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Abstract

In this paper we describe the ideas behind adaptive finite element methods. We
also apply these methods to the time-dependent Maxwell system of electromag-
netics.

We use the weak formulation of Lee-Madsen and Monk, for which there is an a
priori convergence theorem derived by Monk. We then discretise the problem us-
ing a standard Galerkin method, and we show that this method is stable.

We derive the Galerkin orthogonality properties, which together with some interpo-
lation properties for the finite element solution, and the strong stability estimates
for the adjoint problem (which we also derive) enable us to prove an a posteriori
error estimate in the H~!-norm that forms the basis for the adaptive algorithm
we develop.

We also give an example of a grid refinement strategy for the special case of a
2-dimensional mesh consisting of triangles. We conclude by writing out explicitly
the algebraic system of equations to be solved in the 2-dimensional case.
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Chapter 1

Introduction

1.1 Overview

Here we will give some background information on Electromagnetics, and on
the adaptive finite element methods used in this paper to obtain solutions to
Maxwell’s equations.

1.1.1 Electromagnetics

Electromagnetics is the study of the effects of electric charges at rest and
in motion. From elementary physics we know that there are two kinds
of charges: positive and negative. Both positive and negative charges are
sources of an electric field. Moving charges produce a current, which gives
rise to a magnetic field. A time-varying electric field is accompained by a
magnetic field, and vice versa. In other words, time-varying elecric and mag-
netic fields are coupled, resulting in an electromagnetic field.
Electromagnetic theory is indispensable in understanding the principles be-
hind atom smashers, cathode-ray oscilloscopes, radar, satellite communica-
tion, television reception, remote sensing, radio astronomy, microwave de-
vices, optical fiber communication, transients in transmission lines, elec-
tromagnetic compatibility problems, instrument-landing systems, electrome-
chanical energy conversion, brain scanners and so on.

The governing equations in electromagnetics are Mazwell’s equations, which
are usually expressed as a hyperbolic system of two coupled, first-order dif-
ferential or integral equations.



The equations are named after James Clerk Maxwell (1831-1879). One of his
major contributions was to generalise Ampére’s circuital law, which is one
of the Maxwell’s equations, by introducing the displacement current density
term in the equation to make it consistent with the charge conservation law.
The other equation in the Maxwell system is Faraday’s law of electromag-
netic induction. It is named after Michael Faraday, who, in 1831, discovered
experimentally that a current was induced in a conducting loop when the
magnetic flux linking the loop changed. It is the quantitative relationship
between the induced emf and the rate of change of flux linkage, based on
experimental observation, that is known as Faraday’s law. Lenz’s law is the
assertion that the induced emf will cause a current to flow in the closed loop
in such a direction as to oppose the change in the linking magnetic flux.
Two other equations are often also included in the Maxwell system; Gauss’s
(electrical) law, and an equation stating that there are no such things as
isolated magnetic charges (sometimes called Gauss’s magnetical law). These
two equations can, as we will show, be derived from the first two, by us-
ing the charge conservation law. Maxwell’s equations can, together with the
charge conservation law and Lorentz’s force equation, be used to explain all
macroscopic electromagnetic phenomena.

Analytical solutions to Maxwell’s equations do exist, but techniques for ob-
taining them - most notably separation of variables and Fourier and Laplace
transform methods - limit the solutions to those based on simple coordinate
systems with fairly regular or infinite boundaries. If, for example, we require
the solution on a domain with irregular finite boundaries, or if we have vari-
able constitutive relations, then we are forced to find the solution to such
problems numerically.

The earliest numerical schemes involved a staggered mesh finite difference
method as developed by Yee[23] in 1966, and more recently finite element
methods have been used with considerable success, particularly when the
boundaries of the problem domain are irregular.

1.1.2 Adaptive Finite Element Methods

The basic ideas behind the adaptive finite element methods we are going to use
in this paper are described, for example, in Johnson[11]. Given anorm || - ||, a
tolerance TOL > 0, and a piecewise polynomial finite element discretisation



of a certain degree, we want to design an algorithm for constructing a mesh
T such that

|u—u"||<TOL, (1.1)

where u is the exact solution and u” is the finite element solution on the
mesh 7. There are two important factors to be considered here. We want
our algoritm to be reliable, so that the error u — u” satisfies (1.1) for any
specified tolerance, and we also require it to be efficient, so that we do not
unnecessarily refine the mesh 7. We therefore want to minimise the degrees
of freedom, i.e. nodes in the mesh, at every stage, whilst ensuring that (1.1)
still holds. Adaptive algorithms such as those described by Johnson are based
on a posteriori error estimates of the form

| u—u”||< E(u, h, data), (1.2)

and it is this procedure that is followed in this paper. This provides us
with the following adaptive strategy for error control in the norm || - || to
the tolerance TOL; we want to find a mesh 7, with mesh function A and
corresponding approximate solution u”, such that

E(u, h,data) < TOL, (1.3)

with a minimal number of degrees of freedom. This last criterion means that
we want to satisfy (1.3) with as near equality as possible.

Error estimates of the form (1.2) rely on the representation of the error in
terms of the solution of an adjoint or dual problem. Such estimates are usu-
ally obtained by making use of certain properties of the finite element solution
u”, such as Galerkin orthogonality and interpolation estimates, along with
strong stability estimates derived from the related adjoint problem. This
error representation is fundamental in this approach to adaptivity, as from it
we gain invaluable information about the structure of the global error which
then forms the basis of our adaptive algorithm.

In the next section we state the definitions and notation that will be used
throughout the paper.



1.2 Definitions and Notations

In this section we will give definitions of the spaces and norms to be used in
the analysis, and introduce the notation by which they will be identified. A
general reference for this section is Adams|[1].

1.2.1 [LP-Spaces and Sobolev Spaces

Let 2 be a bounded open subset of R", for n a positive integer. Then,
for 1 < p < oo, L?(Q) will denote the usual Lebesgue space of real-valued
functions with norm || - ||ze(). For p = 2, we will omit the subscript, writing
| - || for || - ||z2(n), and we define the L?(f2) inner product (-,-) by

(u,v) :/Qu(x)v(x)dx,

for u,v € L?(Q). If w is a measurable subset of Q, we denote by (-,)r2(,) the
L? inner product on w. The space-time L? norm is defined as

- 1/2
I o= ([ 1717 d)

The space of m-times continuously differentiable functions from [0, 7] into the
Hilbert space X is denoted C™(0,7T; X). We also introduce the p-weighted
inner product (-,-),, defined as

(u,v)p:/ﬂp(x)u(x)v(x)dx,

where p : @ — IRy, and p is locally integrable on . We then define L2(€)
to be the Hilbert space where the norm

[ {lp= 1/ (u,u),
is finite.
Further, for k£ a non-negative integer, let W*?(Q2) denote the classical Sobolev
space equipped with the norm || - ||y x.»(0) and the semi-norm |- |yyp(q). For

p = 2 we write H*(Q) for W*2(Q). Also, let H¥(Q)) denote the closure of
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the space of infinitely smooth functions with compact support in € in the
norm of H*(2). The dual space of H¥(Q2) will be denoted by H*(Q), with
its corresponding norm given by

L(v
PP ——C
0£vEHE () | v ||Hg;(n)

where L is a continuous functional on HE(Q).

1.2.2 The Space H(div;?)

The space of functions with square integrable divergence is denoted by
H(div; Q) = {u € L*(Q)"|V -u € L*(Q)},
and the associated (graph) norm on H(div; Q) is
la o= (lwl?+ [ V-u |
With the inner product
(u,v)go = (u,v) +(V-u,V-v),

H(div; ©2) becomes a Hilbert space.

We also state here the following Green’s theorem:

Theorem 1.1 Let Q C RY be a bounded Lipschitz domain in RY. Then the
mapping v, : v — v - |aq defined on (D(Q))N can be extended by continuity
to a linear continuous map v, from H(div;Q) onto H=Y2(00). Further-

more the following Green’s theorem holds for functions v € H(div; Q) and
¢ € H\(Q)

(V, V¢) + (V -V, gf)) = (gf), V- n)LZ(ag). (14)

Proof See Monk[16]. O
For a discussion on fractional order spaces, see Adams|[1].
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1.2.3 The Space H(curl; Q)

The curl operator is defined on a three-dimensional vector function v (for
which the derivatives make sense) by

61)3 _ 61)2 8’01 _ 8’03 61)2 _ 61)1) (1 5)
a.’L'Q 6333’ 8.T3 8:51’ 6:51 8%2 ' ‘

Vxv=(

In IR? there are two curl operators, one scalar and one vector. If v is a
2-component vector function, then its scalar curl is given by

_ 81)2 8’1)1
Vxv= 8961 8:52’

which is just the third component of (1.5). For a scalar function ¢, the
corresponding vector curl is given by

L 06 06
VX¢_(8—322’_8—331)5

which is just the first two components of (1.5), but with v; = v, = 0 and
vs = ¢. Corresponding to the space H (div;{2) we define the space of three
dimensional vector functions with square integrable curl by

H(curl;Q) = {v e L*(Q)*: V x v € L*(Q)%},
with the corresponding (graph) norm
IV llae= (I v [+ | V x v [[2)2.

In IR? there are two possible spaces corresponding to the vector and the
scalar curl operators. The simplest is the space of scalar functions with
square integrable vector curl given by

H(curl;Q) = {u € L*(Q) : V x u € L*(Q)?},
with the associated (graph) norm

H(curl;) — 2 )2,
I | rgeimey= (w2 + 11V x w5
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We have that u € H(curl;Q) if and only if u € H'(Q). Indeed the
| | 2(cirt,) norm and the || - [|1(0) norm are exactly the same so that

H(curl; Q) = HY(Q).

The other case is the space of vector functions with square integrable scalar
curl which is defined as

H(curl; Q) ={ue L*(Q)?*:V xu e L*(Q)},
with the associated (graph) norm

|l mewsey= (| u | + || V x u ||*)Y2

We also have a Green’s theorem:

Theorem 1.2 Let 2 be a bounded Lipschitz domain in IR"™, n = 2,3, with the
unit normal n to ). Then

(1) If n = 3, the trace map 7 : v — v X nl|gq which is defined classically
on (D(Q))? can be extended by continuity to a continuous linear map from
H(curl; Q) onto H=2(0). Furthermore the following Green’s theorem holds
for any v € H(curl; Q) and ¢ € H'(Q)?

(Vxv,0) = (v,V x ) = (v x1n,0)200 (1.6)

(#7) If n = 2 and the unit normal n = (ny,n), we define v.x n =
vony — ving. Then the trace map v 1 v — v X n|yQ which is defined classi-
cally on (D(Q))? can be extended by continuity to a continuous linear map,
still called y;, from H(curl;Q) onto H='/2(9Q). Furthermore the following
Green’s theorem holds for any v € H(curl; Q) and ¢ € H(Q)

(Vxv,8) = (v,V x ¢) = (v X 1,) 1250 (1.7)

Proof See Monk[16]. O

In the next section we are going to state Maxwell’s equations, and formulate
the problem which we are going to analyse in the rest of this paper.
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1.3 Problem Formulation

Let Q be a smooth, bounded, simply connected domain in IR® with con-
nected boundary I' and unit outward normal n. Let ¢(x) and p(x) denote,
respectively, the dielectric constant and magnetic permeability of the medium
occupying ). Let o(x) denote the conductivity of the medium. Also let the
constitutive relations D = ¢E and B = pH hold (where D and B are the
electric and magnetic flux densities respectively). Then, if E = E(x,t) and
H = H(x,t) denote, respectively, the electric and magnetic field intensities,
Mazwell’s equations state that

6%—5}+0’E—VXH:J in Q x (0,7) (1.8)
ua—I;I—i-VxE:O in Q x (0,7) (1.9)
V-(E)=p inQx(0,T) (1.10)
V-(uH)=0 inQx(0,7), (1.11)

where J = J(z,t) is a known function specifying the applied current, and p
denotes the charge density. (1.8) is called Ampere’s circuital law, (1.9) Fara-
day’s law, and (1.10) is called Gauss’s law. (1.11) expresses that there are
no such things as isolated magnetic charges. In this paper we shall assume a
perfect conducting boundary condition on €2, so that

nxE=0 onl x(0,7) (1.12)
H-n=0 onIx(0,7). (1.13)

In addition, initial conditions must be specified so that

o

”

e
I

Eo(x) Vx €0 (1.14)
H(x,0) = Hy(x) Vx€Q, (1.15)



where Ey and H; are given functions and Hj satisfies

V-(uHp) =0 inQ and Hp-n=0 onT. (1.16)

The coefficients €, p, and o are L*>(2) functions for which there exist con-
stants €min, €max; Hmins MPmaz; and Omaz such that

0< €min S G(X) S €maz < OO
0 < phmin < p(x) < fhpaz < 00 p a.e. in Q.

0 <o(x) <Opmar <00

Actually, by taking the divergence of (1.9), and using the divergence-free
condition in (1.16), we can write

V- (iH, 4V X B) = (V- (uH)) =0

so that V- (uH) is constant in time. But we have that V-(uHg) = 0, so (1.11)
follows (V - V x E = 0 by well known rules of vector calculus). In a similar
way by taking the divergence of (1.8), and using the charge conservation law

%—FV-(UE—J):O in Q, (1.17)

we get (1.10). In addition, the boundary condition in (1.16), together with
(1.9) and (1.12) implies

H-n=0 onIx(0,7),
which is our boundary condition (1.13).

9



So we have that the problem (1.8)-(1.9), (1.12), and (1.14)-(1.16) is well-
posed in itself, as the other equations can be derived from them by assuming
that p and J are coupled through (1.17).

This is why the Maxwell system is not overdetermined, even though it may
appear so. (1.8)-(1.11) gives 6 unknowns and 8 equations. But, as we have
seen, (1.10) and (1.11) can be derived from (1.8) and (1.9), by using the
charge conservation law.

So we have, by assuming that the charge conservation law holds, that the
well-posed problem we are going to analyse is:

E
eaa—t-l-aE—VxH:J in Q x (0,7) (1.18)
H
,u(aa—t-l-VXE:O in Qx(0,7) (1.19)
nxE=0 onl x(0,7) (1.20)
E(x,0) =Ey(x) Vxe 1.21)
H(x,0) = Hy(x) Vx €, (1.22)

where Ey and H; are given functions and Hj satisfies

V-(pHp) =0 inQ and Hy-n=0 onI. (1.23)

We shall assume the existence of a solution (E, H) to (1.18)-(1.23) such that
E,H e CY0,T;L*(Q)*) N C%0,T; H(curl;Q)). Clearly the above regularity
assumption requires that J € C°(0,7T; L?(Q)3) .

10



Chapter 2

Discretisation in Space and
Time

2.1 A Weak Formulation

Assuming the existence of a solution to (1.18)-(1.23), we obtain a weak formu-
lation as follows. We multiply equation (1.18) by a test function ¢ € L?(2)3
and integrate over €. Similarly, multiplying (1.19) by ¥ € H(curl;$?), in-
tegrating over (), and integrating the curl-term by parts using the Green’s
theorem (1.6) and the boundary condition (1.20), we obtain a weak form for
(1.19). If we let E(t) = E(-,t) and H(¢) = H(-,), we find that the solution
(E,H) € [C*(0,T; L*(2)%) N C°(0, T; H (curl; 2))]? of (1.18)-(1.23) satisfies

(Bud)+ (0B,0)— (VX H,) = (3,0) VoeI’@QF  (21)
(pHy,Y) + (B, V x9) = 0 Vi € H(curl; Q) (2.2)

for 0 < t < T, with the initial conditions

E(0)=E, and H(0) = Hy, (2.3)

where H satisfies (1.23).

Of course for the above variational problem to make sense we need only re-
quire that E € C*(0,T; L*(Q)*)NC°(0, T; L*(Q)?), so the variational problem

11



might be used to prove existence of a weak solution to Maxwell’s equations.
Notice that the boundary condition (1.20) is now imposed weakly via (2.2).
This is one advantage of the weak form given in (2.1)-(2.3) since the bound-
ary condition does not have to be imposed on trial and test spaces. The more
general condition n X E = 7, where v is a tangential surface field, could also
be handled easily by this formulation.

This weak formulation is called the Lee-Madsen formulation. It forms the
basis of the finite element schemes of Monk and Lee-Madsen, see [18] and
[12]. This is also the weak formulation that we are going to use in this paper.
Another possibility is to apply the same Green’s theorem to the curl-term in
(2.1) instead. We then get the so called Nédeélec’s formulation.

2.2 Spatial Discretisation

Let U, C L*(Q)3 and V}, C H (curl; ) be finite-dimensional subspaces of the
given spaces (we shall define U, and V}, in Section 3.3). Then the semidis-
crete Maxwell system we will analyse in this paper is to find (E" H") €
CY(0,T;U) x C*(0,T;V4) such that

(€Ey, ¢") + (0E", ¢") — (V x H",¢") = (J,¢") V¢" €Up (24)
(uHE,9") + (B*, V x p") = 0 vt e Vi, (2.5)

for 0 <t < T, subject to the initial conditions

E"0)=1"E, and H"(0)=II" H,, (2.6)

where I} : L*(Q)* — U, and II? : H(curl;Q2) — Vj, are the weighted (by
€ and p respectively) L?-projections (see Eriksson et al.[5], pp. 338-339) of
the initial data onto the spaces Uy, V}, respectively. The equations (2.4)-(2.6)
are a system of linear ordinary differential equations, and thus existence and
uniqueness of a solution are well known. An a priori analysis of this problem
can be found in Monk[17], with a general convergence theorem on pp. 1614-
1615.

12



2.3 Stability Analysis

Here we are going to prove that the method described in the previous section
is stable in the sense that the solution at time ¢ depends continuously on the
initial data. But we start by presenting some inequalities that will be used
frequently in the following analysis.

2.3.1 Useful Inequalities

If a,b € IR", we denote the standard inner product between a and b by

N
a-b= Z aibi,
=1

and define the Euclidean length of a by |a| = \/a - a.
Then we have the following useful inequalities. The first is the Cauchy-
Schwarz inequality

la-b| < a|[bl,

and the second is the arithmetric geometric mean inequality

o 1
a-b| < Sfa + o[bf

for any ¢ > 0.

These inequalities can also be extended to norms of functions. That is,
if f € L*(Q) and g € L*(Q2), then the Cauchy-Schwarz inequality states that

Lol < I Alllg

13



The arithmetric geometric mean inequality states that

1 )
< - 2 9 2
Dl < o 1T IP+5 1]

for any § > 0.

Gronwall’s inequality states that if

t

vt < C+ [ 2ls)ys) ds,

where y(t) > 0, then

We are also going to use the simple algebraic inequalities

(a+b)* < 2a® + 2b°
2ab < a® + b
(a+b)? < a/? + b2,

where a,b € IR (in the last one a,b > 0), and the more general
(a1 + ... + ap)? < k(a2 + ... +a2),
where ay, ..., ar € IR. This inequality is easily proved by:
(ar 4 ..+ ap)’ =0 a1+ ... +1-a)* = ((1,...,1) - (a1, ..., az))?

< (I(1, s D||(a1y oy ap) )2 = k(a? + ... +a2). O

14



2.3.2 Stability Analysis

In this section we are going to prove the following stability theorem:

Theorem 2.1 Let (E", H") € C1(0,T;U,) x C1(0,T;V4) solve (2.4)-(2.6).
Then the we have the following stability estimate:

I E (@) 112 + 1| 5" (2) II5

< ¢ (IBOE+IEOE[ 136 s). @0

Proof We start by letting ¢ = E" and ¢ = H" in (2.4)-(2.5), and then
we add the two equations together:

(eEM EM) + (0EBM EM) — (V x H" EM) + (pH!, H") + (E", V x H") = (J, E).

That is
1d

1d
(e’éa

[E%) + (BB + (0, 5 [HEP) = (3,E).

But o > 0 which gives

L e P 1 vEE P) < (3,E.

By integrating both sides in time from 0 to ¢, and using Cauchy-Schwarz
inequality, we get

I Ve E" (@) II* + 1| vie H'(2) |
< [ VeE0) I* + I vie H*(0) |I* +2/0 | % Is) I Il Ve E"(s) || ds

< IVERNO) I+ VA EYO) I+ [l Sz T P ds+ [ VE B | ds

IN

Co [ (I Ve EMe) I + | VA HA() |?) ds,

15



where Cp = || Ve E"(0) > + | & H*0) [P+ 5 || 7z I(s) |I* ds.
Now we can use Gronwall’s inequality, with C = Cy and z(t) = 1;

| Ve B @) |2 + 1| Vi B () IP< Co bt

Remark 2.2 This result also implies uniqueness of the solution.

In the next section we shall consider a discrete version of Theorem 2.1; that
is, the stability analysis of the time-discretised scheme.

2.4 Time Discretisation & Stability Analysis

In this section we are going to compare the stability properties and the energy
conservation properties of the Crank-Nicolson method and the Implicit Euler
method, that is the f-method with # = 1/2 and 6 = 1 respectively.

2.4.1 The Crank-Nicolson Method

In the following stability analysis we are going to study our system (2.4)-(2.6)
discretised in time using the Crank-Nicolson method. We are then going to
prove that this method is stable in the sense that the solution at time level
k depends continuously on the initial data. We are also going to show that
this method is energy conservative for o0 = J = 0.

We start by adding the two space-time discretised variational equations with
¢= (Bl +E!)/2and ¢ = (H! | + H")/2 together:

16



At = 2 2 ’ 2
H.  , +H" Eh+1+Eh H! ,-H! H!_ ,+H.
(9 (g, B ) (p e, Ty )
2 2 2 2 ’
This gives
E! ., +E!
(Bl 2+ [ HL ) ) 2B 2
Jmt+1 +Jdm E +ER
= (VB 2+ B ) 4+ (Tt Edm Bt 5

Now we consider two different cases.

First we consider the case when ¢ = J = 0. We then have that the Crank-
Nicholson scheme is energy conservative in the sense that if we define the
energy function £ at time level m as

Em= | En 2+ Hy, 12,
we have that £,.1 =&, = ... = &.

In particular we have that for any &

IELNE + TR = [1EG 117 + 11 Hg |15 - (2.8)

The second case we consider is when ¢ # 0 and J # 0. We then have,
by using the arithmetic mean inequality with § = 2,

m—|—1 + E?n ||2

oy (N B 112+ T HG 5D+
2At

< o (1B I+ 1B 1) +



This gives
At Jm—|—1 + Jm

Emt1 < 5m+7|| 9

13
By summing from m = 0 to m = k — 1 we obtain the following stability
theorem:

Theorem 2.3 Let (E* H") € U, x V}, solve (2.4)-(2.6), discretised in time
by the Crank-Nicolson method. If (ER HY) denotes (E"(t), H"(t)), with
ty = k - At, then the following stability estimate holds:

tkl m1+J
IELIZ+1THL 5 < [ EM0) |17 + [ H(0) 2 + —ZH el

Also, if o = J = 0, we have that our Crank-Nicolson scheme is energy con-
servative, in the sense of (2.8).

2.4.2 The Implicit Euler Method

In this section we are going to derive similar stability estimates as we did in
the previous section for the case of the Crank-Nicolson scheme. We are also
going to show that the Implicit Euler method is not energy conservative for
o =J =0, in contrast with the Crank-Nicolson scheme.

We start, as in the previous section, by adding the two space-time discre-
tised (now by using the Implicit Euler method) variational equations with
o= Em+1 and ¢ = H? m41 together:

Eh +1 Eh Eh h h [—] h
( € N Atm m—|—1) (OEm+1a Em—H) (v X At Em+1)
H: | H! E
+H(p = At JHy )+ (B VX HR ) = (T, En).
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Now consider the first term

( € E}rlﬁ—l—l - E}rln Eh ) — ( € Ezm—l—l - EZ@ EZz—l—l + Ef’n + Egz—l—l Egz )
At T At ’ 2 2
= (T 12 = B 12+ g | B — B

Here the second term is non-negative. Even if we have that 0 = J = 0, we
still have this term. Therefore the Implicit Euler scheme is energy-dissipative,
not energy-conservative as was the case with the Crank-Nicolson scheme.
By using the fact that the second term is non-negative and also using the
arithmetic mean inequality with 6 = 2 we have that

mt(ll B, 6= 1 En (1) + (|| Hy o I = VHE )+ By 17

< (T Epgy) < || Jm+1 ||2 + [ B 117 -

Finally by summing from m = 0 to m = k — 1, we get the following stability
estimate:

Theorem 2.4 Let (Ef, H") € Uy, x V}, solve (2.4)-(2.6), discretised in time
by the Implicit Euler method. If (Ef, H}) denotes (E"(t),H"(t1)), with
ty = k- At, then the following stability estimate holds:

At E
ITERIZ+ 82 < [TEMO0) 12+ | H0) |12 +5 > I |1 (2.10)
m=1
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2.5 Galerkin Orthogonality Properties

Finally, in this chapter we are going to derive the Galerkin orthogonality
properties. These play a key role in the a posteriori error analysis in Chapter
3. We get them by considering the weak formulation (2.1)-(2.2) and the
semidiscrete system (2.4)-(2.5). Since U, C L*(Q2)* and Vj, C H(curl;Q),
the following is true:

(I, ¢") Vo' e Uy  (2.11)
=0 vyt e Vi, (2.12)

(€Et, ¢") + (0B, ¢") — (V x H, ¢"

)
(uH;, y") + (B, V x ")

for 0 < ¢t < T. Therefore by subtracting (2.4) from (2.11), and (2.5) from
(2.12), and denoting E — E" by e, and H — H" by h, we get

(e, +0e—V xh,¢") = 0 Vo" €U, (2.13)
(uhy, ") + (e, V x ") = 0 Vo' € Vi, (2.14)

for0<t<T.

These are the very important Galerkin orthogonality properties. We are
now prepared to start the a posteriori analysis in the next chapter.
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Chapter 3

A Posteriori Error Analysis

In this chapter we will derive an a posterior: error bound for the Maxwell
system (1.18)-(1.23). It is this bound that is used for designing an error
indicator when adapting the mesh.

3.1 Preparation

In this section we are going to present some results that are necessary for
the subsequent error analysis. We shall state some Interpolation Theorems, a
Trace Theorem and, for us the very important, Friedrich’s div-curl inequality.

3.1.1 Interpolation Theorems

We start by defining exactly what we mean by a finite element. We do this
following the definitions of Brenner and Scott[3], pp. 67. We also introduce
the idea of the local interpolant.

Definition 3.1 Let

(i) K CIR" be an open, bounded, polyhedral domain (the element domain),

(ii) P be a finite-dimensional space of functions on K (the shape func-
tions) and
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(iii) N = {N1, Na,...,Ny} be a basis for P’ (the nodal variables).

Then (K, P,N) is called a finite element.

Definition 3.2  Given a finite element (K,P,N), let the set {¢p; : 1 <
i < d} C P be the basis dual to N. If v is a function for which all
N; € N,i = 1,...,d , are defined, then we define the local interpolant

by
IKU = ZNZ(U)U}Z (31)

i=1
Various properties of the (local) interpolant are discussed in Brenner and
Scott[3], pp. 75-79.

Definition 3.3  Let Q be a given domain and let {T"},0 < h < 1, be
a family of subdivisions such that

max{hy : T € T"} < h diam 9,

where hy = diam T. Then the family is said to be nondegenerate if there
exists p > 0 such that, for all T € T" and for all h € (0,1],

diam Br > p hr

where Br s the largest ball contained in T.

With these definitions in mind we give the following Interpolation Theo-
rems.

Theorem 3.4 Let (K,P,N) be a finite element, satisfying
(i) K is star-shaped with respect to some ball,

(i) Ppo1 € P C W™®(K) , where Py is the set of polynomials in n
variables of degree less than or equal to k,
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(iii) N C (CYK))' (so that the nodal variables in N involve derivatives
up to order 1) and

(iv) 1 < p < oo and either m — | — n/p>0 when p>1 or m — 1 — n>0
when p = 1.

Then for 0 < s < m, and v € W™P(K) we have
v — M| wew(iy) < C(diamK)™ % o] wme(i) (3.2)

where C depends on m,n, and K.

Proof See Brenner and Scott[3], pp. 104-105. O

Theorem 3.5 Let {T"},0 < h < 1, be a nondegenerate family of subdivi-
sions of a polyhedral domain Q2 in IR". Let (K,P,N) be a reference element,
satisfying the same conditions (i)-(iv) for some l,m, and p as in Theorem
3.4.

Then for all T € Th, 0 < h < 1, let (K, Pr,N7) be the affine equivalent
element. Then there exists a positive constant C; depending on the reference
element, n,m and p such that, for 0 < s < m,

(2 1A (0 = T") [yesgry)? < Crlvlwrso) (3.3)

TeTh
for all v € W™P(Q), where the left-hand side should be interpreted, in the

case p = 00 as max | 5™ (v — I") |Jwsco(r) -

Proof See Brenner and Scott[3], pp. 104-109. O

In the subsequent analysis, we need to have a bound of the form

_ 1
(> N he' (v = TM) [[f2ry)? < Crlv]mie)-
TeTh

However suitable values of [, m and p cannot be found for [ = 0 and n = 2
or 3, which will satisfy the conditions of Theorem 3.4. An alternative to this
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is outlined in in Brenner and Scott[3], pp. 118-120, where the notion of the
quasi-interpolant is introduced. This allows us to modify Theorem 3.4 and
Theorem 3.5 in the following way so that we get the results we want.

Theorem 3.6 For v e W*?(K),0<k <m and 1 <p < oo,
|| v — j-hU ||W5vP(K)S Chkj‘(_s"l)‘wk,p(l() (34)

for 0 < s < k < m, where hgx = diam K, and " is the quasi-interpolant
defined by relaxing the amount of smoothness required by the function being
approzimated through the use of local projections (see Brenner and Scott/3]).

Proof See Scott and Zhang[19]. O

Theorem 3.7 If all elements’ sets of shape functions contain all polynomials
of degree less than m and T" is nondegenerate then, for v € W*?(Q),0 <
k<mand1l <p< oo,

(2 15" (0 =) [fyeairy)? < Crlvlwra) (3.5)

TeTh

for 0 < s < k < m, where I" is the quasi-interpolant defined by relazing the
amount of smoothness required by the function being approrimated through
the use of local projections (see Brenner and Scott[3]).

Proof See Scott and Zhang[19]. O
Letting s = k and applying the triangle inequality, the following corollary is
derived:

Corollary 3.8 Under the conditions of Theorem 3.7

(3 12 [eniry)? < Crltlwisa. (3.6)

TeTh
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A more detailed discussion of the quasi-interpolant can be found in Siili
and Houston[21].

3.1.2 A Trace Theorem

To be able to bound the error on the boundary, we need the following Trace
Theorem (For a discussion of this and similar results see Brenner and Scott[3],
p. 37):

Theorem 3.9 Suppose that 0 C IR™ has a Lipschitz boundary, and that
p is a real number in the range 1 < p < oo. Then there exists a constant,
Cry, such that

1-1 1
1o Ml < Crr 0 @)l v i@y Yo € WH(Q).  (3.7)

Proof See Brenner and Scott[3], p. 37.

From this theorem we get an important corollary by following Siili and
Wilkins[20], p. 11. That is, we bound || v ||zr(or) by transforming to the
canonical triangle and applying Theorem 3.7. On transforming back again,
we obtain the desired result.

Corollary 3.10 Suppose that {T"}, 0 < h < 1, is a nondegenerate fam-
ily of subdivisions of a domain 2 C IR"™ with Lipschitz boundary, and that p
15 a real number in the range 1 < p < oo. Then there exists a constant, Crpy,
such that

1-1 —
1o lo@n < Cro L0 zoeth (B 110 sy + 1| Vo lise)?, (3.8)

Yo € WhP(Q), VT € {T"}, and Vh € (0,1].
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3.1.3 Friedrichs’ div-curl Inequality

This theorem implies that the div-curl-norm appearing in the right-hand
side of (3.9) is equivalent to the H'-norm. This theorem plays a key role
in the following a posteriori analysis. For the proof we refer to Girault and
Raviart[6], Krizek and Neittaanmaki[8] and Jiang et al.[10].

Theorem 3.11 (Friedrichs’ div-curl inequality). Let Q be a bounded, sim-
ply connected, convex, and open domain with piecewise smooth boundary
I' =T1Uly . Either I'y or I's may be empty, but not both. Also I'yand
[y must have at least one common point. Then every function u of H*(Q2)?
withn-u=0onT1 andn x u=0 on 'y satisfies

luli< Cr(l V-ulg+ IV xulp), (3.9)

where the constant Cr > 0 depends only on ).

3.2 Adjoint Problem

In this section we are going to introduce an adjoint problem related to (1.18)-
(1.23), and then we will derive strong stability estimates for this problem.
The introduction of this adjoint, or dual, problem enables us to find the error
bounds in the norm || - ||g-1(). Given &, 7 € H'(Q)?, consider the following
adjoint problem on € x [0, T:

—(e€)+0E+Vxn = 0 inQ2x(0,7) (3.10)
—(un)e—Vx€& = 0 inQx(0,7), (3.11)
subject to the final conditions

£, T)=¥ and n(-,T)=7 (3.12)
with ¥, T € Hy(Q2), and boundary conditions
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nx¢& = 0 onI x(0,7) (3.13)
n-n = 0 onl x(0,7) (3.14)

3.2.1 Constant Coeflicients

Now for simplicity consider the Adjoint Problem (3.10)-(3.14) when the co-
efficients €, p, 0 are (positive) constants. Our aim is to use the Friedrichs’
div-curl inequality, so we want to bound the curls and divs of £ and 7.

Theorem 3.12 The solution (&,n) of the adjoint problem (8.10)-(3.14) sat-
isfies the following strong stability estimate V't € [0,T):

T
u6||£t||2+2u0/t [P dr+ | VX EP+IV-EP+ IV xnP+[V-n|®

< BT+ VXY P+ [ Vx| +e €00 | V- |2 4] V- P
2
€
+(<|| UV XY+ | VT o (] P+ ||r||2>%) . (1)

where €, and o are (positive) constants.

Proof To prove (3.15) we start by differentiating the first equation with
respect to time to give

_egtt"‘oft‘i'vxnt:_egtt"‘oft_ivxvxé-:oa

and we obtain the reduced problem for &

egtt—aft—F%VXVXg:O (316)
nx§&=0 on I'x(0,7) (3.17)
E-,T)=® on Qx(0,7). (3.18)
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Now multiply (3.16) by & and integrate over 2:

0= (tht—aft‘i‘%v x V Xgagt)

1 1
= €(&u, &) — (&, &) + ;(V x &V x &)+ ;((V X &) x m, &) ()
But ((V x &) x n,&)r2r) = 0 due to the boundary condition (3.17), so
cd
2dt

1 d
2 2 e 2_
&A™ =o &l +2udt“VX§” 0.

We then integrate in time from ¢ to T, to give

pell & 17 +2p0 [ 11617 drs ||V x € P
= e &) P+ 11V x €6 7) |
1
= e || 208, T) + ¥ x 1)) [P+ 1| ¥ x €6, T) P

o VXY P || VXD,

€

So we get a bound for || V x & ||? from

T
pell & P +2u0 [ 11 |2 dr+ |V x € |

= ooV T P+ ||V 2. (3.19)

€

Now we want to derive a bound on || V - £ ||?; we obtain this by taking
the divergence of the first adjoint equation (3.10):
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V- (—€+l+Vxn=—-eV-& +a(V-&=0.
(Note that V -V x n = 0 due to well known rules of vector calculus.)
o
> (V&= Z(V-§)=0.

This is a linear ordinary differential equation with the solution

o

(V-&)(1) = Cee .

We get the constant C, from the final conditions, as follows:

(V-6(,T)=Ce" =V - ¥

= V.-E=e T(V.0).
The bound we are interested in is therefore

|V glP=e 20 v 2. (3.20)
To obtain a bound on || V -7 ||?, we take the divergence of the second
adjoint equation (3.11):
0=V (umn+VxE=puV-m)+V-(VxE=pnuV-mn).

That is,
(V-n)i=0=V-n=V-7T

= [IVnl* = V.Y (3.21)
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To get a bound on || V x 7 ||, we need, as we shall see later, a bound on
| € ||?. To get this; multiply the first adjoint equation (3.10) by &, the second
adjoint equation (3.11) by 7, integrate over Q2 and add them together. This
gives:

0= (=€t + 06+ V xn,&)+ (—pm—V x&n)
= _e(gtaé-) + 0(67 6) + (v X 77:5) - M(ntﬂ?) - (V X 67 77)

ed pd
= 5 1€l +o 1€+ x 2,00y — 5 10 I
__fd e 2 _Hd o
=g €l +ollel” 52 lnl

T
= el €l +20 [ €l dr+plinl®=c | |2+l T |-
With this bound on || £ ||?, we can now deal with || V x n ||

2
1V xnl? = lleg—otl” < (&l + 1ol = (e )"+l o€ 1))

2

€
< ((II U+ VX TP+ | VX ¥ P)E 4o @+ T ||2)%) .

(3.22)

So finally we get, by (3.19),(3.20),(3.21) and (3.22);

T
ue||€t||2+2/w/t &P dr+ | VXENP+V-EP+IVxnlP+]V-n]?
< %||a\II+V><‘I‘||2+||VX\II||2+6_2TU(T_” |V- &2+ V-T|>

2
€ 1 H 1
; (<|| WY HT X ) ol @ ||2)2) (329
This completes the proof of (3.15). O
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3.2.2 Variable Coefficients

Now we turn our attention to the case of variable coefficients, that is when
€ = €(x), p = p(x), and 0 = o(x). The different steps in the proof of the
following theorem are analogous to the case of constant coefficients, though
the analysis is slightly more technical.

Theorem 3.13 The solution (§,n) of the adjoint problem (3.10)-(3.14) sat-
isfies the following strong stability estimate ¥t € [0,T):

IV X+ NV xn*+ V€ +][V-n]|?

T
e o) || & 12 +2(mie ) [ o dr
< (mpe ) (| 0% + VL [+ | Vo T 7)

L (e T - (ew)) |

(min €)*
+ (mgc ) [ e o) I 11 I+ ) e

1
H%wﬁwmmwm+nrmWﬁ
—{—(m}gx N[ oT+V XY | +[| VXY 2-0)

+(In)zcix T E+| T ||Z) + 2(m§mx 6)1/2(m)ELX o)1/
1/2
(1o +9 %X 2+ 11V x TR0 @ 2+ 7 12))
2
o [ | V- (uY) || +(max—= V(| € [ + || T %)
(min 2)? (II (LX) [ +( \F‘ DA 2+ 107 115)

(3.24)

where € = €(x), u = p(x),and o = o(x).
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Proof To prove (3.24) we start by differentiating the first adjoint equation
(3.10) with respect to time:

d
%(_€§t+0§+v xn) =—€eu+0&+V xn

=—ey+0&—Vx (u'(VxE)=0,

and we get the following reduced problem for &:

—e&y + 08—V x (u7H(V % €)) (3.25)
nx&{=0 onl (3.26)
£, T)=. (3.27)

Now we multiply (3.25) by & and integrate over ) to get

0= —(&, &) + (06, &) — (V x (u™H(V x £)), &)
= — (€€, &) + (0€, &) — (W H(V x €),V x &) — (™ H(V x &) x 0, &) p2(ry.-

But (17 (V x &) x n,&)r2r) = 0 by the boundary conditions (3.26), so by
integrating in time from ¢ to 7" we get

T
= &l +2/t I& NG dr+ 11V x & = [1&(,T) €+ 1V x &, T) [l
= e (@€ T)+V xn(,T) [l + | V < EC,T) [
= o+ VXY [0+ Vx|

Hence we obtain the equality

T
l& 2 +2 [ 1612 dr+ 11 7 x € 2
= 0¥+ VXY |2+ VXTI, (3.28)
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which gives

T
(max p) || & || +2(max M)/t 1€ llo dr+ IV x & |
< (max p)([| ¥ +V x Y 22+ | VXY 2). (3.29)

Here, as in the case of constant coefficients, we also need a bound on || £ ||2.
We get it by multiplying the first adjoint equation (3.10) by & and integrat-
ing over 2, and multiplying the second adjoint equation (3.11) by 7 and
integrating over ). Adding them together we get

0= (—€&+0E+V x0,8) + (—un, — V x &)

C1d ) 1d
=L I IV X — 2 |2~V x Eom)
1d ., , 1d

= _55 ” 5 ||e + ” f ||0’ +(77 X n,g)LZ([‘) - 5% || n ||u .

But (7 x n,&) >y = 0, so by integrating in time from ¢ to 7" we have

T
1€l +2/t FElle dr+ln =l ® e+ I (3.30)

We also need a bound on || € ||2, we deduce it by the Fundamental The-
orem of Calculus

€)= 1) - [ &rar

Taking the absolute value of both sides gives
T T
E@I=160) - [ &mdr < 6D+ [ ler)dr
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Then, by applying the inequality (a + b)? < 2a2 + 2b%, we get
T
E@F < 2A6DP+2(] l&(m)ldn*.

Now multiplying both sides by o,

) < 2016(T)P +20( [ lelr)lar)? = 20lE(T)P + 20( [ 1-I6(r)dry
< 2006 +2([ ) ([ ole(r)ar). (3.31)

Which gives (according to Fubini’s theorem)
T
[olerar < 2 [ ole(T)Pr+2T —1) (/ a\gt(T)de) dr:
Q Q t Q

that is

T
el < 201l +(T—t)2/t 1€ 5 dr.

But then (3.28) yields

HEN < 20T +T =)o +V XY [0+ | VXX ).
(3.32)

Now we can get a bound on || V -7 ||* by taking the divergence of the
second adjoint equation (3.11). Namely,

Ve(=(um) =V x§==-V-(up)-V-VxE=0
= (V-(un)=0 = V- (un)=V-(uY);
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that is

|V-(un) |l = [|V-(uX)]. (3.33)
We also have that
| uV-nl = |V-(un)=n-Vu| < [|V-(un)||+|n- V|
1
. < . . .
= [[V-n| < (ain u)(IIV WX) | +1n-Vul) (3.34)
and
1/2 1/2
. — . 2 2 2
| n-Vu | (/Q -Vl dX) < (/Q\n\ V| dX)
1 12 1
= 2. 2|V 2dx> < (max——|V . 3.35
([ 21 V) - (339

So we get by (3.33),(3.34) and (3.35) that

2
1 1
V-nl? §_7<v-,nr +(max— |Vu|)(|| € ||? + r“/2>.
| I (i )? IV - () [ +(mg \/ﬁ‘ DAFE e+ 1 11)
(3.36)
We can also derive a bound on || V x 7 ||%
IV xnl? = [le&—o€l? < lle&l”+ 1l o€ I +2(] e& 1P| o€ )"

< (max €) [| & [I? +(max o) || € [|7 +2(max €)'/ (max o) *(|| & [IZ]] € II2)**.
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Using (3.28) and (3.32), this gives

IV xn|? < (maxe)(|o®+V XY [Er+ || VXY [)
+(max o) (| ' [I? + 1| Y [I7) + 2(max €)'/*(max o)/

1/2
(o +V X2+ | VXX 20 @ 2+ T 2) " (3.37)

To get a bound on the divergence of &, we take the divergence of the first
dual equation (3.10):

V(€ +fE+Vxn)==V-(e&)+V-(c€)+V- -V xn

=—(V-(€))e + V- (08) = =(V - (&) + (V - (o€ *(€€)))
=—(V-(e§))e + (o€ )V - (e§) + V(oe ') - (€6) =0

= (V- () — (e H)V - (£) = V(oe™h) - (€£).

This is a linear ordinary differential equation in V- (e£), with the well known
solution

V() = O~ [ e (V06 - (e6))dr).

t

We get the constant C' from the final conditions (3.12) as follows:

V- (e&)(-,T)=Ce’ T =V - (e®)

1

= = TV (eB)).
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So the complete solution subject to the final conditions is

VY - (65) — eae_lt(e—ae_l

(V- (@)~ [ e Vo) - (e€))dr),

t

Now take the L2-norm of both sides:

19 (@)l = lle ™ TV (0) e [ e " (Tloe ) ()i |

< e T (@) |+ e e (Vo ) - (€)ir |

=1r— ge~1 T —oe 7 -
< e TV () || + | e t/t e V(e h)|e€lar |

= eIV (e®)) || + || 7V (0e \/ e dr ||

< eIV - (e®)) || + || eV (o€ HIII/ e dr ||

< e TV (@) ||+ | e II/ e’ T (e€) || dr

< eIV (ew)) |+ ] e“_lt(V(Ge_ II/ e T Il € |} dr

< e TV - (@) || +(maxe) || e II/ T €N dr

But by (3.30), we have a bound for || £ ||?, so we have

V- ()l < | e‘“_l‘T‘”( (e®)) |
+ (max €) || 7V II/ NN 2+ LI dr
(3.38)
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Now we can write

[evV-&ll = V- (€)=¢&- Vel < [[V-() | + 1€ Vell,

which gives
1
(min €)

X

IV-&ll < V-l +1¢-Vel), (3-39)

and we also have that

le-vel = ([ie-verax) < ([ lelrvepax)”

2 1 2 12 1
= (fyeler- ivelax) < (mpx Ve el (340

So we get, by (3.38),(3.39),(3.40) and (3.30),

1 —oe~ Y (T—
IVl < ——=(le” (V- (e®)) |
(mxln €)
+ (max €) || ¢ )|l / SR+ 1Y) dr
1
+(m,§X\7\V€D(|| @+ ||u)1/2> : (3.41)
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Finally, by (3.29),(3.36),(3.37) and (3.41),

IVXEP+IVxn P +IV-EIF+1V-nl

T
e o) [ & 12 +2(me o) [ 1 [l dr
< (mgx ) (| 0% +V % L 20+ V5 T )
1

2
(min €)

+ (e (V- (@) |

-1 — T oe~ L
+ (max ) || V@) | [ e T @+ ] L) dr

2
1
+(m3x$|vel)(|| TZ+IY ||i)1/2)
+(max )(|| o€ +V x L |20 + || Vx Y [[7-1)

+(max o) (| 2 + || T |2) + 2(max o)/ (max o)

1/2
(o + VXY 2+ | VXX [2-0)( T2+ T 2)

_ max 1 2 2\1/2 ’
e (17 ) 1+ D% 1T 1))
(3.42)

This completes the proof of (3.24). O
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3.3 A Posteriori Error Bound

The work in the last two sections now enables us to present the main results
of this chapter. From now on, we shall suppose that the finite element spaces
U, C L?(Q)% and V}, C H(curl; ) consists of piecewise polynomial functions
of degree k.

Theorem 3.14 The finite element approzimation (E* H") to the problem
(1.18)-(1.28) defined by (2.4)-(2.6), satisfies the following a posteriori error
bound:

1/2
| e(oT) s + | b(-T) [las < G, (Zc(m) L (4

where C, is a computable constant and ((k) is the local error estimator given
by:

(k) = Il bR 202y + | iR 120,702
+ |1 7R (| Z20,75220m)) + I Aisth(0) (|72 + || hcee(0) |72y,

(3.44)

here h, denotes the diameter of the triangle k. R;,Rs, and Rz are the
residuals defined by:

R, = J—¢E! - 0E"+VxH"=¢ce;,+0e—~V xh (3.45)
Ry = —pH!' -V xE"=ph,+V xe (3.46)
R; = nxE" (3.47)
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Proof We start by considering

T d T d
(e, c)ff + (mpum)l§ = [ Zle.c€)dr+ [ Z (b, um)dr
= [ (e ct) + (e, (c€))dr + [ (b pom) + (I, ()

=/ (er, €) + (e a§+V><n)dT+/O (hy, ) + (h, =V x €)dr

\

et,e§ (e,08) + (e, V x n)dr

/ (he, 1m) — (V x 0, €) + (h x 0,€) parydr

The boundary condition (3.13) implies that
(h xn,&)rer = (n x & h)2ry =0,

so we have

T
(e, ¢€)[T + (b, un)|F = /O (ces + 0e — V x h, ) + (uhe, ) + (e, V x 1)dr.

Now we have, by the Galerkin orthogonality properties (2.13)-(2.14), that
T
(e, c©)lf + (b, um)[f = [ (cer + 0 = V x b€ = €")dr

+/OT(,uht, n—n")+(e,V x (n —n"))dr.

Applying (1.6) to (e, V x (n —n")) we get
T
(e, c€)ff + (h,m)l§ = [ (cer+ o~V x b€~ ¢Mdr
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T
+/0 (phe,n—n") + (V x e,n—n") — (n x e,n — 1) p2(rydr.

But (n x e,n — nh)L2(r) =—(nxE"n-— nh)m(r),
and by identifying the residuals defined in (3.45)-3.47) we get
(e c)lf + (b, m)l§ = [ (Ru,€~ €+ (Roym ) + (Ro,m — 1)
=3 [ (R = )+ (bR b 1= ), ) e
+> /T(hnRs, bt (n — ™) 2 (omydT
arcr 0

T
<5 [ 1 AR o | A€~ €) Nzage) dr

T
+X [0 heRe ol B (= 1) llsagey dr

1/2 1/2
T T
+ (/0 > |l hRs ||%2(8n) dT) (/0 b ln—n" ||%2(8n) dT)

okCT okCI’

=A+B+C.

We shall use the Interpolation Theorem derived in Section 3.1.1. First choose
& = 7"¢ and " = I"n; then by using (3.5) with s =0,k =1 and p = 2 we
get for A and B the following bounds:

T ~
AL S [l bR llizgoll B (€ = 24€) lzage) dr
T -1 Fh 2 1/2
< X[ R i) (2 16 = T°€) s 2dr

T
< [ TRl Crll Ve lliay dr

r 2 V2 T 2
Cr </0 Z | hRa ||L2(n) dT) </0 | V€ ||L2(Q) dT)
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1/2
S CI (z || h,iRl ||%2(0,T;L2(n))> \/T mgx || Vf ||L2(n) (348)
T ~
B< Y [ 1 heRa ool b (= Z) 2o dr

T ~
<2 R sy (A5 (1= T () dr

< [ bR g € Il Vo) o
T /2 , 1/2
< ([ SUnRaligar) ([ 1901w ar)
1/2
< (7 <; || hRo ||%2(0,T;L2(n))> VT In?X | Vi ||L2(n) ; (3.49)

For C we first use (3.8), then (3.4) to get

T
[ bt =1 s dr

okCT

T - ~ ~
< [ (S8 1n= Tl 02 =T s + 1900 - 20) o))

T ~ ~
< &, [ (S =2 By +C 1 V0~ 2'0) ] )

K

Then, by using the triangle inequality, the algebraic inequality (a + b)? =
2a” + 2b%, (3.5) as above, and (3.6), we get

< CTT ( 2 |l n —ihﬂ ”%2(@ +CI(|7’|H1(I€) + |ih77|H1(n))2]> dr

< Cr =T 1320 +Cr(nlme+ | T ||H1(n))2]> dr

(0
(S0

< ¢ 2 || = T [Bage +Cr@nlngy + 2 || F ||%{1<n))]) r

< CF,Cr(3+2C1) || V220,720 -
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This gives us the following bound on C

1/2
C < Cry/Cr(3+2CT) (Z | hxRas ||%2(0,T;L2(an))> VT max || Vi [[z20)
(3.50)

Now we want a bound on the magnitude of the inital error terms, i.e.
on |(e(0),€£(0))|, |(h(0),un(0))|. The approximated initial data are the
e- and p-weighted L2-projections of the exact initial data on the finite el-
ement spaces Uy, Vj, respectively. Therefore if (€M, nh) € Uy, x Vi, we have
(ee(0),£"(0)) = 0. If we then choose £"(0) = Z"£(0), and then use Cauchy-
Schwarz inequality and (3.5) we get for |(e(0), €£(0))|

|(€(0), €(0))[ = [(ee(0),£(0))] = |>_(ee(0),£(0

< Zl(ee( ),£(0) — €"(0))s|

< znhee Lol AZHE(0) = Z7€(0)) Ilzoe
1/2 1/2
(z | huce(0) |2 @) (z | B (E(0) - T€(0)) ||%2<n>)

1/2
(z | huee(0 ||L2(n>) Cr 1l V€ Nl - (351)

IN

IN

In the same fashion, for |(h(0), un(0))|,
1/2
(B(0), um(0))] < (z | houh(0) ||%2<,g)) OVl . (352)
Now we have by (3.48)-(3.52) that:
1/2
(e(T), c6(T)) + (BW(T), un(T))| < VT (2 | bR, ||%2<O,T;L2<n») max || V€ [l
1/2 "
+CVT (SR o) s 1 91 e
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1/2
+Crry/Cr(3 + 2C)VT (Z | AR ||%2(0,T;L2(8n))> max | V1 [l 2wy

1/2

1/2
+Cr (X 1 hncelO) o) 11 V€ i 401 (3 1 b)) 1197 i

This gives, by the inequality (a; + ... + a;)? < k(a? + ... + a}), that
|(e(T),5(T)) + (B(T), un(T))[?
<5 (C?T; | AR (7200,7:0200)) max || V¢ [
+C’?T; | heRa [1F20/1502()) max || V7 1720

+C7,(C +2C; +2C,C)TY_ || heRs ||%2(0,T;L2(Bn)) max | Vn ||%2(n)
+CTY_ || hsee(0) [|Zagoll VE 200 +CTY_ I Papth(0) 17200l Vi ||%2(n)> -

But now we know by Friedrichs’ div-curl Inequality that the div-curl-norm
appearing in (3.9) is equivalent to the H'-norm. So by using Friedrichs’ div-
curl Inequality, then using the strong stability estimates derived in Section
3.2, and then bounding the ¥, Y terms in the H'-norm we finally get by the
inequality (a + b)'/? < /2 + b'/2, and by using the fact that both € and p
are bounded from below by constants bigger than zero, that

|(e(T), ®) + (h(T), T)|

< Ci (Z [H heR4 ”%2(0,T;L2(n)) + || heRe ”%2(0,T;L2(n)) + || haRs ||%2(0,T;L2(8n))

K

1/2
1 hstth(0) 1) + | hsee(0) [lzag]) (I llricey + 11X llmrgen) - (3:53)

Here C, is a computable constant. To get the bound on || e(-,7) ||gz-1 +
| h(:,T) |1, we divide through by || ¥ ||g1e) + || T ||#1(0). Since C§°(£2)
is dense in Hj (), the inequality still holds if we take the supremum over all

T, Y € H}(Q). This completes the proof of Theorem 3.14.
O
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Chapter 4

Computational Implementation

In this section we will outline how the a posteriori error estimates derived in
the previous section are implemented into the adaptive algorithm. We recall
from Chapter 1 that we need to design an adaptive algorithm based on our
a posteriori error estimate which is of the form

|| u-— uh ||S g(uh’ h’7 data’)a
and we have the stopping criterion
E(u”, h,data) < TOL. (4.1)

This guarantees reliability, in the sense that if the stopping criterion is satis-
fied, then the error is within the given tolerance. First we are going to show
how to achieve reliability, and how the adaptive algorithm can be designed
so that the mesh parameter h ensures that (4.1) holds. In the interest of
efficiency, we also consider how the algorithm can allow for derefinement to
ensure that (4.1) is satisfied with as near equality as possible. We then go
on to show how the spatial mesh may be adapted at each time level in the
special case of a 2-dimensional mesh consisting of triangles.

4.1 Adaptive Algorithm

For a given tolerance TO L, we want to find a discretisation in space at every

time level such that
|u—u"|<TOL,
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and the mesh 7 is optimal in the sense that we minimise the number of nodes
required to meet the inequality above. In the previous section we showed how
to derive an a posteriori error bound of the form

1/2
e, T) fla-s + [ B T) s < C (Zc(m)) |

where C, is a computable constant and ((x) a local error estimator.
We can also express the bound in the form

|| e(',T) ||H—1 + || h(,T) ||H—1 S K]_A + KQB + K3F —+ K4A + K5E,

( S BB oo )

( | bR ||L2<0TL2<K))

where

( |hR3||L2<0TL23n))
(zmuh e )

1/2
(znhee ||Lz) |

and K; — K5 are computable constants.

Writing
KA + KyB + KsI' + KA + K:E = £(u", h, data),

we now split £(u”, h, data) up into two parts to reflect the different compo-
nents of ((k); let

E(ut, h, data) = E(u, h, data) + & (u”, b, data),
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where

Eo(u, h, data) = K,A + K;E,

and
E(u", h,data) = K;A + K)B + KT,

In a similar manner we split up the tolerance TOL into two parts, an initial
tolerance given by TOL, and a tolerance adhered to once the time stepping
has started, given by TOL+, so that

TOL=TOLy+TOL,

So our desired objective of

E(u", h,data) < TOL

can be achieved provided that
Eo(u, h, data) < TOLy, (4.2)

and
51 (llh, h, data) S TOL1 (43)

Satisfying (4.2) is straightforward as this is relevant only at the start of the
computation, and can be controlled by a suitable choice of background mesh.
We will therefore turn our attention to (4.3), and how it is satisfied.

Now (4.3) can be written as

1/2

1/2
K, (z | bR, ||%2(0,T;L2(n») LK, (z | bR ||%2<0,T;Lz(ﬂ)))

1/2
+K3 (z || hK,R3 ||%2(0,T;L2(3H))> S TOLl,
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and, as

2 M Mieoieery < Nmax || - [zeoprszaery < NTmax [ - (|2,

where N is the (predicted) number of elements in the mesh and 7' the final
time, we see that provided we can ensure that

KiVNT || heRy |12y +K2VNT || R |72,

+K3VNT || hRs |72 < TOLy,

at every stage of the numerical calculations, (4.3) will automatically be sat-
isfied. In practice, as we are only using the error bound as an error indicator,
we flag each triangle for refinement if

EKyWNT || bR 2 .rin200) +E2VNT || iR [[Z20,7,120)

+K3VNT || heRs ||2200.7,02(05> UPPERTOL,

and for derefinement if
KiVNT || heRy ||L2(0,T;L2(n)) +K;VNT || bRy ||%2(0,T;L2(n))

+K3VNT || heRs || 2200702 (06) < LOWERTOL,

where UPPERTOL and LOW ERTOL are set to ensure that the grid mod-
ification is as effective as possible.

4.2 Grid Modification

Here we are going to describe a strategy for refining a 2D-mesh, in the case
of a mesh consisting of triangles.
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4.2.1 The Red-Green Isotropic Refinement Strategy

Once a triangle has been flagged for refinement or derefinement by the process
described above, we need to adapt the grid accordingly so that the desired
error control

| u—u"||<TOL

is satisfied. This could be achieved by using the red-green isotropic refinement
strategy, see Bank[2] and Hempel[7], and the references cited therein. Here,
the user must first specify a (coarse) background mesh upon which any future
refinement will be based. A red refinement corresponds to dividing a certain
triangle (father) into four similar triangles (sons) by connecting the midpoints
of the sides (see Figure 4.1). Green refinement is only temporary and is
used to remove any hanging nodes caused by red refinement (see Figure
4.2). We note that green refinement is only used on elements which have
one hanging node. For elements with two or more hanging nodes a red
refinement is performed. The advantage of this refinement strategy is that
the degradation of the ‘quality’ of the mesh is limited since red refinement is
obviously harmless and green triangles can never be further refined, as the
green refinements are always temporary and are removed at the start of the
next cycle.

Figure 4.1: Red refinement.

Figure 4.2: Green refinement.
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Remark We note that within this mesh modification strategy, elements may
also be removed from the mesh (i.e. derefined) provided that they do not lie
in the original background mesh. Thus, to prevent an overly refined mesh in
regions where the solution is smooth, the background mesh should be chosen
to be suitably coarse.

4.3 The Restriction to 2 Dimensions

We state here some 2D results corresponding to the 3D-case investigated in
Chapter 2 and 3. We also write out the system of algebraic equations result-
ing from the discretisation of the Maxwell system in two space dimensions.

4.3.1 Maxwell’s Equations in 2D

Since we are in two space dimensions, we consider Maxwell’s equations for a
linear isotropic material in which the magnetic field H is z-polarized. That
is, the third component of the electric field E, and the first two components
of the magnetic field H, are zero.

Thus if the unknown electric field vector E is given by E = (E;(x,t), E,(x,1)),
and the unknown scalar magnetic field H is given by H = H,(x,t), then
Maxwell’s equations take the form of the vector equation

OE -
(—:E—FUE—VXH:J in Qx (0,7T) (4.4)
and the scalar equation
OH
,ME+V><E:0 in Qx (0,7), (4.5)

with the boundary condition

nxE=Fmny,— Eyn =0 (4.6)
and initial data

E(x,0) =Ey(x) x€Q (4.7)

H(x,0) = Hy(x) x€Q, (4.8)

where Eq and Hj are given functions. Here x = (z,y) is a point in the plane.
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4.3.2 The Space Discretisation in 2D

If we let the unknowns (E,, E,, H,) € (V")3, where V" is the space of con-
tinuous piecewise linear functions on the triangulation 7", the continuous
piecewise linear ‘hatfuctions’ ¢; = ¢;(z,y), defined by ¢;(z;,y,;) = d;;, for
j =1,..,N (N is the number of nodes), form a basis for V. So the finite
element approximation of (E,, E,, H,) can be written as

M,y 1) = SV (Di(z, )

i=1

E}(z,y,t) ZV (t)pi(z,y)

H}(z,y,t) ZVH )bi(,y).

By choosing the hat functions ¢;(z, y) to be the test functions, we can further
write the 2D-versions of the equations (2.4)-(2.5) as the matrix equations

AVE: 4 BVPe 4 OV H: = F! (4.9)
AVPy 4+ BVE 4 pyH: = F? (4.10)
EVH: — DVE — OVEe = F3, (4.11)
where
Azg = (e(ﬁia ¢])Q
B;; = (U¢za¢J)Q
09;
Cij = (5 a%)n

D (a(bZ ¢J)Q

E (H¢u¢;)9;

and

F (Jza ¢Z)Q



4.3.3 The Time Discretisation in 2D Using the 6-Method

We have seen in the previous section that a discretisation in space leads to
an initial value problem involving a system of ordinary differential equations
in time, of the form given by (4.9)-(4.11).

We then discretise (4.9)-(4.11) in time by using the #-method, so that for
some 6 € [0, 1]

VB _ Y Ee
A(’L*Ait") + 0BV,E + (1 = 0)V,P» + 0C VA
+(1-0)CV,= =0F!,  + (1 - 0)F, (4.12)
V 1 VE FE
A("*T) + 0BV, + (1 - 0)V.Ey + 9DV,H
+(1—0) DV, = 0F>, + (1 —0)F? (4.13)
V 1 VHZ E
(“7?5”) — 60DV, !y — (1 —0)DV,Fv —0CV,Ex,

—(1-0)CVE =F? (4.14)

Here we recall that 8§ = 0 gives the explicit Euler’s method, # = 1 gives the
implicit Euler’s method, and § = 1/2 gives the Crank-Nicolson method. It
can be shown that the #-method is unconditionally stable for % <fh<1. We
have shown this for the cases § = 1/2 and § = 1 in Chapter 2.3. It is also
well known that the truncation error of the method is O(At) for all values
of 6 € [0,1] except @ = 1/2, when it is O(At?).

When we start to adapt the grid, we find that a grid at a certain time
level may well be different to that at the previous time level, and we need a
way of transferring information from one level to the next, so that we can ap-
proximate the numerical solution at a point on the previous grid which may
not have been a node. This can be done in several ways, including straight-
forward interpolation. Another way is to use the idea of the L2-projection
(see Eriksson et al.[5], pp. 338-339). Denoted by II,1 : V2(Q) — VI ,(Q),
this is given by

(M 1Un — Uny1,v) Yo € V), (4.15)
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where u,, and u,, are elements of the trial spaces at time levels n and n+ 1
respectively, and V" (Q) denotes the test and trial space V"(§2) at time t = ¢,.

Then (4.12)-(4.14) takes the form of the following algebraic system of equa-
tions;

T, .V, P
A(Vn—H Atn+1‘/n

)+ 0BV,"= + (1 — O)IL, 1V, + 0CV, A
+(1 = 0)Cl, 1V, = 0F) , + (1 — 0)[1, 1 F,,  (4.16)
E

Y E
Vn—l—l - Hn+1Vn Y

E,
AL ) + 0BV, Y + (1 — 0)[L,1 V.7 + 0DV,

+(1 = 0)DI, 1 V,J> = 0F  + (1 — ), 1 F2  (4.17)

Vn—|—1 Hn+ 1 VnHz
At

) —0DV,7" — (1 — 6) DIL,,, Vv — 9CV,P2)
—(1 - 0)CIL, 1 VP> = F?,  (4.18)

these can now be solved for the unknowns (V-7 Vn+1, V).
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Chapter 5

Conclusions

We have in this paper described the idea of adaptive finite element methods,
following the general approach developed by C. Johnson and his co-workers
(see [11] for example). We have also applied the techniques to the time-
dependent Maxwell system of electromagnetics.

After a brief introduction we started by formulating the problem in Section
1.3. By using the weak formulation of Lee-Madsen[12] and Monk[18] in
Section 2.1, for which we have an a priori convergence theorem derived by
Monk[17], we applied a standard Galerkin discretisation to the problem in
Section 2.2. We showed that our method is stable in Sections 2.3-2.4, and
concluded Chapter 2 by deriving the Galerkin orthogonality properties in
Section 2.5.

In Section 3.1 we stated some known results from approximation theory, such
as some Interpolation Theorems and a Trace Theorem. We also presented the
Friedrich div-curl Inequality, which states that the div-curl-norm appearing
in (3.9) is equivalent to the H'-norm. We further derived strong stability
estimates for the adjoint problem in Section 3.2, and in Section 3.3 we proved
a posteriori error estimates in the H !'-norm.

In Section 4.1 we showed how this a posteriori error bound could be used
in the adaptive algorithm to enable us to adapt the grid. We also gave an
example of a grid refinement strategy for the special case of a 2-dimensional
mesh consisting of triangles in Section 4.2. Finally in Section 4.3 we wrote
out explicitly the algebraic system of equations (4.16)-(4.18) to be solved in
the 2-dimensional case.
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