = 0), above right V(¢ = T7/3), below left
V(t = 2T/3), and below right shows V (¢t =T).

By the same argument as in Section 5, the last term of equation (25), is
set to zero. Expanding v, (z) in the nodal basis {¢;} and using ¢; as test
functions, will lead to the matrix equations

kn,

k k k
(M1 42y + 2 89) =V (M(1 —r—2) —
Vo—1( (+r2)+251—|—25'2) Vo (M( r2)

kn, kn
25

where,

M = (¢ja¢’i): Sl = (b(s,a) . V¢j7¢i)a S2 = (6(3,2)V¢j,v¢i).

just as before. The difference lies in the definition of b(s, a). A set of solution
curves are presented in Figure 4.
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9.3 The Dual

Again, by considering the adjoint operator £*, defined by (Lv, ¥) = (v, L*T),
((-,-) denoting fOT Jo) we can formulate the dual problem to equation (23).
Recalling that

£—2+ E_FSP_GE_}_ﬁB_Z
ot "5s t Oa ' 2 052

_/r’

it is easy to conclude simply by redoing the calculations leading to (v, £* )
from (Lv, ¥), that the dual problem must be

1
LU = —T) — (2r — 7 — %) + (0% —1)sT,

sP—a_, 0 o2

_ ') = 2
o 27 ) = o (26)
U(t=0,s,a) = 0bg,,00
U(t,s,a) = 0, t>0, (s,a) €.

Now, to see why this is relevant, we multiply the equation above by a func-
tion e, and transfer the derivatives of ¥, onto e

T 1
/0 /Q(—\I';5 —(2r — i o) + (0% —1)sT,

D _ o 2.2
i '+—(%\I}’s))edtd9

t ¢ s
= [ (2(0)e(0) — ¥(T)e(T))d2
Q
r 0 0 sP—a
"2 o g
+ ; Q(‘Ifet (o r)\Ilas(se) +\Paa( . e)
o%s? _, 0 9
—( 5 \Ps)g(e) — (2r — = — o*)We)dtd2
= [ (2(0)e(0) — ¥(T)e(T))d2
Q
T D _ 2.2
+/ / U (e} +rse, + i ae; +29 e — re)dtdQ
0JQ 4 2

_ /Q(\Il(())e(O) —\P(T)e(T))dQ+/O /Q(\Ifﬁe)dtdﬂ ~ 0.

Choose e = v—V, where v solves equation (23), and V is the approximate
solution, i.e., the solution to equation (25). Since v(T') is known, e(T") = 0,
and this in combination with ¥(¢ = 0, s,a) = s, 4., makes us conclude that

e(t = 0, 50, aa) = — /OT/Q(\IJ,C(U —V))dtdQ = /OT/Q(\IILV)dtdQ. (27)
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-0.02
200

Figure 5: Above left, is showing ¥ (¢ = 0), above right U(¢ = T'/2), below
left shows ¥(¢ = T'), and below right shows ¥(¢t = T) as well, but only

values of ¥ such that ¥ > ﬁ.

Again, we are interested in the behavior of ¥, and some numerical results
are presented in Figure 5. To illuminate the outcome, it is also useful to
look at the result from above, and focus color-intensity to regions where ¥
is large (see Figure 6).
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Figure 6: Above left, is showing ¥(¢ = 0), above right ¥ (¢t = T'/2), below
left shows ¥(¢ = T'), and below right shows ¥(¢t = T) as well, but only

values of ¥ such that ¥ > ﬁ.
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10 Further results

In Table 6, we present some results as obtained with the alternative formu-
lation of the governing equation.

Option Value

Grid size At K=95 | K=100 | K=105
2279 0.01 6.114 1.849 0.156
7546 0.005 | 6.118 | 1.850 0.149
32897 0.0025 | 6.119 | 1.851 0.149

Table 6: Asian call option values as computed in this thesis (¢ = 0). Again,
r=0.1,0 =0.1,T = 0.25, Sy = 100.

This result should be compared with the results of Tables 1 and 2. It
is not hard to see that the results obtained here are far better than those
obtained from the original formulation. Furthermore, the results here com-
pared to the results of Zvan et al. [19] are more exact even though fewer
nodes are used. To demonstrate this even further, Table 3 is reproduced
and presented in Table 7 although using equation (23) instead of equation
(14) for calculating our solution. The column representing the calculations
of this paper, is very close to the results of Zvan et al. and the results of
the Monte-Carlo method. These are also very close to the lower bound, and
as is pointed out in [13] this is in fact very close to the true value, much
closer than the upper bound. In Tables 8 and 9, we present the results from
a number of different calculations using different mesh sizes and different
numbers of time steps for the same setting of parameters. For comparison,
the calculations made in this thesis from Table 7 are considered to be the
“exact” solution. Since there is no (known) exact solution, this numerical
solution will be considered a reference solution. It is easy to see that rel-
atively few nodes and time steps need to be used to obtain a reasonably
good result. It should be remembered that for practical purposes a retailer
would be satisfied with an accuracy on the percentage level. Already the
mesh used in Table 8 could suffice, even though it performs badly especially
in the case of ¢ = 0.1, K = 110. The setting in Table 9 is satisfactory, but
by taking something in-between the two cases we could find an acceptably
accurate but still computationally efficient parameter setting.
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o K | Broman | Foufas | Vecer Zvan MC L.B. U.B

95 11.094 | 11.112 | 11.112 | 11.094 | 11.094 | 11.094 | 11.114
0.05 | 100 | 6.795 6.810 | 6.810 | 6.793 | 6.795 | 6.794 | 6.810
105 | 2.746 2.754 | 2,750 | 2.748 | 2.745 | 2.744 | 2.761

90 | 15.399 | 15.416 | 15.416 | 15.399 | 15.399 | 15.399 | 15.445
0.10 | 100 | 7.028 7.042 | 7.036 | 7.030 | 7.028 | 7.028 | 7.066
110 | 1.420 1.422 | 1421 | 1.410 | 1.418 | 1.413 | 1.451

90 | 15.642 | 15.659 | 15.659 | 15.643 | 15.642 | 15.641 | 15.748
0.20 | 100 | 8.408 8.427 | 8.424 | 8.409 | 8.409 | 8.408 | 8.515
110 | 3.556 3.570 | 3.568 | 3.554 | 3.556 | 3.564 | 3.661

90 | 16.512 | 16.533 | 16.533 | 16.514 | 16.516 | 16.512 | 16.732
0.30 | 100 | 10.208 | 10.231 | 10.230 | 10.210 | 10.210 | 10.208 | 10.429
110 | 5.728 5.750 | 5.748 | 5.729 | 5.731 | 5.728 | 5.948

Table 7: Asian call option values as computed in this thesis (Broman),
Foufas [10], Vetet [17] and Zvan [20] (¢ = 0). The upper and lower bounds
(L.B. and U.B.) are due to Rogers and Shi [13], and the Monte Carlo (MC)
simulations are due to Vecef [17]. The parameters are set to r = 0.15,7 =
1,59 = 100, and for these calculations At = 0.01. The number of nodes are
41869.

o K | Exact | This run | R.E. in %
95 | 11.094 | 11.088 0.054

0.05 | 100 | 6.795 6.788 0.103
105 | 2.746 2.759 0.473
90 | 15.399 | 15.396 0.019
0.10 | 100 | 7.028 7.026 0.028
110 | 1.420 1.376 3.099
90 | 15.642 | 15.639 0.019
0.20 | 100 | 8.408 8.405 0.036
110 | 3.556 3.525 0.872

90 | 16.512 | 16.502 0.061
0.30 | 100 | 10.208 | 10.198 0.098
110 | 5.728 5.702 0.279

Table 8: Asian call option (¢ = 0). The mesh consists of 2469 nodes, the
number of time steps is 25.
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o K | Exact | Thisrun | R.E. in %
95 | 11.094 11.093 0.009

0.05 | 100 | 6.795 6.791 0.059
105 | 2.746 2.745 0.036
90 | 15.399 | 15.397 0.013
0.10 | 100 | 7.028 7.022 0.083
110 | 1.420 1.419 0.070
90 | 15.642 | 15.639 0.019
0.20 | 100 | 8.408 8.402 0.071
110 | 3.556 3.560 0.112

90 | 16.512 | 16.509 0.018
0.30 | 100 | 10.208 | 10.200 0.078
110 | 5.728 5.730 0.035

Table 9: Asian call option. The mesh consists of 8313 nodes, the number of
time steps is 60.

11 General p-mean options

To have something to compare the results with from the calculations using
FEM, a simple Monte-Carlo program was written. In Tables 10 and 11,
we present some results from calculations with different p using this simple
Monte-Carlo program. We used two million simulations of the stock price
trajectory, and as can be seen by comparing the first column of Table 10 to
the appropriate column of Table 9, the results are within reasonable error
limits. Table 11 should be compared to the results of Tables 1,2 and 6. There
are two major sources for errors. The first is the limited number of stock
price trajectory simulations and the other is that a trajectory is simulated
by a finite (in this case 1000) rather than infinite number of steps.
The general payoff for a p-mean option has the form

T,58(T),A(T)) =m "1 p _ g o).
FT.S(), AT)) = max( | 5P (NN = K. 0)

By letting p — oo, this will lead us to the payoff of a lookback option, i.e.
an option with the payoff

f(T, S(T)) = max(maxos)\STS()\) - K, 0)

Unfortunately, the form of equation (14) is very impractical for the Finite
Element approach for p > 1. The relevant solution area has to have the
proportions

Q= [Oa Smaw] X [Oasg)nax] = [Oasma:c] X [O,Gmaw]a
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K | p=1 p=2 p=5 | p=700 | Ib (MC) | Ib (exact)
90 | 15.666 | 16.018 | 17.122 | 31.296 | 32.284 32.702
100 | 8.393 | 8.765 | 9.717 | 22.692 | 23.660 24.095
110 | 3.549 | 3.865 | 4.614 | 15.100 | 17.015 17.818

Table 10: General p-mean options, here we have used r=0.15, 0 = 0.2, T=1
and sg = 100. The notation Ib stands for lookback and the exact price of
this option is calculated using the formula on page 59 of [21].

Option Value
K=95 | K=100 | K=105
6.112 | 1.853 0.149

Table 11: Asian call option values as computed in this thesis (¢ = 0). Again,
r=0.1,0=0.1,T = 0.25,5) = 100 and p = 1.

since if s = Sy VE € [0,T] = a = sP,,,.. For p large, Q will become very

thin in one spatial dimension compared to the other. One approach to get

around this would be to use the scaling property of equation (23). Let
S(t) = ¢S(t) and K — cK

which implies that

A(t) = PA(t) and f(T) — cf(T).

By letting ¢ = 5 L

—— and solving for u = cv, we can solve the equation in
max
the domain

Q =0, cSmaz] X [0, (¢Smaz)?] = [0, ¢Smaz] X [0, Pamaz] = [0, 1] x [0,1],

but retrieve the desired solution value v(0) by multiplying u by 1/¢; v(0) =
u(0)/c. This makes it possible to go up to at least p = 3 with fairly good
results (see Table 12 and compare with Table 13).

K p=2 p=3 p=5
90 | 16.012 | 16.358 | 55.689
100 | 8.732 | 9.233 | 52.670
110 | 3.680 | 3.910 | 49.651

Table 12: General p-mean options calculated using FEM, we have used
r=0.15, 0 = 0.2, T=1 and sy = 100.
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K p=2 p=3 p=>5 p=10
90 | 16.018 | 16.389 | 17.122 | 18.745
100 | 8.765 | 9.086 | 9.717 | 11.200
110 | 3.865 | 4.091 | 4.614 | 5.797

Table 13: General p-mean options using Monte Carlo methods, we have
used r=0.15, 0 = 0.2, T=1 and sg = 100.

Another difficulty arises however, as is obvious by studying the results for
p = 5. We have that A(0) = SP(0), and since we have transformed S(0) to
be less than one, A(0) will become very close to zero. It would be necessary
to have an extremely fine grid to be able to resolve the values of A(0) = ay.
Furthermore, it is very close to the boundary, and the earlier argument of
not requiring an accurate boundary condition is not valid anymore. Again
we will re-write equation (14). This time, choose

A = /0 " SP(ydn) P

as our second spatial variable. We conclude that

— 1 p ! /4 P — pSp(t) t 7 p—
aae) = (=W [sryantr o8 s gan et a

= <_1%A(t) - %’5)(% / t S”(A)d/\)l/p‘l)> dt
= (—iA(t) + Sp—(t)Al—p(t)) dt = (Lp(t) (SP(t) — A”(t))) dt.
pt pt pt

Once again, the assumption
v(t) = v(t, S(t), A(2)),
and It0’s lemma yields
dv(t, X (t)) = vi(t, X (¢))dt + vi(t, X (t))dS(t) + vl (¢, X (t))dA(2)
+1(v§'5(t, X (1)(dS(1))? + 2v5 (8, X (¢))dS (1) dA(E) + vg,(t, X (1)) (dA(2))?)

2
AlP(t)

= vy (¢, X (t))dt + vl (t, X (t))dS(t) + v, (t, X (t)) o

S?(t)o?
2

(57(t) — A7(1))dt

+

vl (¢, X (t))dt.

Once more we identify
hs(t) = vg(t, X (£))

S
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and conclude that

hy(£)rB(t)

A0 (sr() - ar() + SO

= vy (t, X (1)) + vl (¢, X (1)) = 2

Vgs(t, X (1))
So from equation (5) it follows that

v(t, X (1) = S()vs(t, X (1)) + 1(v£(t,X(t))

AP (1) '

+vg(t, X (1)) = (S7() = AP(2) + —5 v (8, X (2))),

from which we conclude that

, , Ay ,
(X (0) + SO0 X0) + 2D (52) - a1, X (1)
20.2
2O 0,0 — rolt, X(8) = 0.

Moreover we have the final condition
o(T, S(T), A(T)) = f(T,S(T), A(T)),

which now is
(T, S(T), A(T)) = max(A(T) — K, 0)
We are thus led to the equation

1-p 2 92
a s’o
o (s? — aP)v), +

v} + rsvl + v —rv=0,t>0, s>0,a>0. (28)

2

with the final condition
v(T, s,a) = max(a — K, 0)

Again, this introduces a singularity in the coefficient of v}, for ¢ = 0, and
since SP(2) — AP(t

fim O =A@ _

t—0 t

we will set

t
for the last time step. This is a necessary assumption in order to implement
the numerics (equation (28) will then simply become the Black-Scholes equa-
tion at ¢ = 0).

With the new formulation A(0) = S(0), and a¢ will not “wander away”
towards the boundary as p increases. Of course, it would be too simple if

=0,
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this resolved our difficulties altogether. We can see from equation (28) that
a must not equal zero. This is actually a valid assumption, ¢ can never
actually equal zero but can come arbitrarily close. We will therefore modify
our computational domain, and use

Q= [O,Smam] X [aminasmaz] = [Oasmam] X [aminaamam],

before again re-scaling 2. We justify this in part by the results it produces
(see Table 14) and in part by the argument of localized behavior mentioned
in Sections 5, and 9.2. Another source of problem is that the coefficient of
v; will become extremely large for small a:s and large s:s, making equation
(28) exhibit hyperbolic behavior. The resolution of this difficulty is left as
an open question, suggesting the Streamline Diffusion method as a possible
approach.

K p=2 p=3 p=5 p=10
90 | 15.979 | 16.394 | 17.101 | 18.800
100 | 8.714 | 9.082 | 9.721 | 11.243
110 | 3.801 | 4.090 | 4.603 | 5.803

Table 14: General p-mean options calculated using FEM, we have used
r=0.15, 0 = 0.2, T=1 and sy = 100.
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