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Abstract

This thesis presents the theoretical framework for goal-oriented adaptivity
in finite element computations. The motivation for this approach is that in
engineering practice, the solution to the mathematical problem might not be
the reason for making the computations. It is rather a quantity derived from
the solution that is of interest. By specifying the goal-quantity a priori the
corresponding dual problem is solved. An error representation in the chosen
quantity is formulated and a set of high quality element indicators for the
refinement of the mesh is obtained.

Goal-oriented adaptivity is performed on a classic problem in nonlinear
elastic fracture mechanics; the energy release rate at crack growth. The solu-
tion has a singularity at the crack tip making localized resolution appropri-
ate. This singularity is usually resolved by the use of an a priori constructed
mesh and special singularity elements, or by using an energy formulation
that does not involve the crack tip condition. How well this is accomplished
in the adaptive routine is investigated.

Two different energy formulations, the original J-Contour integral and
the generalized energy release rate, are used in the simulations. The results
are verified by computing the stress intensity factor using an asymptotic
displacement, approach.

The results show that the goal-oriented algorithm as a flexible and ro-
bust general framework for FE computations is appropriate for this type of
problem.

Keywords: goal-oriented adaptivity, J integral, energy release rate
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This thesis consists of the following chapters:

Chapter 1: A short review of the Galerkin method for computing an approx-
imative solution to Partial Differential Equations using piecewise continouos
polynomials. The equations of linear and nonlinear elasticity are formulated.

Chapter 2: An introduction to adaptive methods and error control by
solving a corresponding dual problem. The theoretical framework for goal-

oriented adaptivity is presented.

Chapter 3: A description of the adaptive algorithm used in the compu-
tations.

Chapter 4: Introduction to (non)Linear Elastic Fracture Mechanics (LEFM).
Overview of the considered integrals computed with FEM.

Chapter 5: The FE implementation and plots from the results.
Chapter 6: Conclusions
Appendix: The path independence of the J-contour integral is proven. The

derivation of J as an energy release rate and the derivation of the generalized
energy release rate.
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Chapter 1
Galerkin’s Method

Galerkin’s method is a technique to solve Partial Differential Equations
(PDE:s) on the form

Au =b, (1.1)

where A is a differential operator and b is the data to the problem. This is
accomplished by seeking an approximate solution up in a finite dimensional
space V}, spanned by a set of basis functions {v}? ;. The subscript h in-
dicates that the vector space V}, has finite dimension. By choosing a finite
set, of basis functions we are, by an orthogonality argument, led to a system
of equations that we can solve numerically. The basis functions should be
linearly independent and vanish on the part of the boundary where essential
boundary conditions are prescribed. The exact solution w € V will be sub-
stituted by uy € Vj which is our approximation. We express uy in terms of
our basis functions

up =Y + Z ;4. (1.2)
i=1

a; € R are weights and v; our basis functions. % is a function that describes
the non homogeneous Dirichlet boundary conditions and is needed because
the basis functions are defined to be zero on boundaries with prescribed
values. When {v}? , has been chosen we must find the function wp closest
to w in Vj,. This is equivalent to determine the weights «; in (1.2). This
is what we achieve with Galerkin orthogonality. Let us recall the Ly scalar
product

(u,v) :/Q'u,'v s, (1.3)



and remember that two functions w and v are orthogonal w.r.t. the Lo-
norm if their Ly-scalar product is zero. The unknown function w will be
approximated by FEM

Au = b, .
b— Au=0. (1.5)

As we insert our approximate solution up in (1.5) it changes to

The Galerkin orthogonality is now expressed such that the residual R is
orthogonal, w.r.t. Lo norm, to every function in our chosen space V}, see
Fig.(1.1)

/ RvdQ)=0 YoveV, (1.7)
Q
Note that the true solution satisfies a stronger orthogonality condition
/Rdezo Yo eV, (1.8)
Q

since R = 0. The set of functions where we seek our approximation is referred

Figure 1.1: Graphical illustration of (1.7). R(V,) = {y € V,, : Az =
y for some « € V,,}, u - the unknown solution in V, up - the approxi-
mate solution to be computed with FEM in V,,. R - Residual due to the
approximation R € V & V},.

to as the trial space and the space of functions used for the orthogonality
condition is referred to as the test space. The trial and test space differ when



nonhomogeneous boundary conditions are present. The Galerkin method
can, in a compact style, be expressed as

Find up, — ¢ €V}, : (R, ’U) =0. (19)

If the operator A involves higher order derivatives, the Galerkin orthogonality
is often rewritten in an equivalent form using integration by parts. The
obtained corresponding form is called weak formulation.

The infinite space V, called Sobolev space, is different depending on the
continuous problem. Typically

V=H; ={v: /9'02 + | V| dQ < co,v =0 on 0Qp}, (1.10)

for PDE:s involving the Laplace operator, A = 8‘9—;2.

1.1 Linear Elasticity

We consider the deformation of an elastic continuum, where the fundamental
equations are based on Newton’s second law

PUi = Tijj + fi, (1.11)

The term on the left hand side (LHS) represents the acceleration of the
continuum. The first term on the right hand side (RHS) represents internal
forces due to stresses and the last term represents body forces such as gravity.
The acceleration term is very important in dynamical analysis but will be
neglected here and we actually try to solve the vector PDE

- (1.12)

This expression contains three equations and six unknowns (since o;; is sym-
metric) so we need more information to close the system of equations. As-
suming isotropic elastic material the relation between the stress- and strain
tensor can be expressed in Hookes generalized law

Oij = )\819]65@' + 2/,68ij. (113)

A and p are the Lame’s elasticity constants, which vary in space if the material
is heterogeneous but are pure constants if the elastic material is homogeneous.
The strain tensor is defined (neglecting thermal effects) as

1
eij = 5 (Ui + ujs) (1.14)
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(1.13) inserted into (1.12) yields a vector equation for the unknown displace-
ment field u.

(A + purk)i + (puik) k = fi. (1.15)
If Lame’s coefficients are constant (1.15) changes to
(A + w)ug i + puigr = fi. (1.16)

The equations of elasticity are in mathematical style expressed, together with
boundary conditions, as

o=V -u)I+2ue(u) in 2, (1.17)
-V-o=Ff in Q, (1.18)

u=g on 092p, (1.19)

oc-n=t on 09y . (1.20)

(1.17) and (1.18) are equivalent to (1.13) and (1.12). Equation (1.19) and
(1.20) are boundary conditions that describes prescribed boundary move-
ments and traction respectively.

1.2 Discretizing with Galerkin’s Method
Applying Galerkin’s method to (1.18) results in
/Q(—V-o-)-de:/Qf-de. (1.21)
Integration by part yields
/QO'-V'de— FN(o’-n)-'ucl:;’z/Qf-'udQ. (1.22)

Using the symmetry of o and (1.20) we obtain the following weak form of
the elasticity equations.

/Qa(u):e(v)dQ:/Qf-de—i-/BQNt-vds. (1.23)

The LHS physically represents internal strain energy while the RHS repre-
sents work done by applied body- and boundary forces.

11



We define the bilinear form a(u, v) and linear form L(v) as
a(u,v) = / o(u) : e(v)dS, (1.24)
Q
Lv) = /f-de—l—/ t-vds. (1.25)
Q NN

The variational formulation (VR) and the corresponding FEM are in abstract
form written as

Find u —¢ €V : a(u,v)=L(v) Yo eV, (1.26)
Find up, — ¢ €V, : a(up,v) = L(v) Yv € V},. (1.27)

V and V), are defined as

V = {v :/ v + | Vo[> dQ < o0o,v = 0 on 9Qp}, (1.28)
Q
Vi = {v:vcpw. inQ, vePIK), KeT,}. (1.29)

P1(K) are continuous piecewise polynomials of maximum degree ¢ defined
on K € Ty, (explained below).

The finite element discretization uses subspaces V}, of V defined on decom-
positions T}, = {K} of Q where {K} is the set of non overlapping elements
(the mesh). T}, is characterized by the largest side of an element in the mesh,
h := maxger, {hx} where hg := diam(K), i.e., the largest side of the ele-
ment, see Fig.(1.2). The mesh size h is often used in a priori analysis where
the limiting behavior of the discretization is expressed in terms of the exact
solution.

A mathematically oriented approach to Galerkin’s method and the nu-
merical solution to PDEs using piecewise polynomial approximations is found
in [7, Eriksson,Estep,Hansbo,Johnson].

1.3 Nonlinear Elasticity

If the equations are nonlinear the bilinear form (1.24) changes to the semi-
linear form a(wu;v) (nonlinear in the first and linear in the second argument,
separated by a semicolon) and the VF and FEM changes to:

Find u —¢ €V : a(u;v)=L(v) Vo€V, (1.30)
Find up, — ¢ €V, : a(up;v) = L(v) Yv € V},. (1.31)



diam(K)

Figure 1.2: Illustration of diam(K), the largest side of element K.

The corresponding nonlinear Galerkin orthogonality is formulated using the
secant form of a(u;v) defined as

as(u, up; w,v) = /01 o (a(s); w,v) ds, (1.32)

where @(s) = up, + se. In (1.32) we used the Gateaux derivative of a(u;v)
defined as

a(u;w,v) = ga(u + €W; V) e=o- (1.33)
€

Choosing w := e = u — up, the Fundamental Theorem of Calculus (FTC)
leads to the result

o, uns e,0) = | L d(@(s), e v) ds = a(uv) — a(un;v).  (1.34)

From the nonlinear VF (1.30) we can substitute the first term in the RHS to
obtain the nonlinear Galerkin orthogonality

as(u,up;e,v) = L(v)— a(up;v) Yv €V, (1.35)
as(u,up;e,v) = 0 Yo € V. (1.36)

These expressions will be used in the error analysis in the next chapter.
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Chapter 2
The Dual Problem

Duality arguments and adaptive algorithms are widespread approaches when
it comes to error control in finite elements. The global stability factor ob-
tained from the dual solution have been used to bound the error in different
norms [7]. In this thesis, the dual solution is computed and evaluated locally
in every element and used as a weight factor on the element residual trying
to compute the exact error from the discretization. This approach doesn’t
bound the error, nor is it in general able to compute the exact error due to
the discretization. However it makes it possible to adapt a mesh according
to a pre-specified goal i.e. goal-oriented error adaptivity.

This chapter explains how to specify the goal of the computations a priori
and how this can be used in terms of a dual problem to obtain an mesh, that
is adapted with respect to the quantity of interest. More on this type of a
posteriori error estimate can be found in [14], [11], [4], [13] and [3].

2.1 The Idea Behind Duality Arguments

The error from the discretization is governed by
Ae = R, (2.1)

where A is a linear operator and R is the residual defined in (1.6). The
effect of the residual R on the error e(y) at a point y € Q is governed by the
Green’s function of the continuous problem. (Similar to influence functions
in structural mechanics.) The Green’s function is defined as

AG(z,y) =d6(x — y). (2.2)

14



Physically, the Green’s function G(z,y) represents the effect at the point x
of a Dirac delta function source at the point = y. The solution to (2.1)
can be written as

e(x) = /Q G(z,y)R(y) dO. (2.3)

A comprehensive treatment of the Green’s function can be found in [6, Deb-
nath, Mikusinski]

Green’s function is suitable for pointwise error control of the solution.
The analog to error control in more general quantities is the solution of a
dual problem ¢. This can be thought of as a generalized influence function.
We illustrate the idea of duality by considering the following problem

Au =b. (2.4)

If we denote the exact solution w and the discretized solution wu; we can
define the error due to the discretization by

e=1u—up. (2.5)
We can now pose the continuous dual problem by

A'p = e, (2.6)
where we consider e as the data. The adjoint operator A* is defined as

(Aw,v) = (w, A*v). (2.7)

Using this dual problem we derive the following error representation in Lo
norm

lel* = (e A%p) = (Ae,p) = (Au — Aup, @)
= (b— Aup, ) = (R, ). (2.8)
R = b — Auy, is the residual function obtained by exchanging w against up
in the primal problem and ¢ is the solution to the dual problem. To give

this a posteriori error estimate a quantitative meaning, the corresponding
continuous dual problem has to be solved.

15



2.2 Goal Oriented Error Measures

Goal-oriented adaptivity can be described as how to adapt a mesh to compute
a specific quantity as efficiently as possible, or how to obtain as accurate
solution as possible with a pre-specified number of degrees of freedom in
the problem. Let Q(u) be a quantity of physical interest derived from the
solution u. To measure the error from the discretization we introduce the
'goal-quantity error measurer’ F(u,up), defined as

E(u,up) = A(e). (2.9)
A(e) is defined as one of two choices

Ae) = Qu) — Qun), (2.10)
AMe) = Qu—un) =Q(e), (2.11)

depending on the quantity of interest. If () is a linear operator they are
equivalent.

Relevant quantities can be pointwise solutions (2.12), pointwise values of
the gradient (2.13), contour integrals (2.14), global quantities as the Ly norm
of the error (2.15), or some other functional of interest.

Qw) = u(y), (212)

Qu) = Vu(y), (2.13)

Qu) = Fu-ndl“, (2.14)
1/2

Qe) = llel=(/ lefda) . (215)

Following the theoretical concept presented by for instance [11, Larsson] we
introduce the Gateaux derivative for F(u,u) with respect to its first argu-
ment

E'(u,up; w) 88 E(u + ew,up) |e—o= VQ(u) - w. (2.16)

~ e
The secant form of E(u,uy) is defined as

1
Bs(wuniw) = [ E'(a(s), uniw)ds

= | VQ(u(s)) wds  VweV, (2.17)



where u(s) = up, + se.
The fundamental theorem of calculus (FTC) leads to the result

Es(u,up;e) = E(u,up) — E(up, up) = E(u, up). (2.18)

For given u, up, we recall the secant form of the primal problem (1.32), and
define the corresponding dual bilinear form a%(w, up; w, v) such that

as(u, up; w,v) = as(u, up; v, w). (2.19)
The abstract variational format of the dual problem is defined as
Find o € V:  a%(u,upn; p,v) = Es(u, up; v) Yv e V. (2.20)

Note: Since we are dealing with linear elasticity we can use the linearity to
drop the two leading terms in the LHS of (2.20), since the secant is equal to
the tangent, and use the symmetry in the problem to obtain

as(u, up;w,v) = a*(w,v) = a(v, w) = a(w,v). (2.21)

Summing up, the following exact error representation holds where we
have chosen v = e :=u — uy,
ES(’U’: Uhp; 6) = CL;(’U,, Up; P, e) = Cls(’ll:, Up; €, ‘P)

= as(u,up;e,p — whep). (2.22)

The final equality is obtained by using the galerkin orthogonality (1.36) to
insert an interpolant 7w, that belongs to Vj,.
Using the FTC (2.18), (2.9) and (1.36) we obtain

Ae) = L(p — map) — a(un, ¢ — mrep)

= > (L{¢ — mrp) — a(tn, ¢ — Thp)) k- (2.23)
M) = | Y (L — mhp) — alun, ¢ — Thep)) k| (2.24)

This is the exact error representation that can be discretized to formulate a
goal-oriented adaptive routine for computing Q(u).
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Example

Consider a scalar PDE with the the chosen goal quantity

Qu) = /Q u? d. (2.25)

The ’goal-quantity error measurer’ FE(u,uy) is then defined as
E(u,up) = Qu) — Qup) = /Q u? d§y — /Q u? dQ (2.26)
= /Qu2 —up dQ = /Q (u+up) (u— up) dQ. (2.27)

From the last equality we see that the data to the continuous dual problem
reads (v + up,) and we will obtain the same result by proceeding as described
above.
Es(u,up;w) = /1g(/ (u+6w)2—uh2dQ> ds
T 0 0t \Ja =0

1
= //2(uh+se)wdsdQ
aJo
9 1

_ /QQluhs—i-%(u—uh)] wdQ

0
= /Q (up + u) wdQ Yw €V, (2.28)

with w = e := u — uy,.

2.3 Discretizing the Dual Problem

Solving (2.20) for all v € V is the same type of problem as to compute the
solution to the primal problem (1.26), and we must choose a subset of V'
to be able to compute an approximation of ¢o. The Galerkin orthogonality
(1.7) forces the approximation of the dual problem to be spanned by a larger
function space than Vj,. This refined function space will be called V,". The
following function spaces are now considered

Vi CV,tCV=H, (2.29)

where H is a Sobolev space specified by the differential operator. (2.29) is
a theoretical restriction to the choice of V so that the involved functionals
make sense.
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A straightforward way to choose V' is to use one degree higher poly-
nomial than was used when discretizing the primal problem or a refined
triangulation with the same order. Other methods proposed is solving the
dual problem in V}, and then do some post processing to obtain a ¢ that be-
longs to an improved space. See for instance [11, Larsson] for developments
in this direction.

The evaluation of the dual problem (2.20) first requires a linearization
of the functional Eg(u,up;v) i.e. the data to the problem. Linear goal
quantities result in functionals that does not involve the exact solution, and
there is no need for a linearization. Nonlinear error measures can be handled
by using the rectangle (2.30), trapezoidal (2.31) or midpoint (2.32) rule.

/01 flup +se)ds =~ f(up), (2:30)
/o1 f(up + se) ds =~ () "‘2f(“h+)’ (230
/01 flup+se)ds ~ f (% + uTth> . (2.32)

up ™ is an improved solution closer to w computed in V,". Equation (2.30)
is equivalent to using the tangent form instead of the secant form. This is
a well known approach in the nonlinear primal problem where the stiffness
matrix is updated in every iteration.

Carrying out the discretization we finally obtain the discretized dual prob-
lem that reads

Find ¢ € Vit : af(un™, un, p,v) = Es(upt,un;v) Vo € Vjf2.33)

When discretizing the dual problem the exact error representation changes
to

M) =1 Y (Llent — mnp) — alun, on’ — mhe)) |- (2.34)

KeTy,
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Chapter 3

Adaptivity

The adaptive algorithm can schematically be described as in Fig.(3.1).

Mathematical model
DONE!!

* * E(u,uh)<tol

Solve Primal problem L Solve Dual problem | _gg| Compute error & Indicators|

'

Remesh grid

Figure 3.1: Graphical illustration of the adaptive process. Starting from a
mathematical model the Primal and Dual problems are solved. Indicators
and error are computed and finally, if the tolerance is not fulfilled, the mesh

is refined.

The adaptive algorithm seeks to realize the criterion

|IA(e)| < tol (3.1)

20



where tol is a user specified tolerance of the error. The first step is to compute
the primal solution up € Vj. The next step is to compute the dual solution
@n+ € Vi The solutions to the primal and dual problem are used to control
whether the stop criterion is fulfilled or not. If not, we use element indicators
to refine the mesh according to some strategy (will be explained later), and
start over from the beginning.

3.1 Stop Criterion and Indicators

Starting from (2.24) the following estimates of the error can be used in the
Adaptivity algorithm

X)) = | Y (L(p — mrp) — a(un, ¢ — mrp))kl, (3.2)
< KZT |(L((P - Wh‘P) - a’(’u’ha Y- 7'rh‘ba))h(’ (33)
< Y Br(un) - Wr(p — mep). (3.4)

Equation (3.2) is an identity. In (3.3) the triangle inequality omits cancella-
tion between different elements. In (3.4) integration by parts, the Cauchy-
Schwarz inequality, and an estimation on the element level have been used
to evaluate two bounding constants in every element. Example of this last
inequality can be found in [7], and in [4, Becker, Rannacher].

Earlier works [10, Larson, Niklasson] propose that we use (3.2) as a stop-
ping criteria and (3.3) to assign refinement indicators to the elements in T},
This is a natural choice since elements with large contributions to (3.2) must
be controlled. The weights used in (3.4) can be used to compute indicators
and error, but the obtained error is usually too big [10].

3.2 Refinement Strategies

There are different strategies on how to use the set of indicators for choosing
elements to refine. We list some strategies here together with some comments.
We define 7, as the error contribution from element K and the corresponding
indicator as Ix = |ng|.
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. Fized fraction. In each refinement cycle the elements are sorted accord-
ing to their indicator’s magnitude Ix and a fixed fraction are chosen
to be refined. This strategy gives good control of the size of the re-
fined mesh, but is insensitive to whether the problem has a singularity
or not. Over refinements when singularities are present is common in
practice.

. Relative fraction. In each refinement cycle the elements are sorted
according to their indicator’s magnitude /x. Every element whose in-
dicator value is greater than, or equal to a fraction of the largest value
are chosen to be refined. This strategy is more adaptive than strategy
(1). In practice, when a singularity is present, the elements surround-
ing the singularity are chosen to be refined. This might lead to many
refinement cycles with just a few more elements in every cycle.

. Equidistribution of errors. The adaptive process tries to equilibrate
the error contributions from every element in the mesh according to
Nk = fv_ojf’ where Ny is the number of elements in the final mesh. Since
Ny is unknown it is common in practice to choose Ny = N, where [V, is
the number of elements in the current mesh. This means that elements
are allowed to transform from coarser to finer and back again in time
dependent problems (hard to implement). If the tolerance is set too low
(problem dependent) this strategy might lead to uniform refinements
until the memory is exhausted. I.e. may not lead to A(e) < tol.

Note: In practice, strategy (1) and (2) also tries to do an equidistribu-

tion.

. Fized degrees of freedom. Order the cells according to their indicators
magnitude [k and refine a fraction of the cells with largest contribu-
tions to the error. Coarse the same number of elements whose indicator
magnitude is smallest. This makes the degrees of freedom in the prob-
lem and the amount of CPU time needed to solve the problem in every
iteration more or less constant.

. Optimized mesh. A proposed error representation including a smooth
mesh-size function h(z) and an h-independent error density function
®(z) is used for generating a formula for an optimal mesh-size distri-
bution. This is achieved a priori under very restrictive conditions but is
in general supported by computational experience. See [4] for details.
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6. Mized refinement This strategy is implemented in Diffpack [9]. Using
this strategy a refinement flag between 0 and 3 is assigned to every
element in the mesh. The flag indicates how many sides that is to
be refined in the element. If an element is chosen to be refined, the
longest side is always refined (the largest element angel is divided).
This strategy leads to approximately 15 — 20% more elements in every
refinement cycle.

Figure 3.2: The flag in the interval 0-3 indicates how many sides that is to be
refined. Flag 3 can be refined uniformly or by bisection of the largest angel.

One way to decide the flag on the element is by using the following

table where Iy = maxger, [k 1.e. the largest element indicator in the
mesh.

Table 3.1: One strategy to put flags on the element where I3 = maxger, Ix-

Element Indicator Ix | Flag

I > I >05-I5 3

05T >Ix >05%-T5 | 2
05%-I5 > 1Ix >05- I | 1
0.5%- I, > Ig 0
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3.3 Putting it all Together

We demonstrate the material presented so far by considering a console in
plane strain with a distributed load, see Fig.(3.3).

Y

M N "
t

g

Figure 3.3: A console in plane strain. The left boundary have prescribed
displacements u; = 0. n and ¢t are normal- and tangent-vectors for the right
boundary I's. T' = [0, —1] is the load on top of the console.

The equations of linear elasticity together with boundary conditions de-
fine the primal problem

o=V -u)I+2ue(u) inQ, (3.5)
~V-.o=0 inQ, (3.6)

u=0 only, (3.7)

oc-n=T only. (3.8)
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The Galerkin method leads to a weak form that corresponds to

&) dQ= [ fovd2+ [ t-vds 3.9
/Qa'(u) e(v) [ fvdos [ tovds (3.9)
If we define the bilinear form a(u,v) and linear form L(v) as
a(u,v) = /Q o(u) : e(v)dQ, (3.10)
L(v) = / f-de+/ t-vds, (3.11)
Q NN
the corresponding VF and FEM reads
Find u — ¢ €V : a(u,v)=L(v) Yo €V, (3.12)
Find up, — ¢ €V, : a(up,v) = L(v) Yv € V},. (3.13)

To define the dual problem we choose the goal-quantity as the mean vertical
displacements over the right boundary I';

1
o m(rf}) Fg

Q(u) t-uds, (3.14)

where m(I'3) is the length of boundary I';. This leads to the following dis-
cretized dual problem

Find o™ € V"1 a(v,on") = Es(un™, up; v) Vo € V,1(3.15)
where
1
S(uh auhav) m(F3) T v as ( )

Figure(3.4) shows the adapted mesh obtained with the tolerance set to 1%.
The convergence rates for uniform and adaptive refinements are plotted in
Fig.(3.5). The effectivity index in Fig.(3.6) is defined as

_ Qun™) — Q(un)
Qu) — Q(up)

where Q(u) is approximated with a reference solution obtained from a con-
verged adaptive computation.

(3.17)
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/NN

Figure 3.4: Adapted mesh, obtained with the tolerance for the relative error
tol = 1%. Note the local refinements in the corners.

Estimated and exact error vs number of elements

10° : T
—— Adaptive - estimated
—6— Uniform —estimated
—— Adaptive - exact
" —— Uniform - exact
10 E
2107 E
]
10°F E
107 L L L L
10° 10* 10° 10° 10" 10°

Number of elements

Figure 3.5: Convergence rates for uniform and adaptive refinements.
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Figure 3.6: Effectivity index defined as n = %

In Fig.(3.6) we notice that the effectivity index is close to unity after a
few iterations. I.e. the error representation is equal to the difference between
two primal solutions. This behaviour is typical for linear goal quantities.
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Chapter 4

Nonlinear Elastic Fracture
Mechanics

There are many developed theories which account for various types of non-
linear material behavior in fracture mechanics. Most of them are extensions
to Linear Elastic Fracture Mechanics (LEFM). A solid background in LEFM
is thus essential to understand more advanced concepts. In this chapter some
fundamentals about the J-contour integral and the energy domain integral
are described and then the focus is on the computations. (Both methods are
equivalent in nonlinear elastic materials and can be used for computing the
energy release rate J.) We refer to [1, Anderson] for a comprehensive treat-
ment of the physical and theoretical background of the considered equations.

In Appendix, the derivation of the J-contour integral as an energy release
rate, its path independence and the derivation of the energy domain integral
can be found.

4.1 The J-Contour Integral

Consider an arbitrary counter-clockwise path [' around a crack-tip as in
Fig.(4.1). (The normal vector is pointing out from the crack-tip.) The J-
contour integral is defined as

8ui
J= /F (W dry ~ Tyt ds) (4.1)
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X2

x1

ds

Figure 4.1: The J-contour integral. z;,z, are the local coordinate axis at-
tached to the crack tip. The normal vector n is pointing out from the crack

tip.

where W is the strain energy density, 7; are the components of the traction
vector and wu; is the displacement vector.

W = / v O'z'jdé‘ij (42)
0
Ti = aijnj (43)

This J-contour integral has been widely used as a fracture characterizing
parameter for nonlinear elastic materials.

In 1968 [15] Rice showed that the value of this integral, J (the energy re-
lease rate in a nonlinear elastic body at crack growth), could be written as a
path independent line integral (see Appendix). The Elastic-plastic material
follows a linear unloading with a slope equal to Young’s modulus, while the
nonlinear elastic material unloads along the same path as it was loaded, illus-
trated in Fig.(4.2). Thus an analysis that assumes nonlinear elastic material
may be valid for an elastic-plastic material, provided no unloading occurs.

The path independence (proven in the Appendix), in elastic materials,
makes it possible to evaluate the J-contour integral at a remote contour
avoiding singularity zones close to the crack tip.
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Nonlinear Elastic
Material

Stress ‘ \

Elastic—-Plastic
Material

Strain

Figure 4.2: The stress-strain relationship for a nonlinear elastic material and
an elastic plastic material. The materials behave equal during loading but
when unloading occurs they follow different paths.

4.2 The Energy Domain Integral

More recent formulations of the energy release rate apply an area integration
for 2D problems and a volume integral for 3D problems. The more recently
formulated energy domain integral methodology [1] is a method for numerical
analysis of the energy release rate. It can be applied to quasi static and
dynamic problems with elastic, plastic or viscoplastic material response as
well as thermal loading.

The energy domain integral is derived from a generalized energy balance
(see Appendix for the derivation) and reads

B Ou, 0q
J = /* (lalja—h - W(SM] a—wl> dA (44)

Assuming W = W€ makes it equivalent to Rice’s path-independent J contour
integral. The function q is explained in the Appendix.
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Chapter 5

Finite Element Implementation

We solve the equations of linear elasticity with a prescribed boundary traction
in plane stress for a body with a central crack, see Fig.(5.1). The obtained
displacement field is used to compute the energy release rate at crack growth
with the J-contour and the energy domain integral.

The stress intensity factor K is evaluated using an asymptotic displace-
ment approach at the crack tip (explained later). K; is evaluated as an
insurance that the obtained energy release rates are correct. The stress in-
tensity factor, for cracks in Modus I, see Fig.(5.2), is related to the energy
release rate through (5.1).

K7
J o= = (5.1)
See [5], [8] and [18] for the relation between the energy release rate and the
stress intencity factors under different modus loads.
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2a

2b

Figure 5.1: Central crack loaded in modus I. 2a is the crack length, 2h is the
height of the body and 2b is the width.

A

—— -

Mode | Mode Il Mode Il
(Opening) (In-Plane Shear) (Out-of-Plane Shear)

Figure 5.2: Definition of modus I, modus II and modus III loading that can
be applied to a crack.
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5.1 The Primal Problem

l_S
N
:
NI
P
c ’ I
a AN AN

Figure 5.3: The primal problem. I' represents the contour where the J-
contour integral is evaluated. A*, defined by 7, represents the area where the
energy domain integral is evaluated. Half the length and width of the crack
are denoted by a and c respectively.

Using the symmetry to reduce the problem to one quadrant Fig.(5.3), we
solve

oc=AV-u)I+2ue(u) inQ,
—V.o0=0 in,

ur =0 onl',

us =0 on Iy,

o-n=o09 onljy, (5.6

with the finite element method using linear (up) and quadratic (u,™) basis
functions. The singularity was obtained through the boundary conditions

and the crack width ¢ was actually set to zero. The two solution fields were
used as data to the dual problem.
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5.2 The Dual Problem

We use two different dual problems because we will evaluate both the J-
contour and the energy domain integral for computing the energy release
rate at crack growth. Using the linearity and symmetry in the problem the
dual problem is defined as

Find ¢ € V: a(p,v) = Es(u, up;v) Vv e V. (5.7)

The RHS will change depending on the choice of goal function. The secant
form is evaluated with the midpoint rule (2.32) using the two primal solutions
up, and up,*. This linearization will be exact when up™ — w.

5.2.1 The Dual Problem for the J-Contour Integral

Choosing the goal quantity as the J-contour integral

8’(1@
Q(u) = /F (W day ~ T ds) , (5.8)
we have
1
Es(u, un, v) = /Q/O VQ(a) - v dS dQ, (5.9)
where
V@, =
8112 aﬂl aUZ ( )
(6—152”1)\ Ny <8—x2'u+ e (A+ ,u))) o +
0ty Oty 0ty a(+)
((2 9, ni + o n o7, n2>> ,ua—an2 (5.10)
V@, =
0t 01 Oty o(-)
( T g 1”2()\+M) 8:62”2(/\+2M)> 1, +
0ty Oty Oty a(+)
— 2—n; — — 2 — A1
(aml nlA + < a@nl 8$1 7'1,2) ()\ + /L)) 83?2 (5 )
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5.2.2 The Dual Problem for the Energy Domain Inte-

gral
Choosing the goal quantity as the energy domain integral
_ __auj B . 0q
we have
5w, wn,v) = | /1 VO(@) - v dS (5.13)
) b Q 0 b
where
V@, =
8q 8111 8’[1,2 8112 8(] 8()
(8:52 (Ma.TQ + (,U + )\) 8901) /\8@ 8.’E1> 8951 +
0u; Og dq [ Ous Ouy \\ 0(+)
— 2 .14
+ (ua$1 6:62 'uaacl (8:51 + 83)2)) 6x2 (5 )
VQQ -
0q [ 0uy Oty Oq 0uy \ O(-)
I N et 72 2 _
<a$2 (8:101 ()\ + M) + 6x2 ()\ * IUI)> 8x1 83:2 M) 8:51 *
8q 8’112 8q 8’&1 8’(12 8()
+ (3332 o (N +2p) e <8x1 A+ 28302 A+ 2u))> o, (5.15)

The function g was defined as a tent function that equals unity on the
crack tip and zero at the outer radie i.e. a cone.

5.3 Diffpack

Diffpack is a class library in C++ containing building blocks for solving
PDE:s in computational science. The use of Diffpack makes it possible to
have a higher degree of abstraction in the programming code. The goal-
oriented adaptivity was not supported (before this thesis) by Diffpack so it
had to be implemented. The assembly process, iterative solvers, refinement
routines and visualization were carried out with Diffpack objects. The PDE:s
obtained from the primal and dual problem are implemented in a variational
style close to the mathematical formulations. To learn C++ and Diffpack,
we refer to [17], [2] and [9].
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5.4 Computational Results

Both methods for computing the energy release rate at crack growth were
evaluated. In both methods the initial grid was as shown in Fig.(5.4). The
grid was generated by Triangle (freeware). Triangle is a mesh generator in
2D. We refer to [16] for the program.

05 ] T T T T T T 1
0.4 3

0.3 .

0.1 ]

Figure 5.4: Start grid for the computations.
In the plots we use the effectivity index 7 and the average size of the
elements h defined as

~ Qup™) — Qup) ;1
= Q) — Qun) h= N (516)

Q(u) was obtained from a reference solution, i.e. a converged computation.
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5.4.1 J-Contour Integral

The J-contour integral was evaluated over four different contours to investi-
gate its path independence and how different paths affected the adapted grid.
The adapted grids are found in Fig.(5.5). Figure(5.6) to Fig.(5.8) are from
the computations on path 4. Table(5.1) shows how the converged solution
changed for different paths.

0.5 T T T T 0.5
0.4 0.4 /|
0.3 | 0.3 <><>;
0.2 0.2
0.1 0.1
0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 05
0.5 0.5
/5
/
0.4 d 0.4
0
0.3 0.3
0.2 3 0.2
0.1 0.1
-é i
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 05

Figure 5.5: The adapted grids for the J-contour integral evaluated on path
1-4.
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Figure 5.6: The convergence for the relative error using adaptive and uniform
refinements.
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Figure 5.7: The effectivity index for the J-contour integral.
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Figure 5.8: The convergence for linear and quadratic elements.

Table 5.1: The converged solution evaluated on path 1, 2, 3 and 4.

Path | J[%X] | Relative Error
1 1008.09 0.0035
2 1134.63 0.0058
3 1124.28 0.0083
4 1131.42 0.0105
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5.4.2 Energy Domain Integral

The energy domain integral was evaluated in five different areas to inves-
tigate its area independence and how the adapted grid was affected. Two
of the adapted grids are found in Fig.(5.9). Figures(5.10-5.12) are from the
computations with 7 = 0.050. Figure(5.2) shows how the converged solution
changed for different values of the radie.

05 . . I 05
04 1 o4
03 03]
02 0.2]
01 = 01
<
s
T
S
: ; . 0 . ; . IANZS A4 AN
0 01 02 03 04 05 0 01 02 03 04 05

Figure 5.9: Adapted grids for the energy domain integral with » = 0.050 (to
the left) and » = 0.010 (to the right).
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Figure 5.10: Convergence for the relative error using adaptive and uniform
refinements.
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Figure 5.11: Effectivity index for the energy domain integral.
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Figure 5.12: Convergence for linear and quadratic elements

Table 5.2: Computed energy release rate for different areas.

Radie[m| | J[%] | Relative Error
0.050 906.58 0.0015
0.040 890.434 0.0012
0.030 876.177 0.0013
0.020 863.508 0.0015
0.010 852.018 0.0020
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5.4.3 Asymptotic Displacements

X2
/ r
Mode |

(Opening)

Figure 5.13: Crack in Modus I (left). Polar coordinate system attached to
the crack tip (right).

The displacements of the crack face can be used to compute the stress
intensity factor K;. When K; has been approximated, the energy release
rate can be calculated through (5.1).

The asymptotic displacement field in 2D, (u,v), at the crack face sub-
jected to a Modus I load can be described by a polar coordinate system (r, 6)
attached to the crack tip.

u = Kj (14;:;) V2rr ((2& - 1) cosg — cos 350> + O(r), (5.17)

v o= KI%M ((2& + 1) sin g — sin 3?0> + O(r), (5.18)
where

kK = 3—4v plane strain, (5.19)

Kk = Eil)) ; Z; plane stress. (5.20)

Here, E is young’s modulus, v is Poisson’s ratio.
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Using the above equations, the stress intensity K; can be expressed as

K;=C(r,0) - % (5.21)
where the constant C' is defined through the choice of r and 6. If one choose
6 = m and plot K; as a function of the radius r, the obtained graph can be
used to evaluate K at the crack tip. This has

been done in Fig.(5.14). According to [5, Carlsson| the extrapolated value
for 7 = 0 can be used to obtain the stress intensity factor. The error is usually
below 5% depending on how well the crack tip singularity is resolved. The
displacement field used for the extrapolation was taken from the adapted
grid when evaluating the J-contour integral (path 4). The crack tip singular-

3
)

2 —©— StartGrid Linear Elements

i —<— StartGrid Quadratic Elements
15 —O- Adapted Grid Linear Elements

—x— Adapted Grid Quadratic elements

10

5 1 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
radie (r)

Figure 5.14: Extrapolation of the stress intensity factor K;. The displace-
ment field is from the J-contour integral path 4.

ity is quite well resolved even though the goal-quantity did not include the
displacements around the crack tip. Much better results should be obtained
if the displacement field around the crack tip was the goal quantity.
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Chapter 6

Conclusions

6.1 Computing the Energy Release Rate

A number of techniques have been suggested for evaluating stress intensity
factors from finite element results [12, Owen, Fawkes], [8, Knott], [5]. An
adequate representation of the crack tip singularity is a problem common to
most of these methods. The use of energy methods has the advantage that
an exact modeling of the crack-tip behavior is not necessary.

In this thesis we have compared two different energy approaches for com-
puting nonlinear elastic energy release rates at crack growth. The original
J-contour integral and the more recently formulated energy domain inte-
gral have been evaluated with FEM using goal-oriented adaptivity. Their
claimed path independence has been investigated numerically by evaluating
the integrals on different contours and areas. The obtained results have been
compared with an asymptotic displacement approach.

6.1.1 The J-contour integral

The J-contour integral approach has been successful. The obtained energy
release rates have been confirmed with the asymptotic displacement ap-
proach. The difference between the two methods are below 1% for path
2-4. Figure(5.14) shows that the crack tip singularity is rather well resolved
and there is almost no need for an extrapolation. The graph is comparable
with graphs obtained using special crack tip singularity elements.

The path independence has been noticed for path 2-4. The difference
compared to one another is below 1%. Path 1 differ compared to the other
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paths with approximately 6%.

6.1.2 The Energy Domain Integral

The energy domain integral approach has not been successful. This might
bee due to the weight function ¢. In the literature [12] it is claimed that it
is sufficient to use an arbitrary function that equals one at the crack tip and
zero at the outer contour. In this thesis, the ¢ function has been represented
with continuous piecewise functions (quadratic basis functions) over the in-
tegration domain. The nodal values were set to zero outside the domain and
tol— % within the outer radie ry.

This way of defining ¢ is maybe not appropriate. Other ways to define ¢
should be investigated.

Instead of rewriting the contour integral as an area integral one can com-
pute the contour integral on different layers of elements attatched to the
crack tip. An extrapolation can be used to get the limiting quantity when
r — 0.

6.2 Limitations of Computational Fracture Me-
chanics

FEM can compute crack tip parameters such as the energy release rate,
but these analysis cannot alone predict when and how the crack will grow.
The obvious limitation that comes to mind is that the computations rely on
continuum theory. A continuum doesn’t contain grain boundaries, particles
and obstacles which are present in a real material. Thus experiments are still
important in fracture mechanics.

The development of multi-scale modeling (MSM) is interesting since that
concept couples macro and micro scales in the material and it is at these
length scales the dislocations occur.

The adaptive concept is applicable to any model that involves mathe-
matical formulations that can be computed with FEM. The limitations is
rather in the models describing the phenomena than in the computations
itself. New and better theories for crack growth can be computed within the
same framework presented in this thesis.
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6.3 Error Control and Adaptivity

In this thesis two primal solutions (u and up* in two different function
spaces) have been calculated. The dual problem has been approximated in
the same function space as up ™. This approach makes the error represen-
tation formula (2.24) in a sense useless as an estimation of the error. Why
estimate the error representation, when the best we can get -in absense of
quadrature errors- is the difference between the two primal problems Q(u)-
Q(up™)? The answer is that we do need the error representation formula to
put indicators for refinements on the elements; but a more consistent way to
represent the error is the very simple way

Ae) = Q(ur™) — Q(un). (6.1)

This can be used during the implementation to test the code. Solve two
primal problems in V},? and V;,?*! and define

up = ’U,hp € Vhp, (62)
'u,h+ = 'u,hp“ S Vhp+1.

p+1

Solving the dual problem in V,”"" results in

Me)
Q(un™) — Q(un) ’
where A(e) is the discretized error representation obtained from the compu-

tations. If this doesn’t hold and the code isn’t wrong, underlying reasons can
be

(6.4)

e Wrong treatment of A(e). Instead of using up* + up, in the data to the
dual problem one uses 2uy, (see the example in chapter 3).

e Wrong quadrature - raise the quadrature order.
e Decrease the tolerance on the residual in the iterative solver.
e Floating point representation in the computer. (8:th decimal)

We do realise that solving two primal problems and a dual problem is
extremely expensive. The amount of work can be reduced using fast iterative
solvers such as multi-grid. The benefits are good indicators for the refinement
of the next level.
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One can also view the computations as using the result of the finer primal
problems. This is clearly more accurate than the coarser primal but then we
have not as correct error bound as above.

6.4 Mesh Design

In fracture mechanics the design of the finite element mesh has been much
of an art form and a science in itself. Conventional linear elements have
led to extremely fine meshes [12] in order to represent the 1/ \ﬂr) crack tip
singularity accurately. This has led to the development of special crack-tip
singularity elements by manipulation of the mid-side node positions. Higher
order elements in the iso-parametric family has led to coarser meshes but the
use of these special purpose elements has been advantageous [12].

The goal-oriented adaptive algorithm, using quadratic elements, is a way
to avoid the a priori mesh constructions and special purpose elements. This
leads to a more flexible and general solver for more complex problems.

6.5 Future Work and Development

Other methods proposed for computing the energy release rate at crack
growth are based on virtual crack methods [1, 12]. A finite element anal-
ysis is performed for the original crack configuration and the strain energy
U, is evaluated. The crack is then extended da in some direction r and the
strain energy Us is again calculated. The energy release rate is then

ou U, —Us
o da (65)
The proposed advantage of this method is that the crack will tend to grow
in the direction 7 that results in the highest value of J.

This method demands that the strain energy is computed extremely accu-
rate. The most economic and reliable method should be to use goal-oriented
adaptivity with the strain energy as goal quantity.

J

The interpolant subtracted in the error representation can be exchanged
from the nodal interpolant (used in this thesis) to the Ly projection into V.
Better indicators might be obtained.
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The error representation can be taken further by applying integration by
parts. Then one obtains an error representation on the form

Ae) = (R, ¢ — ¢n) + Jump terms from the element boundaries. (6.6)

How the spatial jump terms should be distributed is still under discussion.
Even though the J-contour integral was successful one can try to apply the di-

vergence theorem to obtain an area integral similar to the generalized energy
domain integral.
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Appendix

Path Independence

The mathematical proof of path independence for the J-contour integral was
presented by [15, Rice] By evaluating the J-contour integral along a closed

*

Figure 1: The J-contour integral over a closed contour I'*. The normal vector
n is pointing out from the crack-tip. A* is the area enclosed by I'*

contour I'* Fig.(1) the obtained J*-contour integral reads

J*:/* (de—ng—zczs>, (7)
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where dzy = nids. By applying the divergence theorem, (7) can be converted
to an area integral

7=/, [a—W—i( )| aa, ®)

8371 8:1:j Uija—xl
where A* is the area enclosed by I'*, see Fig.(1). By (4.2) we have

ow . ow (%Z-j . aaij
8:101 N &sij 83:1 = % 6371 ’ (9)

Note that (9) applies only when W has the properties of an elastic potential.
Applying the strain- displacement relationship to (9) gives

w1 o (ou), 0 (o] 0 (w) o
or, 2 7|0z, \ Oz, Oxy \Ox; ]| "V ox; \0x, )’
since 0;; = 0;;. By equilibrium 8307? = 0 we have
L — . 11
J”(?xj (83:1) 8xj (GZ]aLEl)’ ( )

which is identical to the the second term in (8). Thus the integrand in (8)
vanishes and J = 0 for any closed contour.

Consider now two arbitrary contours, I'y and I'y around a crack-tip, il-
lustrated in Fig.(2). If I'; and I'y are connected by segments along the crack
face (I's and I'y) a closed contour is formed. The total J is the sum of the
contributions and sums to zero (just proven in the above section)

J:J1+J2+J3+J4:0. (12)

On the crack face (I'; and T'y), T; = dzy = 0. Thus J3 = J; = 0 and we
obtain

J1 == —JQ. (13)

Therefore any arbitrary, counter-clockwise (normal vector pointing out from
the crack-tip) will yield the same value of J; J is path-independent. See

Fig.(2).
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Figure 2: Closed contour around the crack-tip. The clock-wise integral over
I'; makes the normal vector n point in the opposite direction as the counter-
clockwise integral over I';.

The J-contour Integral As a Nonlinear Elastic
Energy Release Rate

Consider a 2D cracked body bounded by I' and let A denote the area of the
body Fig.(3). The global coordinate axis (X;, Xs) are random and the local
coordinate axis (1, x2) are attached to the crack tip. The vector r locates
the midpoint of the crack. The local coordinates can be expressed as

Ty = Xi—a—ry, (14)

To = X1 — Ta. (15)
Under quasi-static (no kinetic energy density) conditions and in the absence
of body forces, the potential energy is given by

H:/AWdA—/FTiui ds. (16)

Note: The contour integral over I" is zero for prescribed displacements and
fractions due to the fact that they are independent of a.

oi au,
1
= dA / y el (17)

o4



X1

Figure 3: The J-contour integral as an energy release rate. a is the crack
length. x1, x5 are the local coordinate axis located at the crack tip. Xi, X,
are the global coordinate axis. The vector r is locating the crack. The vector
T is traction on the boundary I'.

When the crack grows, the coordinate axis moves and the derivative w.r.t.
crack length is written as

d 0 Or, 0 0 0

= = 1

da Oa * 0a Ox; Oa Ox1’ (18)
since % = —1, see (14). Applying this to (17) yields

oIl ow oW Ou;  Ou;

o (T dA—/T,- i Ui s, 19

da /A ( oa 83:1) T (8@ (9:51) 5 (19)
By making the same assumptions as in (9) and (10) we obtain

_ — g 0 () 20
da  Oey O0a ' Yox, <8a> (20

The principle of virtual work gives
0 (0u; ou;
e [ dA:/T,-—Zd. 21
/Aajaxj<6a> r  Oa s (21)
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Using (20) and (21) in (19) we found that the leading term in both parenthesis
cancels out and we are left with

oIl oW

Applying the divergence theorem and multiplying with -1 leads to

-5 /F<Wn1 Ta%) ds_/F<de2—:naxl>. (23)

The last term is the J-contour integral and therefore, the J contour integral
is equal to the energy release rate for a linear or nonlinear elastic material
under quasi static conditions.

The Generalized Energy Release Rate

The generalized energy release rate is derived from Newton’s second law and
we refer to [1] for the derivation. The generalized energy release rate involves
a vanishingly small contour IT", and is defined as

: Ou,
J = %13% g [(W +T) b — 0”8 n; dl. (24)
W is the strain energy density and 7' is the kinetic energy density defined as
W = / v Oij dﬁij, (25)
1 8u, ou;
26
—9f ot ot (26)

Equation (24) is valid for time- and history-dependent material behavior.
When applying (24) to time-dependent material W can be expressed as

t
w :/ O-ijéij dt, (27)
to

where ¢;; is the strain rate. The form of (24) involves of a vanishingly small
contour I'. Numerically this is not a problem since the integration can be
carried out at some distance r > 0 from the crack tip. I.e h — 0 for the
continuous problem. In some textbooks [1] this proposed difficulty has led
to a closed contour, constructed as illustrated in Fig.(4). The outer contour
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Figure 4: A closed contour formed by I'y and I'; when connected by I', and
I'_. m is the counter-clockwise outward normal on I'*.

I'; is finite while Iy is vanishingly small. J could be evaluated on both T’y
and I'; but only I'j would give the correct value of J in the general case. For
quasi static conditions where 7" = 0, (24) can be written

ou; ou;
J = / 9N sl qmg dr — 9 o, 28
. [U] 0xq ! ] am o 2] 0z g (28)
where
I, = I 4+T, +0 —T. (29)

'y and I'_ are upper and lower crack faces. ¢ is an arbitrary but smooth
weight function that is equal to unity on I'y and zero on I';. m is the counter-
clockwise outward normal on I'*. Note that m = —mn on I'. m; = 0 and
me==xlonl', and ['_.

Assuming traction-free crack faces (the second integral in (28) vanishes)
and applying the divergence theorem to (28) results in

_ 0 a’LLj
J = /A* 8—(,5,& <[01J8—,$1 - Wé]_,] CI) dA (30)

_ Ouy s | 9
= / * ([am . WdlZ] aﬁ) dA + (31)
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~ S

v~

=0 Eq.(8)

. Ouy | 9¢
J = /* (lalja—m Wél;| 8—55‘1> dA.

1.e.

This area approach has been implemented in this thesis.

o8
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