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Abstract

The main objectives of this thesis are to examine different PDE-methods
for the pricing of Asian options and to make an adaptive finite element im-
plementation estimating the value of the Asian option with both fixed and
floating strike.

Two of the most important PDE methods are presented and explained.
It is shown that the Asian option is a special case of an option on a traded
account. The resulting PDE:s for the Asian option are of parabolic type
with one space-dimension and can be applied to both continuous and discrete
Asian options. The suggested adaptive finite element method is very stable
and gives fast and accurate results.
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Chapter 1

Introduction

A contingent claim, or a derivate, is a contract the value of which depends
on the values of other assets. Omne of the most common derivates is the
European call option. A European call option on a given stock with strike
price K and maturity date 7" is the right, but not the obligation, for the
holder of the option to buy one share of the stock at the price K at the time
T. A European put option with strike price K and time of maturity 7" gives
the holder the right, but not the obligation, to sell one share of the stock
at the price K at maturity. The so called American option differs from the
European option so that the holder can exercise the option at any time prior
to the maturity date. Calls and puts are often called vanilla options.

Stocks and options have a long history. Stocks have existed for at least
750 years. Option contracts were used already during the Middle Ages.
Valuing financial derivates in a theoretical convincing way has been difficult
throughout history. A very important contribution was given in 1973 when
Black and Scholes presented their solution to the valuation of the European
call option, based on the assumption that the stock log-price is governed by
a so called Brownian motion. Their solution was based of the It6 calculus
on Brownian motion. The concept arbitrage, that is risk free profit, is very
central here. The most difficult part in this area is to understand the price
dynamics of the underlying contracts.

Another kind of option is the exotic option with a payoff which does not
just depend on its value on the maturity date, but on the history of the
underlying asset price. There are many different kinds of exotic options.
Some of them are easy to price and analytical pricing formulas exist, but
most of them are more difficult to value. The average option, or the so
called Asian option is an example of an option without a (known) closed
form price formula. This paper focuses on PDE-methods for the pricing of
Asian options.



Chapter 2

Asian options

The Asian option was invented by Phelim P. Boyle and David Emanuel in
1979, but The Journal of Finance rejected their paper since the asset was not
traded at that time (private communication). Asian options are securities
with payoffs which depend on the average of the underlying stock price over
some time interval. They are commonly traded and are often relatively inex-
pensive compared to European calls. Asian options were introduced partly
to avoid a problem common for European options, where the speculators
could drive up the gains from the option by manipulating the price of the
underlying asset near to the maturity date (see Bergman [2] or Wall Street
Journal, Jan. 21, 1982, p. 4). The name Asian option probably originates
from the Tokyo office of Bankers Trust, where it first was offered (see Nelken
[13]).

Different kinds of averages are used, resulting in different types of Asian
options, with different values. The method of sampling is also important. A
continuous sampling may give easier calculations, but in reality the prices
are mostly discretely sampled, and therefore discrete sampling is the most
interesting case. The geometric Asian option with time of maturity 7' and
strike price K has the payoff

max (ﬂ S(te)'/N — K, 0) , (2.1)

where 0 < t; < 1y < --- < ty = T. For this option one can use the Black-
Scholes framework to determine a closed-form pricing formula. Note that if
N =1 the option is reduced to a European call.

The average rate call with strike price K and time of maturity 7" has the



payoff

max (% /OT S(t)dt — K, 0) , (2.2)

while the discrete average rate call with strike price K and time of maturity
T has the payoff

max (% i S(t) — K, 0) , (2.3)

where 0 < t; < t9 < --- <ty =T. There are no known closed-form pricing
formulas for average rate options, but a variety of numerical techniques have
been developed to find the corresponding prices.

The average rate call is cheaper than the European call at the writing
date, see Table 2.1 and Theorem 6 in Chapter 3.

There are also variants of the Asian options mentioned above. For a
floating strike Asian option the strike K in (2.2) and (2.3) is replaced by
the spot price S(T') at maturity. The corresponding options are often called
average strike put and discrete average strike put respectively.

Average rate call European call

K\c¢ | 0.10 0.20 0.30 | 0.10 0.20 0.30
90 | 13.73 14.14 15.24 | 14.63 16.70 19.70
100 | 5.26 7.04 9.06 | 6.81 10.45 14.23
110 | 0.73 2.70 4.86 | 2.17 6.04 10.02

Table 2.1: The European call compared to the average rate call for various
strikes K and volatilities c when r=0.05, T=1 and t=0.



Chapter 3

Underlying Theory

Throughout this section we are working in the time interval 0 < ¢ < T
Let B(t) denote the price of a risk free asset at time ¢ governed by the
equation B(t) = B(0)e™, where r is the constant interest rate. A common
hypothesis about the behaviour of asset prices is that they are given by
geometric Brownian motions which implies that the asset prices are log-
normally distributed (see e.g. D. Duffie [6] or T. Bjork [3]). The price S(t)
of an asset at time ¢, solves the following stochastic differential equation

dS(t) = S(t)(udt + cdW (1)), (3.1)
S(0) = So,

where ¢ is the volatility, u € R and W(t) is a normalised Wiener process.
Here o is assumed to be a positive real number. The solution of (3.1) is

S(t) = S(0)elt=THW®), (3.2)
Now set
W@:“;%+Wm, (3.3)
and note that
dS(t) = S(t)(rdt + odW (t)). (3.4)

According to Cameron-Martin’s theorem there exists another probability
measure than the objective measure P, the risk neutral measure @), such
that W is a Q-Wiener process. The solution of (3.4) equals

S(t) = S(0)elr= oW (3.5)



and the measures P and () are equivalent. The existence of the risk neutral
measure () assures that the market is free of arbitrage possibilities.

Because the Wiener process is not differentiable in the usual sense, the
equation (3.1) is interpreted in the sense of stochastic differential calculus
initiated by K. It6. The most fundamental tool in stochastic calculus, Ito’s
lemma is given below. But first we state a definition. If the stochastic process
(h(t))o<t<r is progressively measurable and

T
/ | h(t) |P dt < oo almost surely, (3.6)
0

for some p € [1, 00[, then we say that h belongs to the class L7, [0,T].

It6’s lemma. Let the function u(t,z1,...,%,) be two times continuously
differentiable in x4, ...,z € R and one time continuously differentiable in
t € [0,T]. Suppose we have m stochastic differentials

dX;(t) = a;(t)dt + ) by (t)dWi(t), (3.7)
k=1
dependent on n stochastic independent Wiener Processes Wy, ..., W,. Let

Fi = o(Wi(A),...,W,(X),X < t). Let also the coefficients a;(t), bix(t) fulfil
a;(t) € Liy[0,T), bix(t) € L%,[0,T] and so, especially, for fixed t the processes
are F;-measurable. Let also X (t) = (Xi(t),..., X (t)). Then we have

du(t, X (1)) = %(t, X(0)dt + g—;(t, X (£)dX;(2) (3.8)

1 < 0%

+
2 =1 856,856]

2y

(t, X (£))dX;()dX; (t).

Note that

dtdt =0, dtdWi(t) = 0,
AW ()dWi(t) = dt, dWi(t)dW;(t) =0 if i # .



3.1 Derivation of the Black-Scholes formula

Let v(t,S(t)) denote the value of the portfolio at time t, with the terminal
condition v(T, S(T")) = g(S(T)), where the function g is piecewise continuous
and fulfils

sup(e”“l|g(e”)]) < oo (3.9)
z€R
for an appropriate constant C' > 0. We then say that g € P. Suppose that

the process (v(t, S(t))o<i<r is the value process of a self-financing strategy
(hs(t), hp(t)),c,cqp in the stock and the risk free asset, that is

v(t, S(t)) = hs(t)S(t) + hu(t)B(2),
du(t, S(t)) = hs(t)dS(t) + hs(t)dB(t). (3.11)

By applying Ito’s lemma and using (3.11) we get,

dv(t, S(t)) = vi(t, S(t))dt + v!(t, S(t))dS(t) + %v;'s(t, SH)(ASE))? (3.12)
= hs(t)dS(t) + rhy(t) B(t)dt.

Identifying coefficients in (3.12) yields hg = v.. Rearranging the terms and
using (3.10) we get the famous Black-Scholes differential equation

a?S(t)?

vi(t, S(¢)) + 5

vl (8, S(t)) + rS(t)vi(t, S(t)) — rv(t, S(t)) = 0, (3.13)
t<T, S(t) > 0.

Together with the terminal condition v(T, S(T)) = g(S(T)), equation (3.13)
has the following solution,

0_2
v(t,S(t)) = e E [g(se(T_T)T+UW(T) , (3.14)

where s = S(t) and 7 = T — t. Observe that (3.14) is independent of the
drift coefficient p.
We thus have the following important result.



Theorem 1. Let g € P. A simple European derivate with payoff Y =
g(S(T)) at maturity T has the theoretical value v(t,S(t)) at time t, where

o2

v(t,S(t)) = e " E |g(selr—F)THW )| (3.15)

and =T — t.

We can simplify (3.15) using the risk neutral measure @ (see Geman,
Karoui and Rochet [10], for a detailed discussion about changes of probability
measure).

Theorem 2. The value v(t, S(t)) is equal to

e Eg(S(T)) | ).

Proof. According to (3.5) we have S(T) = S(t)e(’"’%)””(W(T)’W(t)) and
hence

EQlg(S(T)) | F) = B2 [g(S(p)elr =tV O-70) | 7] (3.16)

But since (W (T) — W(t)) and F; are stochastic independent and W is a
@-Brownian motion, the right hand side of (3.16) becomes

E g(se(T_az)T+‘T(W(T)—W(t)))]| "= ev(t, S(t)),
s=S(t

which proves the theorem.

We now state the famous Black-Scholes formula which gives the value of
a European call option with payoff Y = max(0, S(7') — K) at maturity 7.

Theorem 3 (Black-Scholes formula). A European call option with ma-
turity date T and strike price K has the value c(t,S(t), K) at timet < T
where

c(t,s, K) = s®(dy) — Ke " ®(dy), (3.17)
In £ a’
PR <k Gk L R R R~
o\T

and where ® is the probability distribution function for a N(0,1) distributed
stochastic variable.



Proof. Theorem 1 gives that
2
c(t,s, K)=e¢""E [max (0, selr =5 )TmoVTG _ K)} ,

where G € N(0,1). From this it follows that

2
c(t,s, K)=e""E |sel~F)TVE _ K. G<

=
o (E [86(7«_—2 )T—aﬁG; G < d2} — K(I)(d2)> .
Here

2 —0-2 cc2
e""E [se(’_%)T_”ﬁG; G < dg] = S/ eTT_"ﬁz_T—dx
<ds V2T

—(ovTt+2)® dx
=35 e~ 2 —— = sP(o/T + dy) = sP(dy),
/ B = = sB(oVT + o) = 50(d)

which proves the theorem.

The price of the European put option can be derived in the same manner
as the call price. Alternatively to derive the European put price one can use
the so called call-put parity relation.

Theorem 4 (Call-put parity). Let ¢ and p be the value of an European
call and put option respectively. Then we have

p(t,s, K,T)=Ke "™ —s+c(t,s, K,T). (3.18)

Using Theorems 3 and 4 we can easily calculate the price of an European
put option, p(t, s, K, T).
p(t,s, K,T)=Ke "™ — s+ s®(dy) — Ke ""®(dy) (3.19)
= Ke " ®(—dy) — sP(—dy).

3.2 General derivate valuation formula
To be able to handle more complex derivates we extend the previous valuation

formula in Theorem 2 to European derivates with payoff X € L?(Q) and state
the following theorem (for a more detailed discussion see Borell [4]).



Theorem 5. A European derivate with payoff X € L?(Q) at maturity T
has the theoretical value

v(t) = e TEC[X | F. (3.20)

Theorem 5 has the following interesting consequence (cf. the Geman and
Yor paper [11]).

Theorem 6. If p(t) > 0 and fOT p(t)dt =1, then for any T > 0,

e TEQ [( /0 ' S()p(\)dA — K) " ]—"0] <e'TEQ [(S(T) - K)+ | ]—"0] .

Proof. Note that E¢[X | 7| = E?[X] so we omit the g-algebra Fy in the
following. Note also that

B |(S(Ty) - K)'| < BQ |(S(T) - K)*], i Ty < T

since an American call price is the same as the price of the corresponding
European call when the underlying stock does not pay dividends. Now

E¢ [(/OTS(A)p(A)dA—K)q = B [(/0

< B [ / T (s - K)%(A)dA] -/ "pE (S0 - K) ] i

< [ o [(ser) - 1) ] an= [ pare (sir) - )]

0

T

(S() - K)p()\)d)\) +]

= B9 [(s() - K)"]

and Theorem 6 follows at once.



Chapter 4

The Ingersoll and Rogers-Shi
approaches to Asian options

No general analytical price formula is known for the average rate option, on
the other hand several approximations that produce closed form expressions
have appeared. Thus Geman and Yor computed the Laplace transform of
the Asian option price, but numerical inversion remains problematic for low
volatility and short maturity cases (see Fu Madan and Wang [9]). Monte
Carlo simulation works well, but sometimes it is computational expensive.

4.1 Two PDE methods for the pricing of Asian
options

In general, the price of an Asian option can be found by solving a PDE in
two space dimension as noted by Ingersoll [12]. Assuming a payoff

1

max (S(T) -z /0 ' S(t)dt, 0) (4.1)

Ingersoll introduces the space variables A(t) = fot S(A)dA and S(t), and pos-
tulates that the price at time t is given by v(¢, S(t), A(t)). Since the differ-
ential dA(t) = S(t)dt is deterministic, a risk less hedge for the option only
requires an elimination of the stock-induced risk, which is accomplished by
holding v} shares of stock for each option. Ingersoll therefore suggests the

10



following pricing equation for the Asian option:

1
v, + TSVl + sl + 202321)" —rv=0, (4.2)
v(t,0,a) =0,
vi(t,00,a) =1,
v(t, s,00) =0,
a
Ta y &y ) = (07 - _> .
v(T,s,a,) =max (0,s 7

The differential equation (4.2) is valid for all @ > 0 and s > 0. In fact, given
a>0and s>0, P[JA(t) —a|] <¢|S(t) —s| <€ >0, forall 0 <t <T and
e > 0. Ingersoll also notes that the change of variable v(s,a,t)=aG(t,x), where
x=s/a, gives a one-dimensional PDE for the floating strike Asian option,

*2?Gl L+ (re — 22)GL + (v — )G + G} =0, (4.3)
G(t,0) =0,
G (t,00) =1,
1
G(T,z) = max (O,m — T) .

A more rigorous proof to (4.2) is now presented (see e.g. Bjork [3] or
Borell [4]). Consider a self financing strategy in the stock and risk less asset
as before

v(t, S(t), A(t)) = hs(t)S(t) + hg(t)B(1), :
du(t, S(t), A(t)) = hs(t)dS(t) + hp(t)dB(t). (4.5)

Applying Ito’s lemma we get,

du(t,S(t), A(T)) = vi(t, S(t), A(t))dt + v'.(t, S(t), A())dS(t)  (4.6)

+uy(t, S(t), A(t))dA(t) + ;v;’s(t S(t), At)(dS())*.
In view of (4.5) this implies that
hs(t) = v,(t, S(t), A()),
from which it follows that
vi(t, S(t), A(t))dt + vg (t, S(t), A(t))dA(t) + %v;’s(t,S(t),A(t))(dS(t))2
= hp(t)dB(t) = rhp(t)B(t)dt
=r(v(t, S(t), A(t)) — vy(t, S(t), A(t))S(2))dt. (4.7)

11



Equation (4.7) is satisfied if

1
vy + rsvl + sl + 502821);/5 —rv =0, (4.8)

which is exactly the same as (4.2).

Rogers and Shi [14] presented a one-dimensional PDE that can model
both fixed and floating strike Asian options. They also computed lower and
upper bounds for the price of the Asian option, where the lower bound is very
accurate. They worked with a stock evolving according to (3.4) (for simplicity
we drop the " notation, and let W be a Brownian motion relative to the
martingale measure ()) and used a model were the option has the payoff

X = ( /O " () — K) " (4.9)

where p is a finite measure in [0,7]. Different options are achieved by the
choice of the measure p. Let 67 denote the delta function at time 7T, that is

/0 f(w)dor(u) = F(T),  f € C(0,T]). (4.10)

If pi(du) = T~ o 77 (u)du, where Ij 7 is the indicator function of the interval
[0, 7], the average rate call is achieved. If we take p(du) =T~ Ij rj(u)du —
dr(du) together with K = 0 we get an average strike put and if we take
p(du) = é7(du), then we have an ordinary European call option. If we let
0<t <---<t,=Tand p(du) =+ > }_, 8, (du) we have a discrete average
rate call. According to Theorem 5 in Section 3.2, the price of the option at
time t is given by

e "TEC[X | F,

where Fy = o(Wy, A < t).

First assume p(du) = p,du, where p is piecewise continuous. At the
very end of this section we will comment on more general cases. Let now
M, = E9[X | 7] and let X = E[X]+ [ U(t)dW (t), where X € L%[0,T].
Then

M= B9 | 7] = 51X + [ W)W (), 0<t< T,

is a martingale and

dM, = U()dW (2). (4.11)

12



Equation (4.9) now gives

(/ " Sunldu) - K) Ny f] (112)

= S,E° (/tT &u(du) K- fosfu/‘(du)> | Tt]

_ T S +
= S, E° (/ p(du) — x)
t St |$ K— fO Sy p(du)

t
=S, (t, K=y S““(du)> :
Sy

M, = E°

where

o(t,x) = E?

( /t g i—u(du) _ x) +] | (4.13)

Sy ’

Let

& = (4.14)
and thus M; = S;¢(t,&;). We now want to calculate the stochastic differential
dM; and in order to do so we need d¢; and therefore also d(sit) By Itd’s
lemma

1 1
d (gt) = SQdSt 83 (dSt) = —E(T‘dt + O'th) §0'282dt (415)
1
=z ((0 —r)dt — ath>
and
d{—}—d( (K — / Sult du))) (4.16)
; ((0 —r)dt — ath / Sups( du ( Sipidt)
t

- ft((a —r)dt— ath) — pdt

13



Again using [t6’s lemma we get
dM, = d(S:0(1, &) = Sdd(t, &) + d(t, £)dS, + dSido(t, &) (4.17)
= 5,61t €0dt + 6, (1, €y + 50l (1,6 (dE)°)
+ o(t, &) S (rdt + odWy) + dSdo(t, &)
= Su(rolt, &) + (1 &) — G (t,€) (o1 + &) +

+ 05 (¢(ta &) — &y (t, ft))th
= 0dt + W (t)dW (),

o’&}
2

B (1, ) dt

where the last equality follows from (4.11). Identifying we get

ro(t,2) + $i(t, 2) — G(t,7) (o1 + r2) + G, (8 2) = 0,
Vz € R, Vt > 0.
The transformation f(t,z) = e ") ¢(t, z) gives

ox?

2

fi=(pe+ra)fot ——faa =0, (4.18)
which is the one-dimensional PDE Rogers and Shi derived for Asian options.
The boundary conditions is

f(Tz) =127, (4.19)

if u(du) = pydu with p piecewise continuous. This PDE in (4.18) is difficult
to solve numerically since the diffusion term is very small. Zvan, Forsyth
and Vetzal [17] suggest a method based on computational fluid dynamics
techniques to overcome this difficulty. In [1] Andreasen applied the Rogers-
Shi reduction to the discrete Asian option with very good results.

If the measure p in (4.9) contains point masses (4.18) has to be interpreted
in an appropriate way. A paper by Vecef [16], which we will discuss below,
motivates the following change of variables

t=t
z=q—x (4.20)
u(t,z) = f(t,x)

in (4.18), where
¢ = / pudu = u([t,T)). (4.21)

14



Now

of  oOu ou Of  ou OPf  u

A s = —=_— 4.22
ot ot 92 s 0z’ 0z% 022 (4.22)
and (4.18) reduces to
ou ou o? 5, 0%u
‘e — )2+ (g — 22— =0. 4.2
AN S S (4.23

If (4.19) holds then u(T, z) = z*. Note that the equation (4.23) makes sense
if 11 is a finite measure on [0,7] with ¢, = u([0,7]), 0 <t < T.

Let 0 < © < T and let v be a finite measure on [0, 7] without atoms in
the interval |©,T]. Suppose a €]0©,T] and set y = p, = v + d,. Then the
option price is a continuous function of a €]0,T]. Hence the final condition
u(T, z) = 2% is correct even if u({7T}) # 0.

In a forthcoming master thesis E. Broman [5] among other things will
give an alternative derivation of equation (4.23) based on (4.8).

15



Chapter 5

Options on a traded account

This article mainly focuses on a method developed by Vecef [16]. Vecer notes
that the Asian option is a special case of the option on a traded account.
An option on a traded account is a contract which allows the holder of the
option to switch among various positions in the underlying stock. The holder
accumulates gains and losses resulting from this trading, and at maturity he
keeps any gain and is forgiven any loss. Suppose that the stock evolves under
the risk neutral measure ) according to

dS(t) = S(t)(rdt + odW (t)). (5.1)

Denote the option holder’s trading strategy, the number of shares held at
time ¢, by ¢; € [au, B;], where oy < ;. Vecef uses a model were X, the value
of the option holder’s account at time ¢ satisfies

dXt = V(Xt — tht)dt + qtdSt, 0 S t S T, (52)

where X the initial wealth is given. Equation (5.2) contains a deterministic
and a random term. The first term describes the growth in the cash position
X; — ¢;S;, due to the the addition of interest at rate v, and the second
term is due to the change in value of the stock holding. If v = r then the
trading strategy is self financing. In the case of Asian options ¢; is a given
deterministic function and oy = ;. At maturity 7" the holder of the option
will receive the payoff [X7]*. The seller of the option must be prepared to
hedge against all possible strategies of the holder of the option. Therefore
the price of the contract at time ¢ should be the maximum over all possible
strategies ¢; of the discounted expected value of the payoff of the option, i.e.,

V(t, S, X)) = max e TTDEQ(Xp)T|F], 0<t<T. (53
at < gt < Pt
0<t<T

16



By choosing oy = 3; = 1 we obtain the European call in several ways. For
example, if v = r and Xy = Sy — Ke ™7, then Xp = Sy — K. If v = 0 and
Xo =Sy — K, we also have X7 = S — K. In a similar way, if oy = 3; = —1,
we obtain the European put.

It is possible to view a variety of contingent claims as options on traded
accounts, as for example the so called passport option and vacation option.
Below we will stress on the Asian option. By slightly extending the defi-
nition of the option on a traded account it is also possible to incorporate
certain American styled options, as for example the American put. For more
information see Shreve and Vecef [15] and Vecer [16].

5.1 The Asian option

Asian options can be considered a special case of options on a traded account.
When we study Asian options no interest is added or charged from the traded
account, i.e., v = 0. The equation for the traded account (5.2) then reduces
to

dXt = qtdSt = tht(Tdt + O'th), 0 <t< T. (54)
Now suppose

w=[ " VA = u(lt, T, (5.5)

for an appropriate piecewise continuous function p and a set p(dt) = p(t)dt.
We then have

T
dX, = ( / p(/\)d/\) ds,, 0<t<T, (5.6)
t

which gives

X(T) = X(0) + /OT (/tT ,o(/\)d)\> ds, (5.7)



For the average rate call and the average strike call we let

X(0) = (/O p(A)dA> 5(0) = K = u([0,T])5(0) - K, (5-8)

and for the average rate put and the average strike put we let

X(0) = ( /0 p(A)dA) S(0) + K = u([0,T])S(0) + K. (5.9)

Thus for the call options equation (5.7) reduces to

X(T) = /0 U St — K = /0 U S(ulde) - K. (5.10)

and for the put options we have
T T
X(T) = K+/ S(t)p(t)dt = K+/ S(t)u(dt). (5.11)
0 0

Let Sp = %fOT Sidt. By taking p = £ in (5.10) the average rate call is

achieved. In this case we have ¢ = 1 — %, thus the average of the stock price

could be achieved be selling off one share of stock at the constant rate X

T
shares per unit time. If we let p = —% in (5.11), we get the average rate put
X(T)=K - Sr. (5.12)

For the average strike call with payoff (S; — S7)*, by a limit argument

we conclude that u(dt) = 6r(dt) — % and K = 0, and for the average strike

put with payoff (Sp — S7)*, we have pu(dt) = £ — 6r(dt) and K = 0.
The discrete average rate call option is achieved by taking

1 N

where 0 < t; <ty < --- <ty =T. Setting A(T) = %Z,]cv:l St,, equation
(5.10) gives

N
1
Xr =~ ;stk ~ K =A(T) - K. (5.14)

Similarly we get the discrete average rate put by choosing
1N
k=1
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The discrete average strike call is achieved in the same manner by choosing
K =0in (5.10) and

p=06p — %;5%. (5.16)
Asian option type | Payoff w(dt) Xo
average rate call (Sp— K)* L So— K
average rate put (K —Sp)* —& K -5
average strike call | (Sp — S7)* or(dt) — % 0
average strike put | (Sp — Sg)* & — 5p(dt) 0
discr. av. rate call | (A(T) — K)* * SN L 6, (dt) So— K
discr. av. rate put | (K — A(T))* — LS 8, (dt) K-S,
discr. av. strike call | (S(T) — A(T))* | 6r(dt) — & Sp_, 8, (dt) 0
discr. av. strike put | (A(T) — S(T))* | £ 327, 6, (dt) — 67(dt) 0

Table 5.1: Asian options as options on a traded account.

5.2 Derivation of a pricing PDE

We now want to show that the value of the Asian option, V (¢, s, x) satisfies
the following PDE

02s?

2

—rv 4V +rsV] + qrsV, + (VI +2qV0 + ¢*V)) = 0. (5.17)

Now suppose (5.17) is true. From Ito’s Lemma it follows that

d [e "V (2, Sy, Xy)] = (5.18)
= —re "RV (¢, S, Xy)dt 4+ e T AV (8, Sy, Xy)
— ¢Tlt=t0) ( PV (t, S, X,)dt + dV (¢, S, Xt)).
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Using It6’s Lemma and (5.4), the right hand side of (5.18) becomes
¢T(t=to) ( — rVdt+ V/dt + V/dS, + V!dX,
1
+ 5 [Vil(dS)? + 2VipdSidX, + Vi (dX)?] )

—¢ T(t-t0) ( -V +V +rSV] +rqSV,

t"ss t "zx

+ ¢ "(t—to) (JStVs' + athti')dW(t),

1
+ 3 [02S2V" +20%q;SEV! + qufSQV"} )dt

which according to the assumption (5.17) equals
e~ (oS, V! + 0, S, V) dW (2).
Thus we have
d [e7 IV (¢, 8,, Xp)] = e (08, V] + 0,8,V AW (¢). (5.19)
Integrating (5.19) yields
e "IV (T, Sy, X1) — V(to, Styy X)) (5.20)

T
= / eir(tito) (O'St‘/;l -+ O'thtiI) dW(t),

to

where the integral on the right hand side equals zero if enough integrability
is assumed. Taking expectations we get

V(to, Siy, Xi) = € "TTOIEC V(T Sy, X1) | Foo], (5.21)
where F;, = a(W(A), A < tp). We therefore have
V(t, S, X)) =e "TVERV(T, Sy, X1) | F, (5.22)

which is the usual expression for the value of a derivate. We therefore con-
clude that (5.17) is the correct pricing PDE for Asian options.
If V(T,s,z) = xt, it especially follows that

V(t, S, Xy) =e"TIEQ[X] | F]. (5.23)

We can use the change of variable

X

7, =" .24
t St ) (5 )
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to reduce the dimensionality of (5.17). To see this, we first note that 1t6’s
lemma gives that

1 1 1 1
dZ, =d | X,— | = =—dX; + X,d(—= dX,d(—=). 5.25
t < tSt) S, t+ Xy (St)+ ¢ (St) ( )

According to (4.15) we have

1\ 1/,
=) == ((0® = r)dt — oaw, 5.26
d (St) S ((0 r)dt — od t), (5.26)
which gives
dZy = q(rdt + odWy) + Z, <(02 —r)dt — Jth> — o2qudt (5.27)

= (’f’ — 02)(% — Zt)dt =+ O'(Qt — Zt)th

From here on we suppose that @) is the Wiener-measure in C[0, 7] and that
W(t) = W(t,w) =w(t), w € C[0,T]. We next define the process

W, = —ot + W, (5.28)
so that
dZt = T(qt — Zt)dt + O'(Qt - Zt)th (529)

Let now h(t) =0, 0 <t < T, and
t
a(t) = ot = / M), 0<t<T. (5.30)
0

Then according to Cameron-Martin’s theorem
dQq(w) = el MOW O3y ROt gQ (), (5.31)

where Q,(A) = Q(A — a), if A belongs to the Borel-o-algebra B(C[0,T]).
Notice that

dQu(w) = VT % TdQ(w), (5.32)
and that

Qa(WCA) = Qu(—a+WeA) = Q.(A +a) = Q(4) = Q(WeA). (5.33)
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It follows that W is a Brownian motion relative to the measure @,. Let Q =
2
Q, and D, = eVt=% 50 that

dQ(w) = Dr(w)dQ(w) (5.34)
Now suppose that
B +r(q—2) 3 + %5 (g — 2)° 5% =0, (5.35)
UT = Z+.

Then according to It6’s lemma, equation (5.29) and the assumption (5.35)
we have

du(t, Z(t)) = o(q: — Zt)g—Z(t, Z(t))dW (t), (5.36)
which after integration yields
u(T, Z(T)) = u(t, Z(t)) + /t o(qn — Z,\)g—Z(/\, Z(\)dW (N). (5.37)

Taking expectations conditional on F; and assuming that the integral on the
right belongs to L?(dt x dQ) we get

u(t, Z) = E9 [Z3 | F] . (5.38)
We now want to show that
V(t, S, X,) = Syult, %), (5.39)
or equivalently
e TTOEQ [XF | F) = SEQ[Z | ). (5.40)

Suppose that f > 0 is F; measurable, where
Fi=a(W), A<t)=a(W(A), A< 1).
Then it is sufficient to show that
e TOEQ (X[ f] = E@ [ FS,ER [z | ]—"tﬂ , (5.41)

or

e " TUEQ (X D] = B9 [fDSE? (71 | . (5.42)
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But (Dy)o<t<r is a Q-martingale so the member in the right hand side of
(5.42) becomes

E? |fDrs,B? (2 | F)| = B2 18,9 (2} | F)| = B2 [18,21] . (5.43)

Notice that

_ Q (r T T+oW,
St = S0€e 022 " (5.44)
Sy = Soe(F?)HaWta
which gives
St @ Pr
ST _ ¢ zr 5.45
St ¢ Dt ( )
Thus we have
0 vs ol Xy _r(Tft)QXT+
EC [XFfDi] = B2 |() " SefDy| = T VE® (1) fS:Dr
Sy St
=T VEQ (7] £S,D;] = T pQ (Z£ 1S, (5.46)

which proves (5.39). Thus, the right pricing PDE for Asian options is

ou ou o? 28%u
o Tria—2)% +%@—2)°5z =0,
ot Oz 2 oz A4
{ u(T,2) = =+, (547)

where ¢; = p([t,T]). The price of the Asian option is then given in terms of
u by equation (5.39). Note that the parabolic differential equation in (5.47)
is the same as (4.23).

It follows from the derivation of equation (5.47) that it is enough that the
equation in question holds for all 0 <t < T and all z € D, where D is an
open subset of R such that Z; belongs to D with probability one for every
0 <t < T. This may be of interest in special cases. For example, consider
a European call with strike K and time of maturity 7. Here y = d;, ¢, = 1
and thus

X; = / t pdS\) + (S(0) —K) =S(t) - K (5.48)
and
X(t) K
thmzpwq. (5.49)



Equation (5.47) then reads

u U o? “u
(G- sa-g -0 (5.50)

u(T, z) = 2T,

where we only have to consider z with z < 1. The change of variabley = 1—2
gives

o ow Pu_o -
9z Oy’ 022 0y’ )

and (5.50) with z < 1 reduces to

ou ou a2, 28%u __
E—Tya—y'i‘?yQa—w—O; 9
+ (5.52)

Then according to Borell [4] we have
o2 +
u(t,y) = E [(1 - ye*<r+7>f+aﬁ6’) } , (5.53)

where G € N(0,1) and it follows that

) Inl+(r+2)r
ty)=E |1 —ye rtT)THoviG. G < ¥ 2. =D 5.54
u(t,y) ye Tz ; < e 1| (5.54)
2
= ®(D) - E [ye—<"+7>f+”ﬁ6‘; G < Dl] .
Here
2
E[ye—<"+7>7+"ﬁc’; Gng} (5.55)
2 2 dx
_ —rT — o T4oTr— %
= ye / e 7T 2
<Dy V2T
@—ovD)?® dx
=ye " e 2 —— =y®(D; —oy1) =yd(Dy),
Y /QESD1 \/ﬂy(l \/_)y(2)
where
Ini+(r— ”—2)7'
Dy=—2Y 2 5.56
2 0\/7—_ ( )
Thus
u(t, y) = (D(Dl) — yefrT(I)(Dg), (557)
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and, hence,

SO ultsy) y= g (5.58)
In 5+ (r+ 2)7 In St + (r — 2)r

— K 2 o —rT K 2

= 5,9( e )~ Ke o o ).

which agrees with Black-Scholes formula (3.17).
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Chapter 6

An adaptive finite element
method for the Asian option

Since there probably does not exist a closed form solution to the PDE (5.47),
the price of the Asian option must be obtained numerically. The method used
in this thesis is the finite element method as presented below.

6.1 Variational formulation

So far we have studied the pricing PDE for Asian options valid for z belonging
to the whole of R, but in order to make a numerical implementation we must
limit the interval. Let © be an interval in R, Q = [z, z;], and denote the
boundary of €2, that is {z, z;}, by Q. We define

H'(Q)={v: /Q(|Vv|2 +v?)dz < oo} (6.1)

and let W be the space of functions that are square integrable in time and be-
longs to H*() in space, that is W = L2([0, T], H'(2)) and denote [, uvdz by
(u,v). The notation (u, v)sq then naturally stands for u(zs)v(zs)—u(20)v(20)-
Multiplying equation (5.47) by the test function v € W and integrating over
2 and ¢ we obtain

2

T
/ ((u;, v) +r((g — 2)ul,v) + % ((g — 2)*ul,,v) )dt =0. (6.2)
0
Note that by integration by parts we have

((q — 2)uy,,v) = ((q — 2)*u,v) 5, +2((q — 2)us,v) (6.3)
— ((q — 2)*ul,v) .
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Thus equation (6.2) becomes

T

| (@ + 0+ ) (g - 20t0) (6.0

0
02 2,1 .1 02 2,1
- ?((q —2)u, UZ) + ?((q —2) uz,v)ag)dt =0.

Introducing the artificial boundary condition v, = 0 on 02 (which is also
used by Andreasen [1] and similar to the one used by Vecef [16]) or equiva-
lently by equation (5.47)

! _u:t
u, = on 0f), 6.5
“ or(g—2) (6:5)

we get

/0 ' ((wh,0) + (r + 0% ((a = 2)u,v) (6.6)

o? o?

= T (g =2, v)) = 2 ((a = 2 ) o )t = 0.
We thus want to solve the following problem. Find u € W such that

{ [ (m(ul, v) + a(u,v))dt = 0, (6.7)

u(T,z) = zt,

for every v € W, where

m(u ) = (1) — (g = D) (6)

and

alu,v) = (r+0°) (g = 2)ulyv) = (@ = 2)’uv)). (69)

6.2 Finite element approximation
A finite element approximate solution is a piecewise polynomial function that
solves the variational formulation of a PDE for all test functions in an ap-

propriate finite dimensional space (for a more general discussion about finite
element theory see e.g. K. Eriksson, D. Estep, P. Hansbo and C. Johnson [7]).
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Figure 6.1: Space-time discretization.

We now partition [0,7] as 0 =ty < t; < ty < --- < ty = T, denoting
each time interval by I,, = (¢, 1,t,] and each time step by k, = t, — t, 1.
Similarly we partition Qaszy <z <29 <--+< zy, denoting the length of
each interval by h; = z; — z;_1.

In space, we let P1 C H'() denote the space of piecewise linear con-

tinuous functions v(z) € R. On each space-time ”slab” S,, = I,, x Q, we
define

Wi ={w(t,z) Zt’vj v € Py, (t,2) € Sy} (6.10)

Let W7 C W denote the space of functions defined on [0,7] x Q such that
v |s, € WIfor 1 <n < N. Here we will use the continuous Galerkin method
cG(1) (see e.g. Eriksson, Estep, Hansbo and Johnson [7] or D. Estep, M.
Larson and R. Williams [8]) which is defined by the following discrete version
of equation (6.7). Find U € W' such that for 1 <n < N

[, (m(U},v) + a(U,v))dt =0 for all v € W
U™(t,) = U*(ty), n=N—1,...,1 (6.11)
U_(tN) = ur

where U%(t,) = lim,_0 50 U(t, & €). In the ¢G(1) method the approxima-

tion U of u is continuous piecewise linear in time and space, while the test
functions v are continuous linear in space and piecewise constant in time.

6.3 Matrix equations

Using the notation U, = U(t,) and computing the time integral in equation
(6.11) yields the scheme: for 1 <n < N

Un + Un—l

m(Up — Up—1,v) + kna( 5

,v) =0 forallve W), (6.12)
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which in fact is the classical Crank-Nicolson method.

Let the hat functions {¢; f:o be the nodal basis of P;, where only half of
the first and the last hat is included (see Figure 6.2). Then U, € P; can be
written as

J
Un(2) = D &jdi(2), 1<n<N, (6.13)
=0
and the test function v can be written as
J
v(z) =) Ymidi(z), 1<n<N, (6.14)
i=0
for reals €n07 . afnJ: Ynos -« -5 VnJ-
P 2= = ¢j_1 Pg
A 2g-1 253 %

Figure 6.2: The hat-functions ¢.

Let now &, be the vector of all &, ;, j = 0,1, ..., J. If the expressions above
for U and v are inserted into equation (6.12) we receive the matrix equation

(& — &-)M + (& +§n—1)k';A =0, 1<n<N, (6.15)
where

M= (9,60~ T (0 0y 0HSST (610
and

A= (r+0%)(qdo — A1) — %Q(qQAQ — 2¢A5 + Ay), (6.17)
where

AO = (¢j,z: ¢Z)7 Al = (quj,Z’ QSZ)ﬂ A2 = (¢j,27 d)i,z)a
A3 = (Z¢j,z: ¢i,z)a and A4 = (22¢j,2, ¢i,z)a 0 S Za] S J. (618)

Rearranging the terms in equation (6.15) we get the matrix equation we want
to solve successively backwards in time in order to obtain U

WA A\
fn_lzgn(M+k2 >(M—k2> ., 1<n<N. (6.19)
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6.4 Error analysis based on duality

Since we are only interested in the solution in one or a few points of ) at
time t = 0 we want to find a good mesh that relatively fast gives an accurate
solution at the points of interest. In order to find such a mesh we study
the so called dual problem (see e.g Eriksson, Estep, Hansbo and Johnson [7]
or Estep, Larson and Williams [8] for information about dual theory). Let
2o € Q. We now introduce the continuous dual problem to equation (5.47)

2

{ _¢7It + (7' + 0-2)w o (7' + 202)((] - Z)@/J; + %(q - 2)2 lez =0, (6.20)
1/)(0, Z) = 6za-

For simplicity we consider this equation over the whole space interval ne-

glecting boundary conditions. Multiplying with the error e = u —U € W

and integrating over space and time we get

| (~whe+e+aw.e (6.21)
_ (7“ + 202)((61 — z) ;,e) + %((C] _ z)Qw;/Z’ 6))dt -0

The functions 1 and ¢, are in principle zero close to z = z; and z = z; (see
Figure 6.3). Using integration by parts, neglecting the boundary terms, we
therefore get

- (w(T: Z), e(Ta Z)) + (w(oa Z), 6(0’ Z)) (6'22)
- /o ((w, e)) + (r+ o) (¢, e) + (r+20%)((q — z)w,e'z)>dt

0.2

+ /OT (— (r+20%) (¥, €) = 5 ((g = 2", €l) +0*((g - 2) £a€)>dt =0.

Note that by integration by parts we have

o((g—2We) = =0t (g — Db e) +0*(e),  (623)
using this and that ¢(0) =4, and e(T) = 0 we get
e(0,2,) = (6.24)
~ [ (@ + 6+ (=20 = G 0= 2ok

Considering the previous notations (equations (6.8) and (6.9)) and remem-
bering that we can neglect the boundary terms we can also write

e(0, 24) = — /0 ' (m(eg, ) + a(e,w))dt. (6.25)
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Since e = u — U and u solves equation (6.7) we get

T
e(0, z4) = / (m(U;, ) + a(U, 1/1))dt. (6.26)
0
Let 7 : W — WY be defined by
wvls, (t,7) = ki / Pult, z)dt, (6.27)
n JI,

where Ig, is the indicator function of the space-time “slab” S, and P is the
node interpolant in space. Thus 7 is the interpolation operator such that m
is piecewise linear in space and piecewise constant in time. Then since 7w
is orthogonal to U, which can be seen from equation (6.12), equation (6.26)
can be written as

e(0, z4) = /0 ' (m(Ut’, b — 1) + a(U, ) — w)) dt. (6.28)

If we solve the dual problem numerically for ¢/ and also calculate ¥ — 7w
we can see where we have to use a fine mesh. As seen from the Figures 6.3

o =0.05 0=03

Figure 6.3: ¢ for two different values of o0 when r=0.10. Computed with 100
space points and 200 time points, using the boundary condition (0, z) =
511-0.1,0.1]-
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o = 0.05 oc=20.3

value
o
o

o o

0.5 05 0.5

o\

Figure 6.4: ¢ — my for two different values of 0 when r=0.10. v computed
with 200 space points and 200 time points and 7 computed with 20 space
points and 20 time points. The boundary condition used was 1(0,z) =

511 91,0

and 6.4 the solution to the dual problem differs from zero only within a short
interval of 2. Denote this interval by w = [—2z, 2] € 2, note that z, depends
on the value of the volatility 0. This means that we may use a more sparse
mesh outside w and thus save computation time. In Figure 6.4 we also see
that the solution is bigger near time ¢ = 0, implying that one perhaps should
use a finer time step there.

6.5 Results

The implementation was done in MATLAB on a SUN sparc station. Many
different meshes were used, both with constant time and space step and
varying. A very fine mesh was used to compute what is regarded as the
“exact solution”.

As noted in the previous section we only need to use a fine mesh at the
centre of 2. We will later see how this fact dramatically improves the speed
of the numerical computation. In the following we will use zp = —1 and
zy = 1, the accuracy is not improved if a larger interval is used.

Table 6.1 compares values of the European call calculated using the cG1
finite element method mentioned above with the analytical value derived by
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Black-Scholes (see Chapter 3, Theorem 3). We see that the FEM method is
very stable and has a maximum relative error of 0.06 percent when 400 time
points are used.

o K | FE(200) | FE(400) | Black-Scholes | Relative error (%)
90 | 14.6207 | 14.6268 14.6288 0.0137
0.10 | 100 6.7972 6.8030 6.8050 0.0294
110 2.1687 2.1726 2.1739 0.0598
90 | 16.6983 | 16.6981 16.6994 0.0078
0.20 | 100 | 10.4468 | 10.4496 10.4506 0.0096
110 6.0375 6.0395 6.0401 0.0099
90 | 19.6932 | 19.6965 19.6974 0.0046
0.30 | 100 | 14.2273 | 14.2304 14.2313 0.0063
110 | 10.0148 | 10.0189 10.0201 0.0120

Table 6.1: The European call calculated using the FEM method with 200
and 400 time points compared to Black-Scholes analytical value when r=0.05,
T=1 and t=0. The relative error is between the FE(400) solution and the
analytical solution.

In Figure 6.5 we see the average rate call option value calculated using
a uniform mesh. Table 6.2 compares the results of the method developed
in this paper with the results of Vecetr [16], Zvan, Forsyth and Vetzal [17]
and Rogers and Shi [14]. To be consistent with their results a uniform mesh
with same number of time and space points (200 space points and 400 time
points) was used in the computation of the finite element results in Table
6.2. The Monte Carlo results were obtained from Vecef [16] and the lower
and upper bounds are from Rogers and Shi [14]. As seen from the table all
methods are accurate and always give answers within analytical bounds. The
most important difference between them is the computation time required to
receive the results.

If we instead use a mesh that is finer at the centre of {2 we will improve
the execution time. As mentioned in the previous section we only need to
use a fine mesh in the space interval w = [—z, 25| € 0, where 2, depends
on the value of the volatility . Here we use a mesh were 2z, = 0.2 for
o =0.05-0.1, z = 03 for 0 = 0.2 and 2z, = 0.4 for 0 = 0.3. Inside
w we use a uniform mesh were the length of each space interval h; is half
the length of the time step and outside w we use a mesh were the length of
the space intervals doubles each step towards the boundary 09 (see Figure
6.6). We then improve the execution time without affecting the accuracy.
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Figure 6.5: An average rate call option with r=0.10, 0 = 0.10, T=1 and t=0.

t

Figure 6.6: Space-time discretization.

Table 6.3 gives some results for the average rate call option computed with
the non-uniform mesh mentioned above. The lower and upper bounds are
from Rogers and Shi [14]. The execution time of the program with 400 time
points is now just a few seconds and at least 5 times faster than if a uniform
mesh is used. These execution times are very promising considering that the
program was written in MATLAB, the same program written in C will surely
have execution times in less than a second.

How much can be gained in accuracy by refining the time steps close to
time ¢ = 0 as mentioned above? Table 6.4 gives the values of an average rate
call option computed with a new mesh were the last G number of time steps
are successively decreased with a factor §, were the last G number of time
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o K | Foufas | Vecer | Zvan et al. | Monte Carlo | Lower | Upper
95 | 11.112 | 11.112 11.094 11.094 | 11.094 | 11.114
0.05 | 100 | 6.810 | 6.810 6.793 6.795 | 6.794 | 6.810
105 | 2.754 | 2.750 2.748 2.745 | 2.744 | 2.761
90 | 15.416 | 15.416 15.399 15.399 | 15.399 | 15.445
0.10 | 100 | 7.042 | 7.036 7.030 7.028 | 7.028 | 7.066
110 | 1.422 | 1.421 1.410 1.418 | 1.413 | 1.451
90 | 15.659 | 15.659 15.643 15.642 | 15.641 | 15.748
0.20 | 100 | 8.427 | 8.424 8.409 8.409 | 8.408 | 8.515
110 | 3.570 | 3.568 3.554 3.556 | 3.554 | 3.661
90 | 16.533 | 16.533 16.514 16.516 | 16.512 | 16.732
0.30 | 100 | 10.231 | 10.230 10.210 10.210 | 10.208 | 10.429
110 | 5.750 | 5.748 5.729 5.731 | 5.728 | 5.948

Table 6.2: Comparison of results of different methods for the average rate
call with r=0.15, So = 100, T=1 and t=0. The Monte Carlo results are from
Vecer [16] and the lower and upper bounds are from Rogers and Shi [14].

steps refers to the time steps that lie in the interval [0, ], t; < T, since we
are solving backwards in time towards time ¢t = 0. After some testing it was
shown that in order to improve the accuracy it works well if the factor ¢ is
close to one. We see that compared to the results of the previous method
with constant time step given in Table 6.3, this new mesh leads to a bit more
accurate answers. The mean relative error is now 0.520 percent instead of
0.530 percent as before, thus the increase in accuracy is very small and since
the execution time now is greater we conclude that one probably should use
the same time step everywhere.

Figure 6.8 shows how the value of the ordinary European call and the
average rate call depends very much on the value of the volatility . We see
that the average rate call is less dependent on ¢ than the European call and
again we see that the average rate call is cheaper than the European call in
agreement with Theorem 6 in Chapter 3.

Table 6.5 gives the value of the discrete average rate call for various
strikes. The results of the finite element method given in this paper are
compared with results of the finite difference method and Monte Carlo results
given in Andreasen [1]. As can be seen they are in excellent agreement. We
also see that the maximum relative error between the solution computed with
500 time points and the “exact” solution is about 0.02 percent, and that the
finite element method gives accurate answers already for a small number of
time steps.
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Figure 6.7: An average rate call option with r=0.10, 0 = 0.10, T=1 and t=0.
Computed on a non-uniform mesh with 40 space points and 80 time points.

o | K | FE(80) | FE(200) | FE(400) | Exact | R. E. (%)
90 | 13.762 | 13.751 | 13.739 | 13.728 | 0.082
0.05|100 | 4.548 | 4.728 | 4.731| 4.725| 0.127
110 | 0.016 | 0.063 | 0.075| 0.078 | 4.215
90 | 13.778 | 13.754 | 13.744 | 13.733 | 0.078
0.10 | 100 | 5.225| 5.265| 5264 | 5255 | 0.160
110 | 0708 | 0.733| 0.734| 0.731| 0.438
90 | 14.158 | 14.158 | 14.150 | 14.138 | 0.081
0.20 | 100 | 7.078 | 7.066 | 7.055| 7.042| 0.186
110 | 2735| 2720 | 2.711| 2.701| 0.385
90 | 15.291 | 15.270 | 15.257 | 15.242 | 0.100
0.30 | 100 | 9.124 | 9.089 | 9.073| 9.056 | 0.189
110 | 4.930 | 4.892 | 4.877| 4862 | 0.315

Table 6.3: An average rate call with r=0.10, So = 100, T=1 and t=0, com-
puted using a non uniform mesh. FE refers to the finite element solution
with the number of time steps given inside the parenthesis and exact refers
to the “exact solution” that was computed using a uniform mesh with 4000

space points and 8000 time points. R.E. refers to the relative error between
the exact solution and FE(400).
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o | K | FT(213), G=35 | FT(432), G=60 | Exact | R. E. (%)
90 13.750 13.739 | 13.728 | 0.080
0.05 | 100 4727 4731 4725 | 0.127
110 0.063 0.075 | 0.078 | 4.215
90 13.753 13.743 [ 13733 | 0.075
0.10 | 100 5.264 5.263 | 5.255 | 0.150
110 0.732 0.734 | 0.731| 0.397
90 14.157 14.149 | 14.138 | 0.077
0.20 | 100 7.064 7.054 | 7.042 | 0.178
110 2.719 2.710 | 2.701 | 0.367
90 15.268 15.256 | 15.242 | 0.095
0.30 | 100 9.087 9.072 | 9.056 | 0.180
110 4.891 4877 | 4.862 | 0.300

Table 6.4: The average rate call with r=0.10, Sy = 100, T=1 and t=0. FT
refers to the solution computed with a non uniform mesh were the last G
number of time steps are successively decreased with a factor § = 0.97, were
the last G number of time steps refers to the time steps that lie in the interval
[0,1], t1 < T, since we are solving backwards in time towards time t = 0.
The total number of time steps is given inside parenthesis. Exact refers to
the “exact solution” that was computed using a uniform mesh with 4000
space points and 8000 time points. R.E. refers to the relative error between

the exact solution and FT(432).

Figure 6.8: The average rate call compared to the ordinary European call for

option value
5

different ¢ when Sy = 100, K=100, r=0.05, T=1 and t=0.
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K [ FE(100) | FE(200) | FE(500) | FD(500) | MC | Exact | R. E. (%)
90.0 | 1297 | 12.98| 12.98| 12.99 | 12.98 | 12.9853 |  0.0062
925| 11.04| 11.05| 11.05| 11.05|11.05 | 11.0504 |  0.0072
95.0 9.26 9.27 9.27 9.27 | 9.27| 9.2690 |  0.0076
97.5 7.65 7.66 7.66 7.66 | 7.67| 7.6597 |  0.0078
100.0 6.23 6.23 6.23 6.23 | 6.24| 6.2345|  0.0080
102.5 4.9 5.00 5.00 5.00 | 5.01| 4.9975|  0.0080
105.0 3.94 3.94 3.95 3.95| 3.96| 3.9455|  0.0101
107.5 3.06 3.07 3.07 3.07| 3.08| 3.0685| 0.0130
110.0 2.35 2.35 2.35 2.35 | 236 | 23516 |  0.0170

Table 6.5: A discrete average rate call with Sy = 100, o = 0.2, r=0.05, T=1,
t=0, N=10 and t;, = 0.1k. FE refers to the finite element solution computed
with a nonuniform mesh with the number of time steps given inside the

parenthesis.

FD refers to the finite difference solution and MC refers to

the Monte Carlo solution based on 10° simulations with a control variate
technique, both given in Andreasen [1]. Exact refers to the “exact solution”
that was computed using a uniform mesh with 4000 space points and 8000
time points. R.E. refers to the relative error between the exact solution and

FE(500).
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