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Abstract

A dislocation based mathematical model for the fatigue growth of microc-
racks is presented. The model considers the crystallographic structure of the
component in which the crack is initiated, and plastic work is modelled in a
detailed way by the emission and movements of dislocations.

To implement the model, we develop in detail a mathematical technique
for approximating the different quantities that are treated in the model.
Lastly, the usefulness of the technique is evaluated by performing simulations
of crack problems using a computer code, and the tool is then applied to crack
problems that concern the interaction between a microcrack and the grain
boundaries of a composite material.

"A crack in an elastic solid — is a distribution of dislocations on the crack
plane’ [10].
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1 Introduction

1.1 Preface and acknowledgements

This project was carried out in cooperation with The Swedish National Test-
ing and research institute (SP), for the author’s master of science diploma
in engineering mathematics at Chalmers University of Technology. The au-
thor would like to thank Tekn.Dr. Erland Johnson, the project supervisor
at SP, and Prof. Kenneth Eriksson the project examiner and supervisor at
Chalmers, for their support.

1.2 Problem formulation

We wish to develop a mathematical model that can be used to predict the
behaviour of short cracks in different composite granular materials subject to
external high cyclic loading, and develop a tool for the computer simulation
of the possible growth of such cracks.

In developing the model, we wish to consider the mesostructure of the
material constituting the component. We focus on crystalline composites,
and hence take into account the crystallographic defects that are present, as
well as those defects that appear due to stress concentration. Furthermore,
for reasons that will become clear later, we will consider the material to be
purely elastic, which means that we will not seek to treat the effects of the
plastic zone around the crack tip through an adjustment of the linear elastic-
ity equations. Instead we wish to model the plastic work by the emission and
movements of defects of a special kind, namely dislocations, see section 1.3.1.

The crack is assumed to be situated in a single grain, and initiated at a
free boundary. Hence, at a particular time, it is the geometry of the grain
in which the crack is located, the magnitude of the loading on the grain, the
crystallographic glide planes of the grain, the defects present in the grain,
and also the shape of the crack itself, that determine the crack growth. It is
exactly the above mentioned circumstances that influence the size of the three
stress intensity factors (see for example [4]), quantities that in a purely elastic
material completely characterize the stresses and strains in the close vicinity
of the crack tip (see [9]). In linear elastic fracture mechanics theory, a basic
assumption is that it is the crack tip stresses alone that govern whether the
crack will grow or not. It is therefore crucial that we find these stress intensity
factors, and much of our attention will be directed towards this matter.
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A microcrack that does not extend over more than one single grain is
not likely to influence the usefulness of the component. It is rather the
transgranular fracture that makes it possible for the crack to develop into a
macrocrack and cause severe harm. It is because of this that the prediction
of the behaviour of the crack tip as it approaches the grain boundary is
of special interest; In other words, we wish to investigate how well grain
boundaries act as a barriers for dislocation motion and crack advance.

1.3 Preliminaries
1.3.1 Dislocations

Physically, a dislocation is a flaw in the crystallographic structure of a mate-
rial that 'dislocates’ the atoms (or molecules) from their equlibrium positions,
i.e. their locations in the ideal crystal, causing the interatomic forces to cre-
ate what is mathematically known as a stress field. Hence, the mathematical
object modelling a dislocation is a source of stress originating from a distur-
bance in the space lattice. We will consider the type of dislocation known as
the straight edge dislocation, which is formed by the insertion into the crystal
lattice of an extra atomic half plane, at the edge of which the dislocation is
considered to be located. When the lattice is projected onto a plane orthog-
onal to the dislocation edge, as when a plain strain state is considered, the
straight edge dislocation may be treated as a point.

Since the dislocation is a source of stress, it is natural to assign to it a
strength. Considering further that different dislocations can have different
orientation, it is adequate to associate with each one of them a vector. This
vector is known as the burgers vector b of the dislocation. The formal defini-
tion of b can be found in [2] and [3]. From this definition it can be seen that
a burgers vector can be associated with any finite number of dislocations.
We will disregard the actual number of dislocations represented by a burgers
vector, and recognize only its size and direction.

Another interesting property of dislocations is that the stresses and dis-
placements induced by a dislocation only depend upon its burgers vector.
Different lattice defects can have the same burgers vector, but it follows that
one need not consider the actual nature of the flaw.

In the following we constrain our study to straight edge dislocations. The
atoms on the edge of the inserted half plane can be considered to lack an
atomic bond over a crystal plane. More realistically, a number of neigh-



bouring atoms are dislocated near the edge, merely altering the bonds in a
small vicinity. This is pedagogically described by Andrade’s model for dis-
location motion described in [2]. For simplicity, we consider the edge atoms
to completely lack a bond over the crystal plane, while the other atoms in
the vicinity retain their perfect crystal bonds (though dislocated). From this
point of view it can be understood that the dislocation can move along the
crystal plane due to a force applied in such a way that the bonds of the near-
est edge-neighbour are connected to the edge, leaving their former neighbours
lacking bonds over the crystal plane. A repetition of this procedure causes
what is known as glide. The crystal plane in question is called the glide
plane of the dislocation, and the dislocation moving by glide is called a glide
dislocation. Thus, what we have is a set of mobile (point) sources of stress.

Figure 1 schematically describes how a straight edge dislocation is created
and how it glides. It specifically illustrates that when a dislocation is created,
another defect is created with such a burgers vector that the sum of the
burgers vectors of both flaws is zero.

The critical force needed to cause the glide induces a stress 7..;; in the
body. This stress is termed the critical resolved shear stress and is discussed
in connection with the modelling of dislocation motion in section 2.4.1. It
was originally the difference between the theoretically obtained values of the
critical resolved shear stress and the experimentally obtained values that
stimulated the study of crystal defects, see [2].

As has already been stated, a crystalline state is modelled by a three
dimensional lattice. Every lattice is characterized by its unit cell, and this
unit cell defines a finite set of possible glide planes. Hence the number of
possible directions in which a dislocation can move is limited, causing an
anisotropy in the material, see further [1]. Note that edge dislocations can
also move by what is known as climb. Climb occurs when a climb dislocation
moves in a direction perpendicular to the glide plane. The set of ’climb
planes’ are also limited by the microstructure. For example, in a crystal
consisting of face-centered cubic unit cells, glide usually takes place along
one of the {111} lattice planes in one of the three directions < 110 > ([2]).

In dislocation modelling, it is common to treat dislocation constellations
other than single dislocations. For example, in our case, we might very well
employ the plane dislocation dipole of lenghth [, which is made up from two
dislocations with similar strength but opposite direction burgers vectors b
and —b, placed on the same plane. In a two dimensional analysis, the dipole
may thus be treated as an area of inserted material; One of the constituting
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Figure 1: The birth of a straight edge dislocation



dislocations is made up from an inserted half plane of material ’of thickness
||b]|’, and cutting this plane off at the length [ creates another dislocation
of equal strength but of opposite direction burgers vector! The area of the
inserted material is then ||b|| x .

Figures 2 through 5 show contour plots of the shear and direct stress fields
in the vertical direction arising from the precense of different dislocations in
a half plane. Note specifically that the shear stress (as well as the direct
stress in the horizontal direction) vanish on the free edge of the half plane
(the left edge of the plot).
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Figure 2: The direct stress around a dislocation with a burgers vector in the
horizontal direction. Note specifically that the direct stress is zero on the
horizontal axis.
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Figure 3: The direct stress around a dislocation with a burgers vector in the
vertical direction.
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Figure 4: The shear stress around a dislocation with a burgers vector in the
horizontal direction.
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Figure 5: The shear stress around a dislocation with a burgers vector in
the vertical direction. Note specifically that the shear stress is zero on the
horizontal axis.
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1.3.2 A summary of available techniques for crack problems and
something about the governing boundary value problem

Below is a summary of available techniques for solving crack problems. The
aim of the summary is to clarify which technique we prefer to use for solving
our specific problem. The different techniques will be explained with refer-
ence to a time independent two dimensional (plain strain) problem. Since the
length scales involved in this problem are small, we may, without restricting
the physical relevance, model the component by the (right) half plane
and the grain by a simply connected and bounded subset €2, of 25, with
piecewise smooth boundary. The boundaries of these sets will be denoted
by I'y, and I, respectively. (For the crack to initiate at a free boundary as
specified in the problem formulation, we must have that Ty N T, # 0.) To
write down a boundary value problem for this crack problem, we need to
define the concept of a crack. In the applications considered in this study,
the separation between the crack faces is always vanishingly small in com-
parison with the size of the domain, so that the domain with the crack is of
the same shape as the domain without the crack. The crack locus can thus
be represented by a contour I'; that is a subset of {2,. Even though we have
assumed that the separation between the crack faces is vanishingly small,
we must allow the values of the displacements, stresses and strains at every
point along I'. to differ between the crack planes. Thus the displacements,
stresses and strains are not single-valued along I'.. In general, the two values
of the displacements will differ along some points along I'., since if they are
equal along the whole length of the crack then the crack is fully closed, which
is generally not the case in applications such as ours. For this reason we un-
derstand that if the crack is open, then the displacement field must vary
rapidly at the crack tip to satisfy the condition of continuity that is enforced
in the non-cracked material. Indeed, infinite displacement gradients appear,
and one of the major tasks when deriving techniques for crack problems is to
accomodate the methods to this behaviour. Furthermore, the assumption we
have made about the separation between the crack faces being vanishingly
small can now be interpreted as one of the basic assumptions made in all
linear elastic fracture mechanics applications, since the separation between
the crack faces is determined by the displacements along the faces, and these
must be small for the linear elastic fracture mechanics theories to be valid.

For the time being we assume that there is only one simply connected
crack contour T, and that T, is a subset of the horizontal axis. (According to
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the problem formulation, I'; is in the interior of {2, and one endpoint of I',
coincides with a point on I'y N I',.) Even though the crack is considered
to be a single contour, the analysis carried out in the derivations of many
of the techniques explained below is much simplified if one considers the
boundary value problem in which the upper and lower crack faces I'; and
['_ are separated by a strictly positive distance § and joined at the crack
tip by a parabola. Taking this approach, the boundary value problem with
our definition of the crack can be obtained by setting 6 = 0. To define the
domain in this auxiliary boundary value problem some adjustment of the
geometry is required. These adjustments will not affect our discussion of the
different techniques. See for example [8], [22] or [21] for a somewhat more
thorough analysis.

We now introduce some notation. From now on, all vectors are treated
as column vectors.

f:Q, = R2 a body force per unit thickness

o Q) — R2X2 a symmetric stress tensor

g: Q) — RN2X2 a symmetric strain tensor
t:Ty\I)p — R2 a boundary traction vector

pt T, — R? a pressure on the upper crack face
p . — R2 a pressure on the lower crack face
K, K global stress intensity factors

n:TyUl U, Ul — R?  outward unit normal to the domains

Figure 6 shows a schematic picture of the above quantities and the grain.

There are (at least) two possible ways of defining the boundary value
problem that governs the stress state in €2, as the boundaries I'y, and I'_
are incorporated. Since we are interested in the stresses appearing in €,
the naive approach is to prescribe some conditions on the stress along the
boundaries, and enforce the stress field to satisfy the equations of equilibrium
in {24, resulting in the boundary value problem:

Given f, t, p* and p~, find o such that

—-V-o-f =0 in ),
o-n =t onT,\ T}
o-n =0 ongN Ty (1)
o-n = —pt  only
o-n = —p onl'_



Figure 6:

The second condition in (1) simply means that the free boundary is traction
free. In this version of the boundary value problem we control the tractions
along the grain boundary, which is not always relevant. It is more convenient
to apply a load at the ’ends’ of the component. We choose to do so by
symmetrically applying to the northern and southern remote boundaries a
tensile load 0. A new version of the boundary value problem is

Given f, p™ and p, find o such that

( —V-o—f =0 mn Qy
c-n = 0 onl'y,
o-n = —pt onT
< o-n = —p onl_ (2)
. 0 O
limyg,ooo(z) = l 0 o ]

where the last boundary condition means that the components of ¢ should

. 0 P
tend to the corresponding components of l 0 o ] as z tends to infinity in

any direction in 2.
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The usual way to obtain variational formulations of (1) and (2) is to pose
the problems for the displacements and introduce a displacement condition
along some part of the body to ensure well-posedness. Let us characterize the
displacements in 2, and €, by the vector-valued functions u, : , — R? and
up : Q, — N2, and indicate that the stress and strain in (1, is induced by the
displacements u by explicitly writing the u-dependence after the respective
tensors, such as this: e(u), o(u). We introduce also the virtual displacements
(or ’test displacements’) u} : @, — R* and uj, : @, — R*. By performing
a scalar multiplication of (1) and (2) with uj and uj, respectively, and using
the divergence theorem we obtain the desired variational formulations:

Given f, t, p* and p~, find u, € V, such that for all uj € S,

Jo,o0(ug) e(ug) = Jrpr, t-ug = Jo, PP oug— Jo_pm - ug+ Jo, fug
(3)

and

Given f, p* and p~, find uy, € V}, such that for all u} € S,

Ja, o(up) re(u) = — fr+ prouh = JropT o uh+ Jo, [ uhs (4)

where Vg, Vj,, S, and S}, are the appropriate trial and test spaces. These
trial spaces should incorporate the essential conditions on the displacements.
Furthermore, by a slight misuse of the word ’space’, one can think of all
methods we describe in this section as being derived from the variational
formulations by using different test spaces. A very special test space for the
problem (4) worth extra attention is the set S; containing only the solutions
u} : Q — R? of the problems

-V.ou;) — ff =0 in Qp, (5)
o(up)-n = ¢ onl UL Ul

for different choices of virtual forces f : Q;, — R? and tractions ¢}, : T, UT, — R2
For the problem (3) we can create the corresponding test space S, as the so-
lutions of the problem

~V.o(u;) = f; = 0 in Qg (6)
o(;)-n =t only,UT UT_

By using a symmetry in the stress-strain relationship (see [23] or [21]), we
obtain Betti’s reciprocal work theorem:
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For any f,t, p*,p, [y and &} and corresponding uy and uj satisfying (3)
and (6) respectively, we have that

frgumur, t; “Ug + ng fg* ‘Ug = frg l- U; - fr+ pt- U; —J_p - “; (7)
+ ng feug

and for the entire half plane this theorem can be stated as

For any f, p*, p~, fi and ¢; and corresponding u;, and u} satisfying (4)
and (5) respectively, we have that

frhumur, th - up + fnh frnoup = — fr+p+ “up = Jp P up+ fnh I Ufz )

8

If we know the solution o to eq. (1) (or (2)) explicitly, then of course

we also know K; and K since these can be deduced from the behaviour

of o near the crack tip. Aspects of the numerical computation of these

stress intensity factors are left for section 1.3.3 and Chapter 3. Now let us
summarize a few important techniques for solving crack problems.

Superposition

Most of the available techniques for determining stress fields utilize su-
perposition in some form. Worth mentioning is the kind of superposition
made possible by Bueckners principle, which is nicely explained in [6]. It is
also concisely stated in [7]:

"The stress intensity factor for a crack in a body subjected to external
forces is identical to that for a similar crack, subjected to internal pressure
in a similar body which has no external forces acting on it. The internal
pressure ... acting in the crack is equal to the stress that would exist normal
to the crack-line along the crack-site in the uncracked body subjected to the
external forces.’

It is important to note that Bueckners principle is valid not only when
the body is subjected to external forces solely (i.e. forces applied at the edges
of the component), but also includes cases when a mixture of external and
internal forces (i.e forces that act at interior points of €2 ) are present, as is
explained in [9].
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FEM

A finite element formulation of our crack problem can be obtained by set-
ting 6 = 0 (the distance between the crack faces) in (3) or (4), and choosing
trial- and test-spaces as the apropriate FE-spaces. These spaces should acco-
modate to the displacement discontinuity that inevitably appears along I'.,
and special crack tip elements must be employed to capture the behaviour
of the unknown at the crack tip.

Remember now that our overall problem also involves placing dislocations
at interior points of €},. As was stated in section 1.3.1, a dislocation is
a point source of stress, i.e. a force. As we place a dislocation in €2y, it
is also necessary to have knowledge of how this effects the stress field in
2,. Expressions for the influence on the stress field in isotropic material
due to an arbitrarily placed dislocation with arbitrary burgers vector have
been derived for a few simple geometrical configurations (for a summary, see
[9]). These configurations include geometries such as interfacing half planes
of elastically dissimilar material, quarter-planes, and other infinite media
containing simply shaped inclusions. These expressions all have in common
that they have been derived under the assumption that the domain does not
contain a crack. Thus no such expression for the influence of a dislocation in
our cracked component is available. One can obtain such an expression by
solving (1) or (2) with a force term representing the dislocation. This does
not avoid the necessity of obtaining a new such dislocation solution every
time we consider a new crack, which is cumbersome. As long as we cannot
overcome this problem, the FEM is of no use to us.

Collocation and Galerkin Boundary Element Method with Kelvin funda-
mental solution

To derive a boundary element formulation for our crack problem we con-
sider the 'test spaces’ Sy and S}, that were introduced earlier, and choose the
virtual forces f; and f; as each of the functions dze;,7 = 1,2, where d; is the
dirac delta function with source point at Z and e; is the i:th standard base
vector in R?. The formulations (6) and (5) compels us to also specify trac-
tions along the boundaries. A popular approach is to define these tractions
as the tractions appearing along I'; and I', when the forces dze;,7 = 1,2 are
applied in the entire plane. Let us write these tractions and the correspond-
ing fundamental solutions in matrix form by denoting by T;;(z) and U;;(x)
the traction and displacement in the j : th direction as a point load is applied
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in the ¢ : th direction at Z. It can be understood from the context which
domain the fundamental solution refers to, which is why the subscripts ¢
and h are dropped. By using the fundamental solutions in Bettis reciprocal
theorem (78), we obtain Somigliana’s identity for the displacements at the
interior point x:

ug(z) = — frgur+ur, Tij(Z)uq + frg Uy (Z)t 9)
— Jro, Uii@)p* = fo_Uii(@)p~ + Jo, Uij(@) f

un(@) = = Jrouror. T (@)un — Jo, U(@)p" = o Uij(@)p + Jo, Uy (2) f
(10)

Since we have not specified any essential boundary conditions neither
in (5) nor in (6), it follows that the ’test spaces’ S; and S; will contain
infinitely many solutions that differ from each other by a constant. It follows
from the divergence theorem that every such solution gives rise to the same
equation, which is why it is sufficient to consider only two solutions (one for
each force term). This one solution can for example be the one that tends
to zero at infinity, which is the solution commonly refered to as the Kelvin
fundamental solution.

We can obtain a boundary integral equation for the displacements by
placing the source point T on the boundary of the domain. The derivation
of this equation invokes a limiting process which can be found in [21]. For
the problem formulated with the grain as domain and with equal pressures
acting on both crack faces, the equation is

%“g(j) = —-CPV frgur+ur_ Tij(Z)uy (11)
+ Jr, Ui (@)t + Jo, Uij(2) £,

where the first integral on the right hand side must be treated as a Cauchy
principal value integral. A boundary element formulation of our crack prob-
lem can now be derived by making an ansatz for the unknown and inserting
it into (11). An advantage of BEM is that since (11) involves the values of
the unknown along the boundary only, to obtain an approximate solution in
the entire domain, we need only discretize the boundary and estimate the
unknown dependent variable only on the resulting one-dimensional curve.
This reduces the complexity of the problem in comparison with for example
the FEM, that requires a two-dimensional mesh. One should keep in mind
though, that the evaluation of the unknown at an interior point requires the
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evaluation of the integrals in Somiglianas identity. Carrying on, we set § = 0,
choose a set of collocation points along I'y UT', UT"_, and assemble a linear
system of equations. This is where we run into problems since a collocation
point at one crack face now coincides with another point on the other crack
face. Every equation that a collocation gives rise to therefore involves two
unknowns; the displacements on each side of the crack. Because each distinct
collocation point along the crack produces an equation involving two new un-
known values, the resulting linear system has no unique solution. Collocating
at the same point on both crack faces introduces only one pair of unknown
values, but it also gives rise to only one linear independent equation. Hence,
this BEM-formulation is of no use to us.

One way to evade the mentioned difficulties is to decompose the domain
in such a way that no subdomain contains the crack as an inner boundary
(but rather as a pressurized outer boundary), and then enforce continuity of
displacements (but not necessarily tractions) along the part of the bound-
ary where the subdomains are connected to each other. If this multizone
approach is taken, and special crack tip elements are used, it is possible to
solve crack problems. If one wishes to model crack propagation, meaning
that one needs to solve several crack problems with slightly different crack
geometries, the multizone BEM implies that remeshing is needed every time
the crack increments. This remeshing might be restricted to a few elements
near the tip if the crack grows straight forward, but if we include the possi-
bility of kinked cracks, we might have to make a new decomposition of the
domain at every iteration. Hence, the multizone approach is not very well
suited for our needs.

It should also be mentioned that one might very well make a Galerkin for-
mulation of the boundary equations. This would require another integration
which is cumbersome and time-consuming. What is more, in the Galerkin
approach, one requires the residual of the integral equation to be orthogo-
nal to a suitable test space. This orthogonality is defined via the L? scalar
product, i.e a weighted integral of the unknown where the weight is a test
function. These integrals are often evaluated using a numerical quadrature
which approximates the value of the integral by a weighted sum of the val-
ues of the integrand at a finite set of points. In this case, it turns out that
Galerkin can be thought of as a weighted point collocation. On the other
hand, point collocation is nothing but Galerkin when using delta functions as
weights in the mentioned integrals. Thus, both approaches are related, which
motivates that we in the following restrict ourselves to point collocation.
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Collocation Displacement Discontinuity Method with Kelvin fundamental
solution

Let us return to equations (9) and (10). By differentiating and using
Hookes law we obtain Somiglianas identity for the stresses at the interior
point Z. Since we are allowed to differentiate under the integral sign, these
identities can be expressed in a similar fashion as (9) and (10) but with
modified kernels. For the grain we have

o(ug(z)) = — frgur+ur_ S(ZT)ug + frg D(z)t (12)
—Jr, D(@)p* — fr_D@)p~ + Jo, D(z)f

and by incorporating the traction boundary condition along the free edge of
the half plane, we get

o(un(z)) = _thUF+U1“7 S(Z)up,
— Jo, D@)p* = Jr D(@)p~ + Jo, D(2)f, (13)

where the scalar products with the kernels S = {Sk;;} and D = {Dy,,} are
now taken with respect to the first index. We can obtain a boundary integral
equation for the stresses by placing the source point  on the boundary of
the domain (see [21]). This equation is

%U(Ug(j)) = —HPV frgur+ur_ S(Z)ug
+CPV [y, D(z)t — CPV [, D(z)p* — CPV [ D(z)p~
+ Jo, D(@) f
(14)
for the grain, and for the half plane it is

%a(uh(a’:)) = —HPV frhur+ur_ S(Z)up,
~CPV [, D(z)p* — CPV [ D(z)p~ (15)

where the first integrals on the right hand sides are now interpreted in the
Hadamard principal value sense (see [21]). Let us multiply (15) by the out-
ward normal to obtain

21



30(un(@)) - n(z) = —HPV [, or,or_ n(@) - S(@)up
—CPV fp, n(Z) - D(Z)p" — CPV [r_n(T) - D(Z)p~
+ fo, n(@) - D(@) .

(16)
where the scalar products between the normal and the kernels are taken with
respect to the third index. As we set 6 = 0, every point 7 on the upper
crack face coincides with a point £~ on the lower crack face. Thus, in the
case f =0 we have (see [21] again) for such points that

20 (uy (z7)) - () + 5o (uy (27)) -n(z”) =

—HPV [r, n(z™)S (@™ )up — HPV Jp, n(z¥)S(a")uy + HPV fr, n(z7)S(z7)uy,

_CPV J;'n(a*) - D(a*)p* — CPV Jy, n(e™) - D{a" )y

(17)

where u; and u;, now refer to the displacements on the upper and lower crack
faces respectively. The two H PV-integrals along the crack line have differ-
ent signs because the integration paths have different orientations (according
to the divergence theorem). Note that since n(z™) = —n(z~) and (conse-
quently) S(z*) = —S(z7), it does not matter whether we use n(z™)S(z™)
or n(xz~)S(z~) in the above integrals. In the C'PV-integrals the super index
on the source point does matter though, since now D(z") = D(z~) because
the fundamental solution is single-valued. Using these relationships we get

lo(uf (@) - n(et) + bo(uy () - na~) =
—HPV [p, n(z¥)S(zT)up — HPV [p n(zt)S(at)u) + HPV fp n(zT)S(a)u,
—CPV [y, n(z*) - D(z*)(p" —p)
(18)
We may incorporate the traction boundary conditions of (2) and substitute
Auy, for u;f —u, on the crack line to obtain

s(0T (@) +p(aT)) =
—HPV Jo,m n(z*)S(x)up — HPV [ n(x™)S(x™)Auy
—CPV Jr n(z*) - D(z")(p* —p),z €T,
0=
—HPV [, n(z*)S(@F)up — HPV [p n(z*)S(x7)Auy
—CPV [r,n(z") - D(z*)(p" —p),z € Ly
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We can obtain an approximate solution of the above equation for the dis-
placement discontinuity Auy along the crack line and the displacements along
the other parts of the boundary by first making an ansatz for Au, along I,
and an ansatz for uy, along 'y, inserting it into (15) and choosing a set of
collocation points on the boundary I', UI'y UT'_. The only unknown along
the crack line is hence the crack opening displacement (COD). Furthermore,
if the crack faces are equally pressurized (p* = p~), the displacement discon-
tinuity equation is simplified to

pt(z) = —HPV [, n(z)S(x)up — HPV [, n(z)S(x)Aup,z € T,

0 = —HPV [p, n(z)S(x)up — HPV [p n(z)S(x)Aup,z € T (20)

A similar equation can be derived for the problem for the grain. Still, even if
we use a non-trivial body force, we cannot incorporate free dislocations into
this formulation, since this BEM-formulation does not avoid the necessity of
obtaining a new dislocation solution every time the crack increments.

Collocation Displacement Discontinuity Method with infinitesimal Dislo-
cation Dipole fundamental solution (The distributed dipoles technique)

We are not confined to using the Kelvin fundamental solution in the
derivation of BEM-formulations. Let us put some more effort into finding a
good fundamental solution that takes into account the characteristics of our
specific problem. The Kelvin solution was obtained as the limit as § — 0
of the solution of the problem (5) with a special choice of virtual forces
and tractions. Let us instead at the outset set 6 = 0 in (5), so that the
fundamental problem is a crack problem. Let us also substitute the traction
condition along the crack line by an essential boundary condition in the form
of a specified displacement discontinuity along I'.. If we choose f; =0, and
the essential condition to be an infinite point displacement discontinuity at
the point Z, we obtain the following fundamental problem:

—V.o(u;) = 0 in Qp
o(u)-n = 0  only (21)
Aup = 0ze;

Using the solution of this fundamental problem, Betti’s theorem (8) turns
into

fr+ur, by - up = _fr+p+'“2_fr, D U2+fgthZ (22)
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which in the case f;, = 0 is the same as

fr+t;kz'uh+fr,t2'uh = —fo 0" up—fr P up (23)
+

which in the case p™ = p~ = p because of the different orientations of the
now coinciding crack faces is the same as

frct;;'uh_frct;z'uh = _frcp'“;;"‘frcp'uz (24)

which is easily seen to be equivalent to

Je.th-Aun = = Jr,p- Auj (25)

which according to the fundamental problem is the same as

Jo.th - Aup = —p(2) (26)

Since the COD is zero along the crack except at z, t; are the tractions
appearing along the crack line in the uncracked body. It turns out that the
kernel ¢} of equation (26) is strongly singular at Z, and the integral must be
treated in the H PV sense.

If we solve (21), we can obtain a BEM-formulation of equation (26) by
making an ansatz for the unknown Aw, along I'. and collocating at a nice
set of points along I'.. This way we have reduced the domain of the integral
equation from the whole of the boundary to the crack alone. If we were to de-
rive the same kind of equation for the problem posed in the grain, the domain
of the integral equation would also include the grain boundaries, unless the
traction free grain boundaries condition is incorporated in the fundamental
problem. Let us for now focus on the equation (26). For this equation to
be relevant we must find the fundamental solution, or more specifically, the
tractions normal to the crack line given rise to by the fundamental solution.
This can be done by considering an infinitely short but infinitely strong dis-
location dipole situated at Z and oriented parallel or perpendicular to the
crack line depending on wheteher i = 2 or i = 1 in (21). By the discussion
in section 1.3.1 we understand that since a dipole is a piece of material of
size ||b|| x I, where [ and b are the length and the strength of the dipole,
the infinitely short and infinitely strong dipole is exactly the displacement
discontinuity dze;! Since there is an explicit formula for the influence of such
a dipole in a half plane (derived from the expression for a dislocation in a half
plane), the main work has already been done. We now see that posing the
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boundary value problem in the entire half plane instead of in the grain has
the advantage that the fundamental solution (or Green’s function) is already
available, whilst if we include boundary conditions along I'y, we must derive
a new fundamental solution every time we consider a new grain, which might
not even be possible. Though, as previously mentioned, we could use the
Green’s function for the half plane when solving for the grain, but since the
virtual tractions along I'y are not zero, the integral equation (22) would then
include the unknown displacements along I'y, and thus we would not have
managed to reduce the domain of the unknown to the crack alone.

Even though the equation (26) is very pretty, we have not yet found a way
to incorporate the free dislocations into the BEM-formulation since the crack
is still in the domain, ruining every chance of finding an exact expression
for their influence on the stress field. However, by the use of Bueckners
superposition principle, we can divide (2) (or (1)) into two simpler problems,
in one of which the dislocations may be incorporated. Indeed, it should be
clear that the left-hand side of (26) expresses the traction normal to I'. at &
induced by the distribution of infinitesimal dislocation dipoles with density
Auy : Ty — 1% (Aup(x) is the strength of an infinitely short dipole at ,
and the kernel t;(z) of (26) is the influence at T of an infinitely short but
infinitely strong dipole situated at z). Thus, finding the solution of (26)
corresponds to inserting infinitely short dipoles, that is, pieces of material,
into the crack. This insertion of additional material creates the internal
pressure that is discussed in Bueckners principle. In mathematical terms,
the use of Bueckners principle means that we can divide (2) (with traction
free crack faces) into two subproblems;

Subproblem A. Find the stress induced in {2, by the far field loading and
internal sources of stress (such as dislocations) in the absence of the crack.
That is,

Find o4 such that

= 0 only (27)

WhereToo:[O (3)0]
0 o

25



Subproblem B. Find the stress o8B induced in Qy, by the dipole density B
along I', where B is such that it leaves the crack traction free when super-
posed onto the stress field obtained in subproblem A. That is,

Find ¢® such that

Jr th - B = —oMz)-n,zel, (28)

The stress field o that solves (2) can now be obtained as 0 + 0. Since
there is no stress concentration in subproblem A, the stress intensity fac-
tors for the overall problem are by ordinary superposition the same as for
subproblem B.

Subproblem A above is easy to solve since the solution o4 is obtained by
superposing onto 7T,, the stress fields of the free dislocations, for which we
have an expression. Once we have found o4, the dislocation density B in
subproblem B can be obtained as the solution of a singular integral equation
of the first kind. The BEM-formulation of the equation (28) must employ
special crack tip elements to take into account the square root behaviour of
B close to the crack tip. As we have obtained a BE-approximation of E, we
must also find o®. This is done by inserting B into an expression similar to
the one on the left-hand side of (28), with the difference that we are now not
only interested in two of the stress components but all three, and the source
point T can be located anywhere in €2;. This does not actually require much
more work than we have already done, because the appropriate kernel can
easily be derived from known expressions in much the same way as for ¢} .

Bueckners superposition principle may seem a bit mystical at first sight,
since the overall solution can be solved by the superposition of two solutions
which are posed in different domains (one containing a crack, and the other
uncracked), but by considering dislocation dipoles, we understand that both
domains are actually the same uncracked body. Indeed, if the crack is con-
sidered as an inner contour along which the normal tractions are required to
vanish, we can without altering the shape of the body let dislocation dipoles
be distributed along the crack contour in such a fashion that the tractions
induced along the crack by this distribution cancels those given rise to by
the far field loading, thus leaving the crack traction free. The shape of the
body is not considered to be altered by the insertion of the dipoles, because
the displacements due to a dipole are infinitesimal in comparison with the
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domain, and hence we can utilize ordinary superposition to add together the
solutions obtained by considering the uncracked externally loaded body and
the externally unloaded but internally loaded body separately.

When it comes to choosing a technique for this problem, the use of the
Bueckner superposition in the distributed dipoles technique proves to be
of crucial importance, since it is possible to include internal point sources
of stress, i.e. dislocations, into the f-term in subproblem A. The domain
in subproblem A does not contain a crack, and hence the expression for a
dislocation in a half plane is valid.

It is common in dislocation modelling to consider the problem as to consist
in placing a finite number of finite length and varying strength dipoles along
the crack line in such a fashion that the crack faces are traction free at a set
of selected points (often the midpoints of each dipole element). The primary
unknowns are hence the different strengths of these dipoles, i.e. the sizes of
the burgers vectors of the dislocations constituting the dipoles. With this
approach, the discretization is so to speak performed in the modelling, and
not once the governing equations are already posed. The same formulation
of the problem can though be obtained by using piecewise constant elements
in the BEM-formulation of the distributed infinitesimal dipoles technique.

The distributed dipoles technique is commonly used in dislocation mod-
elling, see for example [16],[13] and [17].

A partial integration of the equations of the Collocation Displacement Dis-
continuity Method with infinitesimal Dislocation Dipole fundamental solution
(The distributed dislocations technique)

Let us perform a partial integration w.r.t. the first coordinate in the left-
hand side of the equation in (28). This requires the differentiation of B(z,0)
(the second argument is zero because the crack is a subset of the horizontal
axis). It is not difficult to realize that if the crack opening displacement
B(-,0) has a jump discontinuity of size b at z, then there is a dislocation
with a burgers vector of size b situated at x. Furthermore, if the derivative

A

D, B(z,0) is —B(a—z) at z, then the dislocation density at the distance a —x
from the crack tip is —B(a—z). Let us therefore write —B(a—-) = Dy B(-,0)
so that B(r) is the dislocation density at the distance r from the crack tip.
This implies the relation [y~ " B(r)dr — [; B(r)dr = COD(z) — COD(0),
and setting x = a gives — [y B(r)dr = —COD(0) so we have that the crack
opening displacement can be expressed via the dislocation density according
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to the formula

COD(z) = [y “B(r)dr (29)

Let us also write Ty for the integral of ¢;. We have already mentioned
that the dipole density is zero at the crack tip (because the crack opening
displacement is zero at the crack tip), and it turns out that the integrated
kernel T} is zero at the crack mouth. Hence the boundary terms in the
following partial integration vanish:

frc t?l : B = [T;B]g - frc Tf; : D1B =
Jo. Ti(z) - Bla—z)dz = — [2Ti(a—7)-B(r)dr = (30)
Jo Ty(a—r)- B(r)dr

Thus we have established that the expression [i' Ty (a — r) - B(r)dr gives
the tractions due to the dislocation density B along I'.. To examine the
influence on the tractions made by a dislocation with burgers vector b situated
at the distance R from the crack tip we simply insert B = dzrb into the
expression (30) to obtain

o Ti(a—r)-0r(r)bdr = Tf(a—R)-b (31)

which is exactly the kind of expression for the influence of a dislocation of size
b at the distance R from the crack tip derived by many other investigators
using other methods. From this we may conclude that the kernel T} (a —
R) is exactly the already available expression that gives the influence of a
dislocation when multiplied by the burgers vector. We have thus obtained a
boundary equation formulation of our boundary value problem that involves
only known expressions except for the dislocation density along the crack.
This formulation is a version of the distributed dipoles technique, so we may
still utilize Bueckners superposition principle and incorporate dislocations in
the interior of €2p,.

Differentiating the dipole density makes it square root singular at the
crack tip, so when making a BEM-formulation for the unknown dislocation
density B in the distributed dislocations technique, one must make use of
singular crack tip elements. On the other hand, the kernel is not as singular
as in the distributed dipoles technique, and it is sufficient to treat the in-
tegrals in the C'PV-sense. It should also be noted that the same equations
that one gets when using piecewise constant elements in the distributed dis-
locations technique can be obtained from the distributed dislocations tech-
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nique when using as the only shape function (for each density component) on
each geometrical element the sum of two equal strength but opposite signs
delta-functions, with the points of influence of these delta-functions being
the extreme points of the geometrical element.

The distributed dislocations technique shows some generality concerning
crack geometries. Both curved and kinked cracks can be modelled by dis-
tributing edge dislocations of infinitesimal burgers vectors along I', in such
a way that the dislocation density B : ', — R2 gives rise to a stress field
that satisfies the traction conditions in (2) when superposed onto the field
induced in €2, by the external and internal forces in the absence of the crack.
What is more, a grain boundary is by definition nothing but a distribution
of dislocations. If for some reason one has made up ones mind on solving the
problem (1), one can indeed ’cut out’ €2, from a larger set by distributing
dislocations along both I'y and I';, and then apply boundary conditions on
I’y to obtain an integral equation with domain I'y U T, (see [17]).

1.3.3 Examples of numerical methods for singular integral equa-
tions

We have seen that the method we can use for our problem is the distributed
dislocations technique together with some BEM-formulation of the resulting
singular integral equations. In this section we explore the efficiency of two
different formulations together with point collocation.

We examine the problem that was introduced in section 1.3.2, where the
crack is of length a, and for now we ignore the grain boundaries. We set
0> =1, and let u and v denote the modulus of rigidity and Poisson’s ratio
of the material of which the component (the half plane) is composed. To
derive the equation for this problem, we shall, according to the discussion in
section 1.3.2, commence by solving subproblem A. It is obvious that ¢4 =
Ts. Next, we want to solve subproblem B, that is, we want to determine
the dislocation density B : I' — R? in such a way that the crack faces are
traction free, a condition that can be written

(ot + o)) = {0}
(035 +05)(Te) = {0} (32)

We know ([9]) that a dislocation with burgers vector b located at a point
(&, x) will at a point & = (x1, z2) induce the stress o such that

29



O{)l (x) - T, ( aga X)
0-[1)2(‘%) = ; ( aga ) (33)
ohy(z) = G b-GP(x:€,x),

where C' = "‘“ and k =3 —4v is Kolosov s constant for plane deformation.

The ’inﬂuence functions’ {G¥ = (GY,GY¥)T}2,_, in (33) are given by the
expressions

G%l(xaga X) = (.’132 — )[—L L% _ Q(w;%_f)Q + 2(561%—&)2
%"'_f) + 4 452 + 16§(w1+§)3 _ 16.52(;5614_5)2]
Glm&x) = —urt+ et 2 | %ml O _ 2Aerte
7 bl 7" 7‘ ,r
8§($1+§) _+2_ 1262(.1:1-1—6) + 166(.%1-}—6) _2 1652(‘%1-1—6)3
7'2 ’I" T' Tg
GR(1;6,x) = oty ot % 2@’ Aoy’
'S r2 p. - L
16£(z1+§) 2_ 1252(x1+§) _1166(:51-1-5)4 2 16621 +€)?
+ o 3 5 -+ 5
\ AT

G (z;€,x) = (x2— =%+ & EIE IR
(1‘1‘1‘6) +_§_+ 16§(z1+f) . 16&2(1'61—1_&)2]

GP(z;6,x) = (z2— )[—— _|_ _|_ (mllﬁ) 2(z1+§)
12¢(x1+€) 4g2 C168(z14€)3 1652(z1+§)

Ty 1"6 ’I"2
GZ(ni,y) = +3%a 8 (w;2+§) % _ 2 OF | Aot
1602 | el _ 16§<w1+s) | 168402

B
r5 T2 rs T2

where

r = \/(551—5)2"‘(332_902
ra = /(x4 + (22 — )2

Since we are only interested in the tractions appearing along I'., we have
that 0 < x; < a,z9 = 0. Since we only distribute dislocations along T',,
we also have that 0 < ¢ < a,x = 0. Thus, G}', G? and G?* vanish.
Furthermore, G3i! is not interesting in this case since it does not appear
n (32). Hence we are left with the first and second components of the
influence functions G2 and G?? respectively, which in this case turn out to
be equal and can be written as

(35)
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12 _ ,y22 11 2 4¢2
Gl - G2 T omi—¢ mi+é ($1+§)2+(m1+§)3' (36)

In analogy with (33), the stress 05 that is induced at = by the distribution
B = (B1, By)T of infinitesimal dislocations along the crack, can be obtained
as Cauchys principal value of the integral of the scalar product of B with G¥
along I,

ofi(x) = %= -(CPV)Jp, B(s) - G¥(z;5)dls,i,j = 1,2 (37)
As can be seen from (34), all integrals of the above form are divergent, so
in the following it is to be understood that the appearing integrals should
be treated in the CPV-sense. With the crack contour parametrized in &, the

equations (32) can be written as

L ¢ B(£,0) -G (z;£,0)df = 0
Lo B(,0)-G®(x;€,0)d6 = —Co™(z), zel,

and these are the equations we will try to solve for B(§) := B(£,0). We note
first that since Gi* = G%* = (0 (as can also be seen from figures 5 and 2),
the equations are uncoupled. Therefore it is easy to solve the first equation
in (38), since this can be satisfied by setting B; = 0. We are left with the
equation

(38)

L3 Bo6) (G — o — e + ge) 46 = —Co™®(21,0), 0<m <a.

(39)
It is noted that the kernel of the left-hand side integral operator is generalized
Cauchy. In order to formulate a BE-method for this equation, we must
choose the appropriate shape functions. To do this we need to know the
shape of B, or more specifically the shape of B near the crack tip. It has
been mentioned that B is singular, and in chapter (3), the severity of this
singularity will be discussed further. For this simple problem we content
ourselves with a slightly restricted argument; It is well-known that the crack
opening displacement varies with the distance r from the crack tip as the
square root of 7. Thus the identity (29) implies that

400DG) = —By(a - x), (40)

and since COD(r) varies as /7, this suggests why the same order of singu-
larity as in o? (square root singular) appears also in the ansatz for B.
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To support the choice of the different BE-formulations in this comparison
of methods, we reason as follows; First we want to try out formulations using
global shape functions, i.e. one single geometrical element. The well-known
Gauss-Chebyshev method ([25]) is applicable, but since we are primarily
interested in the value of B at the crack tip, we prefer a method that is
based upon a closed or a semi-closed quadrature scheme. Thus we turn
to the Bouzitat formulas for regular integrals, that can be found in [24].
Based upon these formulas, a complete closed-type method with affiliated
collocation points for singular integral equations is developed in [28] and [29].
It is shown that this method, called the Lobatto-Jacobi method, is applicable
to Cauchy principal value equations with generalized Cauchy kernels, such
as the equation (39). Lobatto-Jacobi is attractive to us because of closed-
typeness and the fact that it is based upon Jacobi polynomials, which allows
us to control the behaviour of the unknown at the ends of the integration
interval in a detailed manner. By looking ahead at section 3 we can tell
that it would be pleasing to have this control. Unfortunately, altering the
strength of the endpoint singularities in the ansatz for B alters the equations
for the abscissae and collocation points, making it impossible to precalculate
the values. Since we must solve an equation such as the one found in [28]
and [29] every time we need new abscissae and collocation points (in the
closely related Gauss-Jacobi method, these equations are somewhat simpler,
see [26]), we would be grateful if we could find a method in which these points
can be found with less effort. So, how about the Lobatto-Chebyshev method
([27])?7 Well, this is a special case of the Lobatto-Jacobi method, in which
the singularities all are of the square root size. The weights, abscissae and
collocation points are relatively easy to obtain. But how do we control the
behaviour of the unknown when it is not square root singular? According to
[32] and [31] there is a way to do this; By cheating.

In the many papers found in the references, a bit of a quarrel has been
carried out concerning what abscissae, weights and collocation points are the
best. On the other hand, in the excellent article [30], it is emphasized that
you should not worry too much about what quadrature rule you use, because
the results are not too different anyhow.

Secondly, we want to try a method that more resembles the classic BE-
formulation, with many geometrical elements and local basis functions. Such
formulations are common when considering three dimensional crack prob-
lems. Though, this will not be tried here due to lack of time. Instead, we
refer to [9], for a comparison of these kinds of formulations when applied to
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a three dimensional crack problem.

As has been mentioned, it is vital that the ansatz captures the correct
shape of the unknown at the ends of the crack. This will be done by in-
corporating into this ansatz a (or several) shape function(s) that behaves as
rer? where 7, and 1, is the distance from the left and right endpoint respec-
tively. Each method is applied to the normalized equation that is obtained
by changing the variables of (39) into s = 2% —1 and t = 2% — 1:

%f—ll B2(8)(ﬁ - t+sl+2 - (tQJESsE))Z + (Ltlsrs:jz);?’)ds = —Co™(3(t+1),0),
-1<t<1
(41)
Let us compare the following methods:

1. The Gauss-Jacobi method with v = 1/2 and § = —1/2, as decribed
in [26]. This method is relatively easy to apply, because the number of
integration points and collocation points are the same, so no side condition is
needed, and furthermore, these points, together with the associated weights,
are tabulated in [9]. In this method there is only one single geometrical
element ([—1,1]), and shape function number j is defined by

6i() = PO+, (42)

where Pj(a’ﬂ ) is the j:th Jacobi polynomial. These shape functions obviously

render the mentioned shape of B. Our ansatz B that approximates B is
hence

B = 3% By, (43)
where p(N) is the polynomial degree of the Gauss-Jacobi method of order N
for generalized Cauchy integrals with weight function (14 -)(1 —)?. In the
system of linear equations that are produced by the Gauss-Jacobi method,
the number p is not a parameter, but rather the number /N of abscissae used,
so we use N as the measure of precision of this BE-formulation.

A drawback of this method seems to be that due to the value of «, the
density is actually forced to vanish at the crack mouth, but as we will see,
we will still obtain accurate values of K.

From [9] we know that
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dr Venr?

where the distance r from the crack tip is small. According to equation (40)
we must thus have that

K; = lim, (v27C~/rB(1 — 2r/a)), (45)

To obtain our approximation of K;, we use B instead of B in the above
equation, and thus we get, with ¢ = 1 — 2r/a, that

(V2O VF Y Bi() (40

= hm(\/_C 1\/_2319 Tl% 1—27"/@\/ ;T)
= VIO lim(Va =7y BP TP (1 - 20/a)

r—0

K

Q

P (=11
= V2maC~ 1hm(z B PJ( 2 ’2)(1 —2r/a))

The Gauss-Jacobi method provides the values of the polynomial part

P o BkPj(a’ﬁ ) of B at the integration points. Unfortunately, this quadra-

ture scheme is not closed, so we have to extrapolate these values to obtain

P o BkPj(a’ﬂ )(1). Fortunately, there is a formula specially adopted for this
task, and which can be found in [9].

2. The Lobatto-Chebyshev method with the kind of endpoint singularity
correction that is described in [27] and [31]. The Lobatto quadrature is
closed, so no extrapolation is needed to obtain approximations of the stress
intensity. Hopefully, this advantage will compensate for the lower polynomial
degree of the Lobatto scheme. Furthermore, in this method we wish to obtain
a a=0,8= 3 shape by first solving with @ = 8 = 3!, and then correct
the left endpoint shape by dividing the obtained solution by (1 + -)2. This
correction actually imposes the wrong shape of the unknown, so we expect
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the approximation of the stress field to be somewhat misguiding, but we still
hope for good stress intensity approximations. When o = § = ’71, the Jacobi
polynomials in (42) are equal to the Chebyshev polynomials (hence the name
Lobatto-Chebyshev), and in this case the abscissae, weights and collocation
points are tabulated in [9]! Though, the collocation points are one less than
the integration points, so we need one more equation to render the resulting
linear system determined. It is common to apply a condition saying that the
integral of the density along the crack should equal a constant. It is also
possible to require the crack faces at the mouth of the crack to be parallel
by simply requiring the density to be zero at this point. We will try these
different side conditions.

We do not have to derive an expression for the approximate stress in-
tensity factor in this case, since this has already been done in [32]. The

expression is:

P (1
K &~ yfra/207(3 ByP 2 2(1)) (47)
k=0

For each of the above methods, we now graph the errors in the computed
values for K for different N. For ¢ = 1/, the correct value is 1.1215 ([33]),
and this is also the parameter value that is used in the computations. Figure 7
shows a log-log plot of the errors obtained by the two methods versus the
number N of unknowns in the resulting linear systems, as N ranges from 10
to 60. The slightly curved graph corresponds to the Gauss-Jacobi method.
The other graph is actually composed of several coinciding graphs that has
been obtained by using the different side conditions that are associated with
the Lobatto-Chebyshev method. The graphs are indistinguishable even on
a fine scale, which proves that the side condition has little effect on the
computed stress intensity factor. Furthermore, the result of fitting a line to
these graphs suggests that both methods converge quadratically.

Let us also note something about the conditioning of the system matrices
for each of these methods. As is usual, we expect an increase in the condition
numbers as the precision increases. The reason for this is that the distance
between the collocation points near the ends of the interval decreases rapidly
as N increases. This is where the Lobatto-Chebyshev method hints its supe-
riority; As N = 600 the condition number in method 2 does not exceed 400,
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while the condition number in method 1 is over 70000 as NV is only 400. The
conditioning of method 2 is though somewhat dependent on the side condi-
tion. The best results in this respect were obtained when a side condition
requiring the crack faces at the crack mouth to be parallel was used.

1.4 Simplifications of the problem and assumptions on
its data

In this section some simplifications of the formulated problem will be pre-
sented. The need for these simplifications can in some cases be explained
by reference to the discussion in this introductory chapter, while some sim-
plifications and assumptions are necessary to limit the extent of this Master
project.

The analysis will be carried out in two dimensions, by imposing plane
deformation conditions and letting the crack front be orthogonal to the plane
under consideration. This implies that only mode I and II stress intensity
factors will appear, and only straight edge dislocations will be treated (with
the dislocation edges parallel with the crack front). As was mentioned in the
problem formulation, only components made up from crystalline composites
will be studied. Furthermore, the grain boundary is assumed to be the shape
of a polygon.

Our current approach, modelling plasticity by dislocation emission and
motion, is a method that in a detailed fashion treats the effects of the stress
concentrations around the crack tip, as is appropriate for our small scale
problem. Considering that the redistribution of stresses near the crack tip
due to plastic work is achieved by a distribution of discrete dislocations, it is
adequate to consider the material of our component to be perfectly elastic.

We aim at placing discrete dislocations at carefully selected points in §2.
Naturally, we must know how these dislocations influence the stress field in
the grain. It should be clear from the discussion in (1.3.2) that we are forced
to assume both elastic isotropy and constant material properties throughout
Q. An important expression is hence the expression (33) for the influence of
a dislocation on the state of stress in a homogenous half plane. We will not
derive this expression, but assume it. Note that we will consider anisotropy
when calculating the motions of dislocations.

We assume that there is exactly one simply connected crack contour, and
that this contour is piecewise linear and continuous.
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The external load is assumed to consist of a time dependent tensile stress
o that is applied symmetrically to the remote northern and southern bound-
aries. 0 is characterized by its minimum and maximum value during a cycle.
Experience has shown that it is reasonable to take no notice of its variation
between these extreme values. Furthermore, we assume that the frequency
of the loading is small enough for it to be reasonable to dismiss any influence
the acceleration of mass in the body might have on the solution procedure.
Also, we let 0* be such that the crack opening displacement along the entire
length of the crack and during the whole loading sequence, is greater than
the cohesive range of the particles in the lattice. This relieves us from the
need of considering friction and contact forces, and it also prevents crack
re-welding. As we will see in chapter (3), it is not enough to assume that
o is strictly tensile, since plasticity induced crack closure might occur even
though o® is positive.
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2 A dislocation based model of the fatigue
growth of initiated microcracks

In this chapter a mathematical model for the simulation of the fatigue growth
of initiated microcracks is proposed. As was specified in the problem formula-
tion, the crystalline state will be considered, and dislocations will frequently
be used for modelling different aspects of the fatigue growth. The simplifica-
tions in section 1.4 will help to limit the vastness of the general case model. In
Chapter 3, we attempt to translate this model into a mathematical technique
that will also be implemented to perform the simulation.

The chapter begins with a few sections each devoted to one of the follow-
ing major modelling issues: Load stepping, the modelling of the grain bound-
aries, glide planes and crack, the definition of the boundary value problem
for the stress field and how to obtain its data, the modelling of the plasticity,
the dislocation emission and annihilation model and the crack growth model.
In figure 9 at the end of the chapter, a flow scheme for the simulation model
is depicted.

2.1 Load stepping

During the fatigue, the external load is assumed to vary periodically. Since
the cycle is determined by the pair (o2%,., 052 ), we must decide the behaviour
of the loading when it is between these two values. It is not necessary to
consider all values of the load during a cycle and thus having to model a
continuous change in the load by means of some subtle analysis, but instead
we choose a finite sequence {o{°}; of load values that increase from o2, to
oy and then decrease from oy° . back to oy simply by picking a suitable

size of the load step that will be used throughout the whole cycle.

2.2 The modelling of the grain boundaries, glide planes
and crack

The modelling of the grain boundaries is perhaps the most central issue in
this study. We have assumed that the grain boundary I'y is a polygon. As
before, we denote by €2, the plane set bounded by this polygon. There are at
least two possible ways to model the grain boundaries; One way is to define
them by a local increase in 7..;; (see section 1.3.1) which surely will make I',
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act as barrier for dislocation glide. Another way is to distribute dislocations
along I'j. The latter approach is actually the more realistic one, since grain
boundaries in a wider sense are nothing but distributions of dislocations.
More specifically, a grain boundary is a displacement, and hence it is close at
hand to model the grain boundaries by a set of dislocation dipoles, which is
what we do here. In a way we have already encountered an application of this
technique as we discussed the modelling of finite bodies that is performed
in [17], where traction free grain boundaries are achieved by introducing
an extra set of equations for the grain boundary dipole strengths in €2,
expressing the condition that the stress on the grain boundaries induced
by the external load must be matched by the traction stresses induced by
the boundaries themselves and other internal sources of stress in €2,. This
would probably make I'y act as barrier for both dislocation glide and crack
advance, but this technique is a little too advanced for our purposes. In
this model, we employ the simpler strategy of merely placing finite length
dipoles in a suitable way along I'y to mimic the grain boundaries. Since the
grain boundaries are defined by some displacements, it can be understood
why we choose to distribute dipoles and not single dislocations. Thus, I'y is
a finite set of finite length dislocation dipoles, i.e. their strengths, lengths
and orientations.

To simulate the crack growth, we also have to specify the glide planes of
the grain. Since this is a two dimensional simulation, all glide planes that we
consider must be parallel to the crack front, so that they can be represented
by lines. This is of course not the case for all glide planes in every crystal, so
the actual number of glide planes must perhaps be reduced and the model
of the crystal must perhaps be simplified before the simulation is applied.

We also need to represent the crack line I'; at load step 7. Since it is
assumed that there is exactly one simply connected piecewice linear crack
contour, we can represent I'; by the coordinates of a finite set of ordered and
distinct kinks. Thus we write I'* for the coordinates of kink number & at
load step 4. It follows that [} € I', and every time the crack increments all
we need to do is add an element to {T'¥},_;. We also write C* + 1 for the
number of elements in {I'*},_;. By a slight abuse of notation, we will in the
following write I'; for the crack locus, and {I'*},—; for the kinks. This will
probably not cause any confusion.

The actual modelling of the crack is brought about by a distribution of
dislocations along I';. We now suggest how to find this distribution.
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2.3 The governing boundary value problem and how
to obtain its data

During the simulation, we will need to compute the stresses at different points
in ©,. The state of stress in a static body is governed by the equations
of elasticity. There is no need to incorporate into these equations a term
involving the derivatives of the displacements with respect to time, in order
to model the possible acceleration of various points in the body. This is
because the body will reach equilibrium very quickly. It is thus clear from
the discussion in chapter (1), that the governing boundary value problem can
be expressed as the problem of finding the distribution of dislocations along
the crack line that leaves the crack free of any traction stress. In this way
the boundary value problem at load step 7 is reduced to the following:

Given 671, Yycp, 6¢ and 67, find B; : T; — R? such that

o; = —0 — Yaep, 64 —6¢ onTy, (48)

where 6,6%,6%,62 : T'; — R? are the direct and shear traction stresses nor-

[ 7 )
mal to the crack line induced by o7°, the dislocation d, I'j and B; respectively,
and P; is a set of free dislocations in €, (see section 2.4).

Once we have solved (48), we can obtain the overall stress field O'Z at load
step 4, adding together the stress fields o7, > dep; od, 0% and of induced
in Qg by 07°, the dislocations d in the set P; (see sectlon 2.4), the grain
boundarles I'y, and the dislocation density B; respectively. This operation
must of course be preceded by the calculation of these terms; of and o¢ are

easily computed by using (33). Furthermore, we obviously have that

o — lg;ﬂo] (49)

Also, o2 can be obtained from (37).

We need no condition on the stress saying that [', is traction free, or
a condition saying that o7 (z) + 02 (z) + Y4ep, 0¥(x) + 0f(z) should tend
to the far field loading as ||z|| tends to infinity, since these conditions are
automatically satisfied by the nature of the expressions (see (34)) for the
stress fields around a dislocation.

Obtaining the correct data for (48) is a separate, but not overwhelming,
task. Knowing o', 0¢ and o we can easily compute &, 6¢ and 6 by
performing a transformatlon of the form
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where @ is the counter clockwise angle that the crack line makes with the
global x-axis.

We now understand that the crack is nothing but a vector valued function
B;! The crack locus I'; is built into this definition of the crack, since I'; is
the domain B;, which is a vital part of the function. Hence, B; is a complete
description of the crack, since we can extract both the crack locus and the
crack opening displacement from its definition.

2.4 Modelling plasticity

In a solid that is not perfectly elastic, a plastic zone will inevitably appear
around the crack tip, even when the applied loads are small. Dislocation
based models accurately describe this zone at load step i, by a set P, of
free dislocations placed at carefully selected points in §2,. A dislocation d in
P; might relocate if the stress situation at the location d; of d fulfils some
criterion. This criterion is detailed below.

2.4.1 Dislocation glide and climb

In reality, dislocation glide is initiated only if the shear stress 7 acting along
the glide plane of the dislocation at the location of the dislocation exceeds
the critical value 7.4 (see section 1.3.1). 7 is assumed to be a material
property, and can be thought of as a friction coefficient. For our purposes, it
is more convenient to let the glide be determined by the relative discrepancy
between 7 and 7,4, and so we instead choose to initiate glide as W < tol,
where tol is a specified tolerance. One might argue that the condition for the
glide of the dislocation d should be dependent on the burgers vector d,, of d,
which is why one might employ instead an alternative glide condition used
in [15]; One computes the size of the Peach-Koehler slip force F, acting on d
(which requires only the knowledge of the stress intensities and the locations
and burgers vectors of the dislocations, see [19] and [20]), and then compare
it to the material’s extrinsic resistance to dislocation motion (see [10]). This
approach is in some cases superior since it takes into account the size of the
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dislocation and requires no knowledge of the external tensile loading and
crack opening, but is tedious when there are several glide planes and the
crack is allowed to kink. In our case we will also see in section 2.5 that the
mobile dislocations all have the same length of their burgers vectors, so the
slip force approach is superfluous.

As can be understood by examining the formerly mentioned Andrades
model, the dislocation glides so to speak ’opposite’ to the applied shear stress.
What 'opposite’ means is of course a question of the orientation of the burgers
vector. Let us decide that the orientation of dj is such that d glides in the
positive burgers vector direction, as a big enough positive shear stress is
applied.

In this study, dislocation climb is not considered.

Due to the presence of the free boundary, a dislocation d in a half plane
exerts an image force on itself. This force is relatively small, and will be
ignored when computing the stress induced at d; by the free dislocations
(the image forces of all dislocations other than d are considered though).
Still, this image force plays a role as a load on the crack, and thus influences
the state of stress at d;.

2.4.2 The Equilibrium Arrangement of Dislocations and the EAD-
iteration

As the simulation moves from load step of° to load step o}, all discrete
dislocations in P; are at rest. As the load is incremented, the state of stress
in €, will change; Specifically the stress acting at the locations of every mo-
bile dislocation d in P; will change. To obtain information about this state,
we solve (48). Once this is done, we can calculate the specific values of the
global stress components at d;, and then calculate the shear along d, at d; by
a Mohr’s transformation. This is valuable information since this value will
govern whether the dislocation d will move or not. Let us imagine that some
dislocations actually move every time the load is incremented. The disloca-
tions all relocates to positions where the stress is such that the glide criterion
is no longer fulfilled, i.e. an Equlilibrium Arrangement of Dislocations (EAD)
has been reached. It is of course necessary for the further simulation to find
these positions. This model approximates the EAD-positions of the disloca-
tions by what we call an EAD-iteration. The first step of the EAD-iteration
consists of calculating the shear stress 7 along dj, at d; for every d € P;. As
we have seen in (2.3), this comprises the calculation of the stress induced
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by the far field loading, the grain boundaries, the free dislocations and the
crack. In the second step the glide condition is checked for every d € P;, and
if fulfilled, d; is set to d; +cd sign(T)M;%, where c is a constant that must
be chosen. It can be seen that this glidér;nodel takes into account the actual
discrepancy between the shear stress and the critical shear stress, while many
other dislocation based models (such as [15] and [11]) move a dislocation a
fixed distance such as 5 or 10 burgers vectors every time this glide condition
is fulfilled. Together with the check for dislocation annihilation (explained
below), the two steps described above makes up the only three steps that
are performed in every iteration in the EAD-iteration. The stop criterion
for the EAD-iteration is simply that no dislocation in P; relocates during an
iteration.

2.4.3 Dislocation annihilation

During every iteration of the EAD-iteration, we check if a discrete dislocation
is within distance of ba burgers vectors from the crack tip, where ba is a
parameter that is chosen. Those that are, are annihilated, that is, they are
simply removed from P;.

The procedure of approximating the EAD-configuration is schematically
described in figure 8.

2.5 Dislocation emission and crack tip shielding

Once the overall stress field o; is obtained, the stress intensity factors can
be calculated. The stress intensity factors obtained from the solution of (48)
are sometimes referred to as the ’local’ stress intensity factors because they
consider the local conditions around the crack tip, i.e. the dislocation loads
in (48). The size of these factors will influence whether discrete dislocations
will be emitted during load step number . Dislocation generation is restricted
to the crack tip. Since the stress intensity factors are relatively small (HCF-
condition), other dislocation sources are not likely to appear. Actually, we
let the dislocations be ’born’ at a distance of be burgers vectors ahead of the
crack tip, where be is a parameter that is chosen. This is common practice in
dislocation modelling, and helps to simplify the problem since the dislocation
mechanics at the crack tip is more complicated than elsewhere in the body.
Furthermore, since dislocation climb is not allowed in this model, all emitted
dislocations belong to a specific glide plane. Our aim is thus to define a
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Figure 8: The EAD-iteration

condition for dislocation emission along the glide plane R,, in terms of the
stress intensity factors K; and Kjj, and the angle p that the glide plane
makes with the crack tip line (I'¢" " — I'Y"). To define such a condition we
weigh together the values of K; and Kj; using p-dependent weights, and
check if the absolute value of this linear combination K, exceeds a critical
value. If so, a dislocation d that glides along R, is emitted, that is, created
at the distance be burgers vectors along the plane R, in front of the crack
tip. The linear combination K, that also determines the direction of dy, is
defined by

K, = sin(p)cos(p)K + cos(2p) K. (51)

To simplify the simulation, we decide that all emitted dislocations are
of the same size. We know a priori that the stress intensity can be strictly
negative even though we have assumed tensile (not compressive) loading (see
[14]), and thus can K, also be negative. Hence, even though all the burgers
vectors of the dislocations emitted on a plane are of the same size, they may
differ in direction. We must therefore be careful to emit dislocations with
properly oriented burgers vectors; If K, is positive, the burgers vector points
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away from the crack tip, and vice versa.

It remains to define the critical value K, for dislocation emission, that is,
the value that K, is compared to when determining emission. At this stage
it should be noted that the stress intensity factors that we have computed
describe the exact conditions around the crack tip, including the local effects
of the dislocations in P;. This means that we do not have to alter the values
K7 and Kjy (as is done in for example [20] and [16]) to take into account the
effects of the emitted dislocations. This effect that a dislocation d € P, has
on the crack tip stress intensities is often referred to as the shielding effect
of d. (Actually, the reason why we introduced P; in the first place was for
its shielding effect.) This shielding effect could be either positive or negative
(anti-shielding) depending on the orientation and location of d. That our
model automatically treats the discussed shielding effect without altering K;
and Kj; is confirmed in section 4.3 and especially by figure 15. Hence, we
consider K, to be a material property.

2.6 Crack growth

The crack increments as discrete dislocations are emitted. The crack always
increments along one of the specified glide planes. It remains to determine
the angle that this glide plane makes with the crack tip line. If the cracked
material were to be considered isotropic, we could use the maximum normal
stress criterion given in [31] to find the fracture angle 6,

K;sinf + K;r(3cosf—1) = 0 (52)

Our material is not considered isotropic, which is why the above equation
cannot be used for finding . This is because there is not necessarily a glide
plane that makes the angle # with the crack tip line. Though, we could
employ a slightly altered approach. We let the fracture angle 6 be defined
by the equation

0 = argming, p(K;sin® + K;;(3cosf — 1)), 53
0'cR

where R is the set of angles that the glide planes make with the crack tip
line. This way, Ry is always a glide plane.

The length of the crack increment depends on the angles between the
burgers vectors of the emitted dislocations and the glide plane along which
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the crack grows. The length of the increment is simply taken as the sum of
the projections of the burgers vectors on this glide plane ([18]).

2.7 A flow scheme for the simulation

The flow scheme for the simulation is depicted in figure 9.
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;

Compute stress
intensity factors
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;
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;
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Figure 9: Flow scheme for simulation
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3 A technique for simulating the fatigue growth
of initiated microcracks based upon the model

In this section we develop a complete mathematical technique for the simu-
lation of fatigue crack growth. This we do by detailing each of the actions
that are described in figure 9.

3.1 The boundary equation formulation of the govern-
ing boundary value problem

At each load step, it is convenient to express (48) as a coupled system of
C" pairs of equations. We consider equation pairs since in the entire system,
exactly two equations have the same domain; One saying that the direct stress
normal to crack segment number £ must be zero, and one saying that the
shear stress normal to crack segment number £ must be zero. The unknowns
will for later convenience be expressed in coordinate systems local to the
crack segments; This will not complicate anything since the density behaves
as a vector and one can easily transform it to another coordinate system
by premultiplying it by a rotation matrix. The parametrization v in s of
segment k is defined from

e(s) = TE4+L=(TF'—TF), —1<s<1. (54)
According to (37), we have that

Cof, w®) = T 1, Bi G™ (D) )i, (55)

Using the parametrization «y; in the above integral gives

Cof (w() = TE1 5 L2 Bir(s)) - G™™ ()% (9)) 1j(s)lds  (56)

Along segment number j we wish to describe B; with respect to a coordinate
system which first axis is parallel with the crack segment +; and origin at the
segment midpoint. Thus we write B! (s) for the local density at ;(s), and
apply a rotation to l%f(s) to transform back into the global system. If we
treat B/(s) and G™ as column vectors, and let a; denote the (global) half
length of segment j, we can write
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cost/ —singd |7

(57)
where 67 is the angle that ; makes with the global horizontal axis. Writing
RJ for the inverse of the rotation matrix, we get

Oof (1) = &, 1[0 Bi(s)T [

CoB (w(t) = X511 Bi(s) a;RIG™ (y(t);;(s))ds. (58

Since we, according to the formulation (48) of the boundary value problem,
aim at annuling the 12- and 22-stresses normal to the crack line, we must
also transform the above expression for the stress into the we local coordinate
system of the segment ;. The Mohr transformation (50) that performs this
task can be represented by a matrix. Hence,

] oy, (T (t))
o7 () = M* | of () | (59)
o, (% (t))
where
-2 pk 2 pk _ cin 9k
uE = sin 0  cos 6 sin 26 (60)

—sinf* cos % sin@* cos@F  cos 26*
Inserting (58) into (59) we see that the matrix premultiplication by M?*
can be turned into a Kronecker tensor product with R?, and the equation

pair number k£ can be written as a single vector equation, provided that we
introduce some new notation:

CoP(u(t) = s i | BT

where
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Using the above expression for the stress induced by the dislocation density
along the crack, we find that (48) is equivalent to the equations

(62)

~ -

B!(s)"

i [ T g | w00 @ RIGEutos =
3
—C6{ (1) = C Taep, 67 (w(t)) — C6f (w(t),k=1,.,0% -1 <t < L.

(63)

The term 67 (7x(t)) is constant in ¢ since the remotely induced traction stress

does not change along a segment, and the term &7 (7x(¢)) is constant in %

because the grain boundaries do not change in time; Let us denote them by

the column vectors RISF and GIS*(t) respectively. Summing up, we have

arrived at a nice boundary equation formulation of our crack problem:

O LS Kyy(t;8)Bl(s)ds = —C(RISE + GIS*(t) + Laep, 67 (1(1)))
k=1,.,0-1<t<1,
(64)
where!
vec(Ki;(t;s)") = aj(M* @ R)G((t);74(s))- (65)

It is the problem (64) that we now proceed to solve.

3.2 Discretizing the equations

3.2.1 The ansatz

To make the adequate ansatz we must know the strengths of the endpoint
singularities of the unknown density along each crack segment, i.e. we must

Lif A is a matrix, then vec(A) is the vector made from putting the columns of A on top
of each other.
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know the parameters o and . By carefully studying [26] we conclude that the
singularities in the densities should be of the same order as the singularity
in the 'near kink’ stress field. Since we have assumed that the crack is
open along its entire length during the whole simulation, we can consider
the magnification of each kink as the apex of two notched components with
traction free notch-faces, and subjected to some form of external loading, as
in figure 10.

Figure 10: Magnification of a kink

We can now rely on Williams classic analysis (see eg [5],[8],[9]) to tell us
the singularity of the stress around the notch, and hence also the parameters
« and S in our ansatz. We will not detail this procedure here, since it
turns out that our numerical method disregards the actual values of a and
B and treats all near kink stress fields as square root singular. Anyhow, for
theoretical reasons, we may observe that the ideal ansatz sz : R — R? along
segment k£ should be expressed in local coordinates as

BE() = ()L +-)% (1 = )P, o5 () (1 + )% (1 —-))T, (66)
where ¢* and ¢% are polynomials of degree J, J is determined by the precision
of the method that will be used, and a4 and Sj are the endpoint singularities

of the segment which have been found by the technique explained above.
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3.2.2 The Gauss-Jacobi method, the Lobatto-Chebyshev method
and crack kink singularity correction

Our integral equations now have the form

Qﬁ(s) ak (1 — ¢)Bk
> 17rf_ Ky(t; 5) o(s) (14 5)*(1 — s)Prds
= —C(RIS} + GIS*(t) + Laep, 07 ((t)))
k=1,.0",-1<t<1.

(67)

Ideally, a quadrature scheme based on the Jacobi polynomials should be
employed in a situation like this. But, as mentioned already, these are cum-
bersome to employ, so we seek alternative methods. We thus follow [31] and
[32] in rewriting the above equations as

0 (s)(1 4 ) +1/2(1 — g)Brt1/2

—C(Rfsf + GIS’“(t) + Yaer, 08 (%(1)))

] (1+s)"12(1 — s)"1/%ds

=

=1,.,0", -1 <t<1.
(68)
If we make the substitution
(@](s), @L(s)) = (B1(s), Bh(s))(1 + s)*F1/2(1 — 5)Pu1/2, (69)

we are left with equations in (®J, ®?) all of which have the (1+s)~1/2(1—s)~1/2
factor instead of the (1 + s)* (1 — s)P* factor:

i 7rf— Kij(t; s) [ gigz; (1+s)"Y2(1—s)"2ds

= —C(RISF + GIS*(t) + Laep, 67 ((1)))
k=1,.0C,-1<t<1.

(70)

One can now solve these equations using the Lobatto-Chebyshev method,
and then multiply the obtained answer by (1+ )~ ~1(1 —s)~%~! to obtain
the values of ¢{ and (/5%. It turns out though, that we will never need the ac-
tual values of (b{ and qﬁg, we will only need the integral of these functions, and
when we integrate we use the same quadrature that was used when the equa-
tions where solved, which involves changing ¢{ and ¢} back into ®] and ®3.

02



Thus it is not relevant to find ¢{ and ¢~;’, but we rather treat CD{ and @é as
our unknowns. This is of course cheating, since what we have done is that we
have assumed that all singularities are of square root size. There is though
one endpoint that we can treat appropriately. This is the left endpoint of
the surface-breaking segment. We know that there should be no singularity
there at all. By performing the above singularity correction at the right end-
point, we can thus assume that the unknown along the first segment, is of the
form (®1(-), ®3(-))(1 — -)~*/2(1 + -)¥/2. This ansatz produces equations that
are best solved by the Gauss-Jacobi method. In the introductory section we
also solved this equation using the Lobatto-Chebyshev method after having
corrected the left endpoint singularity. This produced fine stress intensity
approximations, but the wrong shape at the crack mouth produces an er-
roneus stress field. We thus discretize the first segment by the Gauss-Jacobi
method and the others by the Lobatto-Chebyshev method.

It should be mentioned that of all the integrals in (64), only the ones
whos domains are supersets of the collocation points are singular. Thus
only a part of the integrals in the whole system of equations are singular
integrals. Fortunately, the methods we intend to use works also for regular
integral equations, so we can discretize all integrals using only these methods.

Let us denote by N the number of abscissae used on each segment. The
integration points {sgs(n)}2_,, collocation points {tgs(m)}Y_, and weights
{Weas(n)}Y_, in the Gauss-Jacobi method are defined by

sgs(n) = cos(m (gN:)IH) n=1,.,N
tas(m) = cos(w“gTW), =1,.,N (71)
Was(n) = 20200 n =1 N,

and the corresponding numbers in the Lobatto-Jacobi method are defined by

SLc(l) = -1
spe(n) = cos(mfi=2),n=2,.,N—1
SLc(N) = 1
tre(m) = cos(w%),m =1,.,N-1 (72)
Wic(1) = 21\7172
WLc(n) = ﬁ,?’L:Q,..,N—l

Wic(N) = 57—

We now apply the Gauss-Jacobi method to approximate the first integral
n (70) by a discrete sum, and the Lobatto-Chebyshev method will be used
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to discretize the other equations. These sums are linear in the values of the
integrands at the integration points, so for every collocation point we have
one linear equation in (®}(s(n)), ®3(s(n))),n = 1,.., N. If we were free to
collocate anywhere, we could easily produce a determined system, but the ap-
proximations of the integrals are valid only at the collocation points. If there
is only one segment, we have as many collocation points as integration points,
and so we can solve for the unknowns (®](sgs(n)), ®5(sqs(n))),n =1,.., N.
If there are two or more segments, we must supply two side conditions since
the Lobatto-Chebyshev supplies one collocation point less than the number
of integration points. Such conditions can be derived by requiring single val-
uedness of the dislocation density at the kinks. The density behaves as a
vector, so we can simply rotate both local densities into the same coordinate
system and set them equal at the point where the segments meet;

1 | cos(¢? — 077 —sin(07 — 0771 | 4; . ;
B/7(1) = [ sin(&j _ 9]'—1) Cos(ej _ 03‘—1) ] Bl(-1),j=2,.,C

(73)
Since the densities are singular at the kinks, this condition cannot be applied
in the above form. Instead we write the condition as

. A cos(§ — =1 —sin(¢? —¢77) | A,
fimro [Bf 1(1 - - l sin((Hj — 0j1)) cos(éﬂ' — 91'1)) ] B (-1+ 7")] =

j=2,.,C
(74)

. AT
If we write ®7 = [<I>”1, CI%] and insert our ansatz

le() = c131()(1 + )21 — L2 |
Bl() = ®()A+)V2(1 -2 =20

we get
hmHo[ (@'(1—7r)- (2 )2~ R(R)T®*(~1+7)- (2— 1)/

2 )]
lim, o [ (1 —r)- 2—r) 2 - RYR)T®I(—1+7) - (2'— 7')*1/2)]
J
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and consequently

lim, g [@1(1 —r)-(2— 7‘)1/2 _ RI(R2)T(I)2(_1 +r)-(2- 7“)_1/2 _
lim, o [@j*1(1 —r)-(2—=7)"Y2 - Y RHT®I(~1+7)- (2—7)" /2

which is the same thing as
®1(1)2"2 — RH(RH)TP2(—1)27% = 0
®I71(1)27Y2 — RITY(R)TPI(-1)2712 = 0, (78)
j=3,.,C"

The side conditions are thus expressed by the equations

20'(1) — RY(RYT®X(-1) = 0

$1-1(1) = R (RI)'®I(~1) = 0,j=3,.,C". (79)

To apply the first one of these conditions, we have to extrapolate the known
values of ®! on the first segment, just as we did in section 1.3.3.

An alternative way of defining the side conditions is by noting that (69)
forces the unknowns to vanish at the endpoints. (This is dependent on the
fact that oy + 1/2 and Sy + 1/2 are always greater than zero, which follows
from William’s analysis.) As we evaluate the code in section 4.1, one obser-
vation is that the choice of side condition has a minor effect on the computed
stress intensities, but our approach is slightly better in most cases.

Applying the Gauss-Jacobi method and Lobatto-Chebyshev method and
collocating gives

Yol Way (n) K (t; 6 (n)) @7 (s¢s(n))

+ 35 Yoy Wie(n) Kis(t; spe(n)) @ (sio(n)) (80)
= —C(RIS} + GIS*(t) + Laep, 67 ((1))),
k=1,.,C%

where ¢t € {tg;} for k=1 and t € {t;¢} for k = 2,..,C". By introducing the
vector
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@ (sas(1)) ]
®'(s564(2))

B (s (N — 1))
®!(sqs(N))
d = *(sre(1)) (81)

2(s,0(N)

O (sp0(N — 1))
" (szo(N))
and incorporating the side conditions into the system of linear equations, we

can write it as a 2NC* x 2NC" matrix equation

A = —Cf, (82)

where f is a vecor containing the values of the load stresses at the collocation
points together with the righthand sides of (79). We may now let a computer
assemble the system (82) by using the formulas (80) and (79).

3.3 Solving the resulting linear system

Solving the linear system (82) is not a major issue. As we will se in chap-
ter (4), the systems that are considered are rarely larger than say 500 x 500,
so solving by LU-factorization is sufficient. It should be noted that the
system (82) is full, which further emphasizes that there is not much compu-
tational time to save by implementing an iterative solver. Furthermore, time
efficiency of the code is not central in this kind of simulation.

3.4 The problem of plasticity induced crack closure

In chapter (2) we simply built our model upon the assumption that the
crack is open along its entire length during the whole load cycle. It is not
easy to know a priori what kind of loading and geometries that implies the
validity of this assumption. Indeed, even a pure mode I crack subjected to
a tensile load may close due to the influence of the dislocations that are left
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behind in a 'wake’ as the crack grows. This phenomenon is termed plasticity
induced crack closure (see [12] for a discussion of this concept), and if it
occurs, the simulation is no longer valid. To check that closure does not
occur, one computes the crack opening displacement along the crack every
time one calculates B?, and make sure that it is strictly positive at a set of
selected points on the crack. As we have seen, this amounts to checking that
the integral of the dislocation density from the crack tip is strictly positive.
Formally, we should require that

CODI(r) = CODI(1)+ [TBI(1—s)ds >0, j=1,.C0<r<2,
(83)
where CODY(1) is the crack opening displacement at -y;(1) given rise to by
segment number j + 1. It will be noticed in chapter (5) that the requirement
that the crack is open is not always satisfied, for in some cases negative
stress intensities appear. In this cases one should be aware of the fact that
the simulation is only approximate.

3.5 Computing stress intensity factors

The same formulas for the approximate stress intensity factors as those used
in section 1.3.3 holds, i.e. the formulas (46) and (47), but now the crack
length a should be replaced by the length of the last crack segment. Note
also that the polynomial part of the density B; should be evaluated in local
coordinates at the crack tip. Since our solution vector is already expressed
in local coordinates, we do not have to transform it. We must also take care
to apply formula (46) only when there is only one crack segment, and use
formula (47) otherwise. As before, the application of (46) must be preceded
by an extrapolation.
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4 An implementation of the technique

Based upon the technique described in the previous chapter, we have written
a computer code that performs the simulation of the fatigue growth of a
microcrack. The code consists of a few routines that assembles the system
matrix and load vector, an object oriented part for the treatment of the free
dislocations, and a simple visualization. The code was written in MATLAB
except for a part of the computational kernel that was implemented in C.

In this chapter we evaluate our model and the associated technique by
applying them to crack problems which previously have been successfully
analyzed by other investigators.

The investigations carried out in this chapter (except for section 4.1) are
meant to display how the code behaves qualitatively, so in many cases we
mention nothing about the units or values of the parameters.

4.1 Evaluating the code by comparing stress intensity
approximations with handbook tables

In this section, stress intensity approximations computed by our code is com-
pared to the values tabulated in [33].

The stress intensity factors for single segment crack configurations con-
verge well, with somewhat lesser accuracy when the angle with the boundary
is small. This lack of precision for very slant cracks seems to be due to an
inherent weakness of the solution technique. Even so, for cracks that make
an angle of 40 degrees or more with the boundary we achieve a relative error
below one percent using only N < 10. This strongly contrasts with the crack
that makes the angle 10 degrees with the boundary, and for which we have
to set N = 140 to achieve a relative error below 10 percent.

We also try some crack configurations where the crack has a kink, i.e.
two inclined segments. The code efficiently computes accurate values of the
stress intensities. In most cases we only need N = 10 to achieve a one percent
relative error. In figure 11 we display the convergence for a crack that has
initiated in shear at an angle of 45 degrees with the boundary, whereupon
it turns orthogonal to it, and thus is a pure mode I crack. The lengths of
the crack segments are 0.25v/2 and 0.75 respectively. In this case we have
KII =0 and K] = 11210’00\/7_7'

By studying the convergence of these testproblems we have learned that
very little accuracy is gained from increasing N when N is greater than 30,
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Figure 11: The error in K; and K for a crack with a kink versus the number
of abscissae used on each segment.
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which is verified by figure 11. Thus there is no use in considering system
matrices A that are of very great dimensions.

4.2 Evaluating the code by examining stress field ap-
proximations

To convince ourselves that the stress fields are also well approximated, we
plot in figure 12 and 13 the shear stress field along the global horizontal axis
around a kinked crack. The collocation points at the crack line can actually
be distinguished, so we guess that a greater value of N is needed to obtain
a good approximation of the stress field than is needed to obtain the stress
intensities alone.
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Figure 12: Using N = 15 and a course grid for plotting.
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Figure 13: Using N = 30 and a fine grid for plotting. The upwards and
downwards spikes at the crack tip verifies that the shear stress field has a
singularity.
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4.3 Examining the effects of dislocations on the stress
intensity

We now investigate how a dislocation in front of the crack tip affects the stress
intensity at the crack tip. More precisely, we examine straight edge cracks
with dislocations with normalized burgers vectors parallel to the crack tip
line and placed at different distances ahead of the crack tip. Our code shows
the same qualitative results for all straight edge cracks, so let us concentrate
on the edge crack that was also treated in section 1.3.3, but now let the
crack be of length 10. As we have seen, the Kj;-factor is zero if there are no
dislocations present in the grain, and by looking at figure 14, we understand
that we can expect the value of this factor to be decreased by a dislocation
in front of the crack tip whose burgers vector points in the direction of the
crack tip. This is in fact also the case, which can be seen from figure 15. If
we let the burgers vector point in the opposite direction, the plot is reflected
in the x-axis. Furthermore, the code shows (as we expect) that the K factor
is unaffected by such a dislocation.

4.4 Evaluating the crack growth model

It is known that cracks tend to turn so that they grow in mode I, indepen-
dently of how they are initiated. To verify this behaviour, we study the
growth of a crack of length one that makes an angle of 45 degrees with the
boundary. For now, we set K, = 00, so no dislocations will be emitted. Also
we let all crack increments be of length one, and we define a large set of glide
planes so that the transition into mode I growth is not instantaneous. Still,
it can be seen from figure 16 that the crack has turned into a mode I crack
after only 3 load steps.

Even in cases where the crack is assumed to have initiated in a more
unrealistic way, as in figure 17, our crack growth model predicts that the
crack will turn into mode I. Thus we are confident that our crack growth
model is realistic.
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Figure 14: The emission of a glide dislocation onto the crack plane.
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Figure 15: The effect of a dislocation in front of the crack tip.
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RTS= 1 K= 1.2496 K= 0.64606
cycleno 1

RTS= 2 K|: 5.163 K“: 0.32102

cycleno 1

—

RTS= 3 K= 9.8023 K= 0.0026882

cycleno 1

—

65

Figure 16: The growth of a slant crack. RTS stands for Remotely induced
Tensile Stress.



RTS= 1 K|= 0.51362 K“= —-0.47168
cycleno 1

RTS= 2 K|= 8.5879 K“= 0.007593
cycleno 1

N

Figure 17: The growth of an oddly initiated crack. The load is increased
from 1 to 4, then decreased to 2.

66



5 Applications of the implementation

Our experience from the previous chapter shows that many general conclu-
sions can be obtained by studying pure mode I cracks, and so we do in
the first two applications. In the third application below, we study a more
general problem.

In all problem formulations below, we define one unit of length (L) such
that 1L = 1um. The intrinsic burgers vector of the lattice is of order 1nm,
but its actual size will not matter, since we for computational reasons in
many cases choose to emit ’superdislocations’ with burgers vectors whose
sizes are greater than the size of the intrinsic burgers vector. This we can
do because the many smaller dislocations can be added together and treated
as one dislocation with burgers vector equal to the sum of the many smaller
burgers vectors, as explained in section 1.3.1.

5.1 A first application; No grain boundaries

In our first application, we study the behaviour of a microcrack in a mate-
rial without a grain structure. We choose to emit dislocations with burgers
vectors b such that ||b]| = 0.1L = 10~"m. The values of the parameters
are somewhat inspired by the choices made in [15]. Because of our different
choice of ||b||, we cannot practically use the parameter values used in [15]
since the remote tensile loading required to induce the critical stress inten-
sity for dislocation emission is so great that it alone induces a shear stress on
the glide planes that is greater than the critical shear stress for dislocation
glide. So, if we use the suggested parameter values and the amplitude of the
loading is low, no emission will occur, and if the amplitude is not that low,
the free dislocations will glide towards infinity. None of these situations are
very interesting, so we avoid them both by using a higher material friction.
The intrinsic burgers vector of the material is of order 0.001L, so our su-
perdislocations can be thought of as groups of approximately 100 elementary
dislocations. Thus it seems reasonable to increase the critical resolved shear
stress by a factor 100. There are many more parameter values that need to
be choosen in order to run the simulation, and these are all listed below:
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Material and load parameters

Co = 1

Il = (0,0)L

2 = (20,0)L

R = {-70.5deg,0deg,70.5deg}

g = 80-10-3N/L?

v = 03

Terit = QM_ON/L2

K, = cos(70.5)sin(70.5) - 0.4 - /[Ibl| =
0% = 3.10°N/L?
o = 4-10°N/L?

Technical parameters
0o __ 500
loadstep is —mez _—min

N = 30
c = 1
tol = 0.1
ba = 1
be = 1

In figures 18 through 24, we can follow the simulation of the crack growth.
The behaviour we see is quite typical; The load is increased and dislocations
are emitted, whereupon they glide away from the crack tip. The load is then
further increased, and more dislocations are emitted. This continues until
enough shielding of the crack tip has been achieved. No further crack growth
occurs, since no more dislocations are emitted. Note that the crack would
not have ceased to grow if we had not used a high material friction, since
the dislocations then would have glided towards infinity and not produce any
shielding effect.

By this application we have verified that a microcrack in a homogenous
material with a relatively high material friction subjected to a load that
induces a critical stress intensity, is predicted to stop growing. On the other
hand, if the material friction is too low, the crack will continue to grow.

From this application we have also learned that the convergence in the
EAD-iteration is slow, and that the EAD-positions are sensitive. It is for
these reasons that we use the slightly altered glide condition and relatively
high value of the parameter tol. Simulations have shown that a lower value
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Figure 18: The initial crack

Figure 19: Due to the stress concentration around the crack tip, a pair of
dislocations are emitted and the crack propagates.
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Figure 20: The dislocations glide to their EAD positions.

Figure 21: The load is increased and the dislocation cloud grows.
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Figure 22: We can now distinguish the glide planes.

Figure 23: By zooming in on the crack tip, we clearly see the discrete nature
of the plasticity.

71



RTS=0.004 cycleno2
K1= 0.0082693 = —4.8205e-17
K =

L 0.0031841 1

Figure 24: A further zoom. After one full load cycle enough shielding has
been achieved to prevent crack growth during the following cycles.

of tol does not have any substantial influence on the EAD positions.

In this case, the crack growth stopped after only one load cycle. It might
happen though that too much shielding is produced by the emitted dislo-
cations, which makes the stress intensity become negative and dislocations
with opposite direction burgers vectors are emitted. These raise the stress
intensity and thus lower its magnitude. This situation has occured in fig-
ure 25. One should keep in mind that in such cases the crack closure occurs
along some parts of the crack, so the results are not reliable.

Let us also make a simulation in which we use ||b]| = 0.25nm = 0.25mL
and the exact parameter values given in [16], with the exceptions that the
values of the remote loading is kept positive to prevent crack closure, and
a factor 1/2 is incorporated into the value for the critical stress intensity
to accomodate to our alternative emission model. The values are chosen
with the aim of simulating the crack growth in a base centered cubic crystal
lattice. The changes in the parameter values are:
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RTS= 0.0027857 cycleno 5

K|: —0.0053736 K”= 3.2572e-11
Ke= 0.0031841 v
A
50 4
~
L )
Avr A
v
v a

Figure 25: Due to the negative stress intensity, dislocations with burgers
vectors pointing towards the crack tip have been emitted.

Material and load parameters

R = {-45deg,0deg,45deg}
p = 80-1073N/L?
v = 0.3
Terit = ﬁN/LQ
K. = (1/2)-04-p-/|blls5%
O = 0
o 1.25:2- K,
Omaz = 1.1215-+/pix20

Technical parameters

loadstep is %—’”S’—M
N = 50
c = 2
tol = 0.03
ba = 10
be = 10

The results of this simulation can be seen in figures 26 through 33.
In [16], crack propagation is never prevented because dislocations are an-

73



Figure 26: The first dislocation pair is emitted during load cycle number one.

Figure 27: The EAD positions.
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Figure 28: Emission at the peak of load cycle number two.

Figure 29: During load cycle number four, a pair of dislocations is emited...
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Figure 30: ...that glides in an unexpected direction. Even though the stress
intensity at the crack tip is positive, the shear stress along the glide planes
at ten burgers vectors in front of the crack tip has the opposite sign.

Figure 31: Dislocations are also emitted at the peak of load cycle number
SiX.
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Figure 32: The last emission occurs at the peak of load cycle number ten.
No more emission or glide occurs during the following load cycles.

Figure 33: The final configuration. The total crack increment is approxi-
mately 40nm.
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nihilated during the compressive loading sequence, thus lowering the shield-

ing. In our case, the shielding increases until the crack is brought to a stop. So, It seems
that the component’s ability of resisting fatigue is better in the case when

only a tensile load, and not a compressive load, is applied.

5.2 A second application; Simple grain boundaries

In the previous section we obtained results for cracks in a material without a
grain structure. We now introduce grain boundaries with the intent of inves-
tigating how well these act as barriers for dislocation glide. If the dislocation
does not glide too far, it most probably will shield the crack tip and prevent
further crack growth, so the actual aim is to investigate how well the grain
boundaries work as barriers for crack growth.

In this application we model the boundaries by a simple sequence of
dislocation dipoles. A detail of the dipole constellation that models the grain
boundaries is depicted in figure 34, and the whole grain with the initial crack
can be seen in figure 35. The grain is not symmetric due to the non-symmetric
boundaries. It can be seen that the dipoles are parallel to each other and of
greatly varying strengths. Specifically, the lengths are approximately 0.2,
and the strengths (lengths of burgers vectors) of the stronger dipoles are
3L, and the strengths of the weaker dipoles are 0.001L. The strengths of
the stronger dipoles are unrealistically great, because the influence of any
weaker dipoles is too low to have any considerable effect on the motions of
the free super-dislocations. In the next section we will consider the motions
of weaker dislocations (not superdislocations), and then the strenghts of the
boundary dipoles will be more realistic, but for now well consider a scaled
problem.

The grain is of size 20L, so it is not appropriate to let the initial crack
be of length 20L as in the previous section. Instead we let the crack be of
length (20/3)L, and increase the load amplitude by a factor v/3, so that we
would have obtained the same stress intensities as before if there were no
grain boundaries. In figures 36 through 47 we can follow the simulation of
the fatigue process for the crack problem with the paramater set:
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Material and load parameters
Co
Iy
I's

Technical parameters

= 1

(0,0)L

(20/3,0)L

= {-70.5deg0deg, 70.5deg}
80 - 10 N/L?

= 0.3

BN /L2

2000

cos(70.5deg) sin(70.5deg) - 0.4 - 1 - ,/||b||%
V3-3-107N/L?

= V3-4-1073N/L?

—o°°.
loadstep is Zmaz_Zmin

N = 40
c = 1072
tol = 0.1
ba = 2
be = 1

Using this parameter set without grain boundaries would make all emitted
dislocations glide towards infinity and the crack would not cease to grow.
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Figure 34: Detail of the grain boundary of the second application.

Figure 35: The grain and the initial crack in the second application.
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Figure 36: After a few loadsteps the stress intensity exceeds its critical value
and a single dislocation is emitted. The crack increments.

Figure 37: The stress along the glide plane is not high enough for the dislo-
cation glide to be initiated, so the emitted dislocation is at once annihilated
by the crack tip.
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Figure 38: As the load is increased, a dislocation pair is emitted.

Figure 39: The dislocations have glided to their EAD positions.
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Figure 40: After a further increase in load, another dislocation is emitted...

Figure 41: ...but is immediately annihilated.
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Figure 42: During the next load step another dislocation pair is emitted.

Figure 43: The dislocations glide away from the crack tip.
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Figure 44: Due to the influence of the grain boundaries, the dislocations glide
back towards the crack tip as the load is decreased!

Figure 45: The innermost pair is annihilated!
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Figure 46: Approximately the same configuration is obtained at the peak of
load cycle number two as at the peak of load cycle one. The slip bands of
the parallel dislocations are now further apart, because the crack has grown
during the loading sequence.

Figure 47: During the unloading sequence, the dislocations glide towards the

crack, and a pair is annihilated.
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cycle no9
= —0.00024391

Figure 48: The same procedure as in load cycles number one and two is
repeated during the following cycles; The first emitted pair of dislocations
prevail, while others are emitted and annihilated. During this procedure
the distance between the slip bands of the first emitted pair and the newly
emitted pair grows. In load cycle number 9, the distance is so great that...

=0.0069282 cycle no9
; = -0.00024391

Figure 49: ...after the load peak has been reached...
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Figure 50: ...the dislocations are not pushed back enough towards the crack
tip to be annihilated!

Figure 51: A configuration has been reached that prevents both emission and
annihilation during the following cycles. The influence of the grain bound-
aries have brought the crack to a stop.
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5.3 A third application; Sophistscated grain bound-
aries, a complicated geometry and several glide
planes

We now investigate the behaviour of a kinked crack in a grain which bound-
aries are modelled by a sequence of inclined dipoles.

If we use ||b|| = 0.25nm and allow the crack to kink, we encounter prob-
lems when solving the linear system. A new crack segment following a kink
is approximately 1mL, so the collocation points on the segment almost coin-
cide. Thus the equations for the dislocation density arising from collocating
on this segment are almost the same, which implies that the system matrix
A is very ill-conditioned. Condition numbers in the order of 10?° appear.
Though, the observations made in section 4.4 tells us that cracks tend to
turn into mode I, so we might very well let the last segment of the initial
crack be parallel to the x-axis. In this way the crack increments forward,
and no short segments will appear.

We used values of tol between 0.1 and 1.5. When the value of tol is as
high as 1.5, our glide model tells us that a dislocation will not move if |7| <
1.57.4 which contradicts the purpose of the material property 7..;;. Though,
such high values of tol are only used in situations when problems with the
convergence of the EAD-iteration appears, and these problems often concerns
only few dislocations, whereas the for the other dislocations the more realistic
criterion |7| < 7.4 is often fulfiled at the end of each EAD-iteration. Also,
the dislocation speed ¢ was set to 1072 at the beginning of every EAD-
iteration, whereupon it was lowered repeated times if convergence was not
reached. Finally, we set be = 200 and ba between 300 and 500, because
dislocations very close to the crack tip sometimes gives rise to somewhat
chaotic behaviour (see further discussion below).

In figures 52 through 59 we can follow the simulation of the described
crack problem. The parameter values we have not yet defined are:
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Material and load parameters

Co = 4
R = {_7-‘-/41 0, 7T/4apl/2}
p = 80-103N/L?
v = 0.3
Terit = Q(;JWN/LQ
Ke - 04,“1 V“b”%
Oﬁ%n = ON/L2
0% = 35-1074N/I?

Technical parameters
—o%°.
loadstep is Zmez_min

We see dislocation pile-ups against the grain boundary. This behaviour
is also observed in [12], even though the obstacles (such as a grain bound-
ary) in [12] was modelled by a local increase in the material friction. During
the simulation, dislocations do overcome the boundary due to the other dis-
locations in the pile-up that increase the force on the 'leading dislocation’.
Furthermore, as dislocations are pushed back from the grain boundary, it
happens that they actually glide pass the crack front without being annihi-
lated. The technical parameters ba and ¢ has a great influence on whether
this happens or not, and this will be discussed in the final section.
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cycleno 51
K=

Figure 52: The configuration after 50 load cycles.

RTS= O cycleno 101
K= K=
K = 0.00050596

Figure 53: After 100 load cycles we clearly see dislocation pile-ups towards
the grain boundary.
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RTS= O cycle no 152
K= K=
Ke: 0.00050596

Figure 54: The barrier effects of the grain boundary depends on from which
direction the dislocation approaches.
RTS= O cycle no 201
K= Ku=
Ke: 0.00050596

Figure 55: After 200 load cycles dislocations have been pushed back beyond
the crack tip. The physical relevance of this is further discussed below.
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RTS= O cycle no 301
K|: K =
K= 0.00050596

Figure 56: After 300 load cycles even more dislocations have been pushed
back beyond the crack tip, and the size of the pile-ups against the grain
boundary have increased.

RTS= O cycle no 401
K= K=
Ke: 0.00050596

Figure 57: After 400 cycles the EAD-iterations are very slow because of the
many free dislocations.
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RTS= 0.000175 cycle no 452
K|:
K= 0.00050596

Figure 58: The dislocation configuration after 452 cycles.

RTS= 8.75e-05 cycle no 556
K= K=
K= 0.00050596

Figure 59: The dislocation configuration after 555 cycles.
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Figure 60: The dislocation configuration after 700 cycles. Several rays of
dislocations are left behind in the plastic wake.
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Figure 61: The dislocation configuration after 774 cycles.
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5.4 Conclusions and future work

Some criticism of the very special emission and crack growth models that were
used in this study is motivated. The formula that determines whether dis-
locations with specific burgers vectors should be emitted resembles a Mohr’s
transformation for computing the shear along inclined planes. Thus one
can imagine that all dislocations are emitted due to shear, even if they are
emitted along inclined glide planes. It might be worthwhile to try out a
model that treats 'mode I emission’ in more suitable way. The crack growth
model works efficiently unless very short segments appear, as they do when
one treats elementary dislocations (dislocations whos burgers vectors are the
same size as the intrinsic burgers vector) and kinking is allowed. A remedy
for this shortcoming could be to use a different number of collocation points
on each segment. Though, if the segment is very short it would probably not
fit more than a couple collocation points, so then the solution might very
well be very inaccurate.

The values of the technical parameters have a great influence on the
outcome. For example, one load step instead of ten during a load cycle will
have the effect that one dislocation instead of ten dislocations are emitted
during every load cycle. Since all dislocations are of equal strength, this
difference has a significant impact on the crack. Such pitfalls could be avoided
by treating free dislocations of different strengths, which requires a model for
deciding these strenghts. Also the dislocation speed ¢ has a great influence
on the EAD-iteration. In the third application for example, as dislocations
were pushed back from the grain boundary, the too high value of ¢ made it
possible for the dislocations to pass in front of the crack tip without being
annihilated. A lower value of ¢ would have slowed down the convergence of
the iteration, so that the EAD might never have been reached. Also the value
of the parameter ba could be increased to avoid this behaviour. On the other
hand, it might be physically reasonable for this constellation to appear. The
conclusion is that the technical parameters have a very great influence on the
outcome of the simulation. Some more research concerning what paratemer
values that are realistic is recomended.

The EAD-iteration is too slow. This problem could be solved by coding
entirely in a compiling language, and treating superdislocations instead of
many smaller dislocations.

Partially because we want to reduce the computational load in the EAD-
iteration, we do not check whether mobile dislocations move across the crack
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tip line far from the crack tip. The dislocations that make up the plastic
wake in the third simulation move across a region close to the crack tip, and
as mentioned, the reason why they are not annihilated can be derived from
the values of ¢ and ba.

To extend the code so that it can handle multiple and branched cracks
is not difficult, it is just a matter of adding more equations and finding the
correct conditions for the ends of the crack segments. Friction stresses due
to crack face contact and the possible rewelding of the crack is not entirely
trivial, see [11]. If one wishes to treat cracks of arbitrary shape, one can
discretize the crack line into several linear segments. This way our code can
handle also curved cracks.

It is simple to use this code for geometrical constellations other than the
half plane, for example an infinite plane with a circular inclusion. The only
condition on the geometry is that there must be available an expression for
the influence of a dislocation. The crack must also initiate at a free surface,
since this has a special influence on the BE-formulation of the equations.
A crack that does not initiate at a free surface would actually require a
simplification of the code!

An obvious generalization of the proposed model is that it should be
applicable to cases in which you consider all three dimensions. This is not
entirely trivial. The technique is the same, but all integrals will be two
dimensional and ’even more’ divergent than in the one dimensional case, and
consequently they must be evaluated by special methods.
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