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Abstract

In Structural Optimization one typically seeks a minima of a given
objective functional Z which depends not only on the design parameters
but also on the solution of a related equation of state of the form of a
PDE. This makes the derivative of 7 difficult to calculate. In this thesis
we study an adjoint methodology for solving optimization problems of
this kind.

The main idea of this adjoint methodology is to introduce a La-
grangian functional £ such that £ has a stationary point where the
objective functional 7 has a minima.

We can use this £ for two different methods for finding a minima
for Z. First we may use a steepest descent method where we use L to
calculate the derivative of 7 in an efficient way. Secondly we may use
Newton’s method for finding stationary points for £ directly.

We also study two test problems, one 1D and one 2D. For the 1D
test problem the methodology works fine, but for the 2D test problem
we encounter oscillating behavior in the design. We try some possible
explanations and conclude that the most likely one is that the minima
for the optimization problem is not well-defined.

keywords: structural optimization, FEM, optimal shape, shape deriva-
tive, steepest descent, Newton’s method.
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1 Introduction

1.1 Objective

The purpose of this work is to study the performance of some natural com-
puter based optimization methods for some basic engineering optimal design
problems. The starting point for the work has been a draft article by Eriks-
son and Larson [6] in which duality arguments play a central role and are
used both for the computation of the directions of steepest ascent/descent
and for error analysis.

1.2 Background

In traditional optimal design, the engineer had to determine the optimization
steps by pure intuition or by fairly crude estimates based on calculations by
hand on simplified models of the situation at hand, and the resulting quality
of the design had to be evaluated by "real life" tests. For example, in the
automobile industry one had to build large numbers of cars just to destroy
them in full scale crash tests.

With the introduction of modern computers much of the test phase can
now be replaced by computer based simulations and recently Volvo/Ford
released a new car model where essentially all crash tests in the development
phase were done in computer simulations.

The next step is now to seek to involve the computer also in the very
design process, and not only as a CAD tool or a test bench, but also to
have the computer find out the path to an improved design, that is, to have
the computer find the optimal design in an iterative process of computing
the directions to go in each design step, determine the step size and then
evaluate the result, and repeat to finally stop when the design criteria has
been reached.

1.3 Structural Optimization

The aim of Structural Optimization is to find a design of a mechanical struc-
ture which is optimal from a certain (given) point of view. The most common
may be to seek to minimize the deformation of the structure for a given load
i.e. maximize the stiffness. Other objectives can be to minimize stresses or
to control certain dynamical characteristics such as eigenmodes and eigen-
frequencies.

Structural optimization can be divided into three fields, size-, shape-
and topology optimization. In size optimization the control p describes a
parameter in the governing state equation. The 1D test problem below is
an example of this, where the control parameter corresponds to the thick-
ness of a one-dimensional structure. In shape optimization the parameter
describes the geometry of the domain. The 2D test problem below, where



we seek the optimal design of a console is an example of this. In topology
optimization the control, describes the existence/non-existence of material,
which may result in holes or truss structures. We do not study topology op-
timization further, but we point out some connections between size-, shape-
and topology optimization where suitable.

Throughout this thesis the state problems solved are second order partial
differential equations (PDE). The Finite Element Method (FEM) is used for
solving these.

1.4 Method

Two test problems have been formulated and studied. The solutions to
these problems are intuitively known by forehand which gives some idea
whether the solutions found are reasonable or not. During the work with
these test problems the underlying methodology has become more clear and
understandable.

1.5 Delimitations

The mathematical theory is not studied in detail because it requires a much
deeper understanding in the theory for PDE. Studies of more sophisticated
optimization algorithms are not done here either. No a priori or a posteriori
error estimations done. In order to the text easier to read, most derivations
are done in a discrete setting.

1.6 Disposition

This thesis is organized as follows, first we present a general methodology in
an abstract framework in section 2, then in section 3 we apply the method-
ology to a 1D test problem, followed by a 2D test problem in section 4 where
we encounter some problems which we try to explain. Then in section 5
follows some remarks on a matlab implementation and finally we have a
general discussion and other possible applications in section 6 and future
work in section 7.



2 Abstract formulation

The first three subsections follow in general Eriksson and Larson [6].

2.1 Problem formulation

The abstract form of the optimization problem reads: Find a control p € O
such that

I(p,u(p)) = {I%igf(q,U(Q)) (1)

where Z is a given objective functional, O is the set of admissible controls
and u = u(p) € V is the solution of the state equation

a(p;u,v) = l(p;v) Yo e V. (2)

Here and in applications below the state equation is given in weak variational
form with V' a suitable linear test space and [(p; -) and a(p; -, -) bounded linear
and bilinear forms on V for p € O with a(p;-,-) symmetric and positive
definite so that the state u is uniquely determined. For a solution p to
the minimization problem (1) in the interior of O a necessary (first order)
condition is

dpZ(p,u(p)) =0 3)

where d;, denotes a differentiation with respect to p.
More generally, for a local minima, not necessarily in the interior of O,
the necessary (first order) condition reads

(dpZ(p,u(p)),q—p) >0 Vg € O.

Here (w,q) denotes the scalar product-like paring of ¢ € O C Q and w is
the dual of @, where Q is a suitable linear space of controls. For p in the
interior of @ and dp = ¢ — p may represent all directions in @ so that in fact

(dpZ(p,u(p)),dp) =0

for all ép € Q, which is the same as (3).

2.2 The continuous problem

Direct differentiation of Z(p,u(p)) gives

(de(p, U(p)), 6])) = (OPI(pa u)a 5]7) + <auI(pa ’U,), 6“’)

where v = u(p) and in the latter term du = dpu dp and (:,-) denotes the du-
ality paring of V and its dual. Thus for the total rate of change of Z(p, u(p))
with respect to p, we need to find, in particular, the rate of change dyu



of u with respect to p. In principal, one way to do this is through direct
differentiation of the state equation (2) with respect to p which gives

Opa(p; u(p),v) + a(p; dpu,v) = Opl(p;v) Vv e V. (4)

However, to find dpu this way, involves first finding v = u(p) by solving
the state equation (2) and then solving (4) for d,u by solving a correspond-
ing problem for each (infinitesimal) change of p. If p is discrete, for in-
stance a vector, this is almost the same thing as numerically calculating
(Z(p+ hei,u(p+he;)) —Z(p,u(p)))/h, where e; = (0,0,...,1,0,...,0), mea-
suring the rate of change with respect to for each component of this vector
individually. Since this (in computing time) is a very expensive way of cal-
culating the derivative of Z(p,u(p)) we consider an alternative procedure as
follows. We first introduce the Lagrangian £

E(paua >‘) = I(pau) + a(p;ua A) - l(p; A)

now considering p,u, A as independent variables. Taking the derivative of £
in the direction {dp, du, dA} gives

(d£7 {51)’ 6“’7 6)‘}> = <8p‘ca (5])) + <6u£a 6“’) + <a)\£7 6A>

At a stationary point {p, u, A} of £, we have that (dL, {dp, du, dA}) is zero
for all possible {ép, du, dA}. In particular this requires that

(O\L,0N) = a(p;u,0X) —U(p;0A) =0 VoA eV

here it was used that (Oxa(p;u,A),0A) = a(p;u,dX) and (O\l(p; A), ) =
I(p;6X). So L is stationary in A if and only if u solves the state equation.
Similarly the Lagrangian is stationary in u if and only if A solves the adjoint
equation

(OuL, 0u) = a(p; du, A) + (O,Z,0u) =0 YoueV (5)

Finally, it follows from the just established facts, a(p; u, dA) —I(p; 6A) =0
and a(p; 0u, \) + (O, Z, du) = 0, that



=0
A
- ™~

(dpZ(p,u(p)),dp) = (dpZ(p,u),dp)+ (dp(alp;u,) —I(p;N)),dp)
= (0pZ(p,u),0p) + (0uZ(p,u), du) + (Opa(p; u, A), 6p)
+(Oua(p; u, A), 6u) + (Ora(p;u, A), dA)
_<8Pl(p; )\), 5p> - <8,\l(p; )\)a 6A>
=(0p L,0p)

-~

(0,Z(p, u) + Bya(p; u, \) — Byl (p; \), 5p)
+{Oua(p; u, X) + 0uL(p, u), du)

J

{(-,-) is linear} =

— (84 L,5u)=0
+ (Ora(p;u, \) — Oxl(p; A), 0A)

~ S

= (dL,{dp du 6A})

which shows two things, first that a stationary point in Z with respect to p
is a stationary point in £ with respect to {p, u, A} if and only if the state
and dual equations (2) and (5) are satisfied. The second thing shown is that

(dpZ(p,u(p)), 0p) = (OpZ(p,u) + Opa(p;u, A) — Fpl(p; ), Ip)

and since this holds for all dp € O the derivative of the objective functional
can be computed using the identity

dpZ(p,u(p)) = 0pZ(p,u) + Opa(p;u,A) — Gpl(p; A)

where u = u(p) and A = A(p) are determined by (2) and (5) respectively.

2.3 Discrete formulation

Introducing the discretizations for the state, dual and control up, =), U;¢;,
A = Y; Niwi and pp, = >, Pya;, where {¢;} is a basis for the discrete state
space VP C V, with state and dual space for simplicity chosen to be the
same and {4);} is a basis for the discrete control space O". We may consider
discretizing the state equation and the dual equation as follows

a(pn;up,v) = l(pp;v) VYo e V"

a(pn; M, v) + (BuZ(ph,up),v) =0 Yo e VR

The derivative of the objective functional Z(pp, up(pr)) becomes

dp,Z(pn,un) = Op,L(ph,un) + Op,a(pn; un, An) — Op,l(ph; An)- (6)



2.4 Steepest descent

To minimize the objective functional Z(p,u(p)) the steepest descent algo-
rithm may be used. Given a point pﬁ in O", a better point pfl'"l is found
by taking a step in direction of the negative derivative of Z(pp,up(pp))-
The derivative of the objective functional is calculated using the formula (6)
above. Since the state u, and the dual A, has to be calculated first, the

resulting algorithm reads:

1. solve the state equation a(pp;up,v) = I(pp;v) Yo € VP for uy,.
2. solve the dual equation a(py; A, v) + (0uZ,v) = 0 Vv € V" for \p.

3. determine the search direction of steepest descent —dp, Z(pp, up) of Z by
calculating dp,Z(pp, un) = Op, Z(ph,un) + Op;a(pPn; wn, An) — Op;L(Ph; An)

4. determine a step length a using a suitable line search algorithm.

5. update p§+1 = pfl — adp,Z(ph,un)

6. repeat until convergence.

2.5 Newton’s method

Since a stationary point pj for the objective functional Z(pp,un(pp)), by
introducing a suitable dual state A\, as above, corresponds to a stationary
Lagrangian

(dL, {0p, du, 6A}) =0

for all {dp, du, dA}, we may alternatively seek a minimizer p, by seeking
{pn un An} such that
d‘c(pha Up, A/‘L) = 0.

To find pj, (together with the corresponding uy, and Ap) this way, it is natural
to apply a Newton-type method by iterating with the Newton-step s**1 (k
being the iteration index) given by

d2L(pk, uk, XYL = —dL(pf, uf, NF).

Since here the residual dC(pf,uf,\F) in general is nonzero during the it-
erations, the state and dual equations are not satisfied (i.e. an infeasible
solution) before the method has converged. We may expand the residual by
writing it in component form as

op,L Op,Z + Op,a(pn; un, An) — Op,L(ph; An)
dL(ph,un, A\n) = | Oy, L | = a(pn; i, An) + (O0u, L, i)
on, L a(pp; un, i) — L(ph; @)



The Hessian d?L(pp,up, An) is the second derivative of the Lagrangian. As
usual, second derivatives may be taken in any order, that is 0,, L = 0,pL is
true for all combinations of the derivatives (see for example Laumen [10]).
The second derivatives may be collected in a block-symmetric matrix.

612’1,131"6 8123@‘an£ 61231,/\]'[’
d2£(ph’uh’)‘h) = 8[2]i,Pj£ 8[2]i,Uj’C BIZJi,A]"C
8/2\i,F’J'£ B/Q\ianL a/%iaAj'C

Here, by our assumption that a(p;u,v) is linear in u and v, so that in par-
ticular

Ou,a(ph; un,v) = Ou,alpr; Y Uiz, v) = 0u, > Uja(pr; @5, v) = alpr; @i, v),
J J

and by the symmetry of a(pp;-,-) we have that B?JZ,,AJL = a(pp; pi, p;) =

612\i,U]-£ while 6123¢,Uj£ = 8123i’UjI + Op,a(pp; 05, An) = 8(2]j,P1,£ also 81231-,A]-£ =

apia(ph;uh, (pj) - apil(ph; (Pj) = B%j,Piﬁ and 612\1,,/\],[, = 0.
The algorithm when using a Newton-type method is (with current state,
8 = {pf, uf, A\F}T and Newton-step s* = {dpk, duf, oAF}T)

1. Choose a starting state r%. One such choice may be r° such that it

solves the state and the dual equations (has primal and dual feasibility).
2. Determine the residual d(pf,uf, \F) and the Hessian d?L(pf, uf, \F)

3. Calculate the Newton-step by solving
dzﬁ(pﬁ, uﬁa Alﬁ,)sk—i—l = _dﬁ(pz’ uﬁa )‘ﬁ)

4. Update the current state rk¥+1 = pk 4 gh+1

5. Repeat from (2) until convergence.



3 1D test problem: Hanging bar

As a first concrete example of an optimization problem of the above form
we consider a hanging bar (see figure 1) that is rigidly attached at the upper
end z = 0 and a force F' is applied at the lower (free) end z = L. The bar
has a varying cross-section with the area p(z), and a density p which due to
the gravity g gives a distributed load ppg along the z-axis. The objective is
to minimize the displacement u(L) at the free end, for a given total volume
Ayor of the bar.

o u(L)

Figure 1: The force F' applied at z = L

The mathematical formulation of the problem reads

min u(L)
P

d du

2| EpZZ —
da:( pda:) tpp=0
du
dx

subject to

=F
r=L

u(0) =0, Ep

L
/0 p(@)de = Ay pl) >0

where p is the specific density (p = pg, p is the usual density and g is the
gravity constant). The weak form of the state equation reads a(p;u,v) =
l(p;v) Vv € V with the bilinear form

du dv

L
uv) = | Eptt&lyq
a(p; u,v) /0 po——du

8



and the linear form

L
l(p;v) :/0 ppvdx + Fu(L)

To enforce the side conditions on p a penalty approach may be used. This
means adding a penalty functional S(p) to the objective functional. If no
penalization is used, the penalty functional is of course zero. The objective
functional used below thus reads

Z(p,u(p)) = u(L) + S(p)

In order to calculate the total derivative of Z(p, u(p)) with respect to p, the
dual methodology outlined above is used. The Lagrangian

ﬁ(pa u, >‘) = I(pa u) + a’(p; u, A) - l(p; )‘)

with the definitions above reads

L dud\

L
=u(L Ep——— _ _
L(p,u, ) = u(L) + S(p) + /0 PP /0 pphdz — FA(L)

Setting the A-derivative of the Lagrangian to zero gives the state equation
a(p;u,v) = l(p;v) Yv €V, here
L L
du d
/ Ep—u—vdxz/ ppvdx + Fuv(L) Yv eV, (7)
0 T 0

and setting the u-derivative zero gives the dual equation
a(p;v, ) = —(0,Z,v) Vv € V, here with Z(p, u(p)) = u(L) + S(p),

L dv dA v
EpP el gy = — L)dz = —v(L 1%
/0 P dz /0 vé(L) dz v(L) Vv e, (8)

where ¢ is the Dirac delta function The desired total p-derivative of the
objective functional was

dpZ(p,u(p)) = 0pZ(p,u) + Gpa(p;u, A) — Opl(p; A). 9)

Using discrete solutions of the state and dual equations up = ), Uspi, Ay =
> i Aip; and the discretized control p, = >, Pi4); gives the terms in the
discrete version of (9)

0p,Z(pn,un) = 0p,S(pn),
L duy, dX
Onalpiun ) = [ PG b
L
Op, 1 (pn; An) Z/ pYip dz,
0

9



and the total derivative of the objective functional reads

duy, dA L
dp,T = 9p.S(pn) / Byt Uh hd / i, dz.
0

Applying the steepest descent method to this problem we thus have to, in
each step, first solve the discrete counterpart of (7) and (8) for uj and Ap,
then compute the gradient dp,7 and minimize in the direction of —dp,Z using
a line search. Numerical results using this procedure are presented below.

3.1 Newton’s method

In the Lagrangian p,u, A are independent. The penalty functional S(p) de-
pends only on p. The discrete Lagrangian reads

L duh d/\h L
L(Pn, un, M) = up(L)+S(pr) + Ephd—d—d — [ pppApdz—F (L)
0 0
The Newton residual was
op, L
dL(ph, un, An) = | Oy, L
on L

Taking first derivatives of the Lagrangian we get the components of the
Newton residual

L L
dup, d)
apiﬁzapiS(th/ Eapid—h—hda:—/ i, d,
0 X d.’L' 0

v, L= / d% d/\hd + (L),

L ] L
o\ L = Ephd— dz — / pprpi dz — Fo;(L).
0 X de’ 0
The Hessian in matrix format was

812’;',Pjﬁ 812’;',Uj£ al%i,/\jﬁ
d2£(ph,Uh,Ah) = 812]“13]£ 8[2]¢,U'E a?ﬁ;,/\jﬁ
2 2

and the components for this test problem are (remember the symmetry)
aIZDi,PjE = B%inS(ph)7

dp;

L
2 — .
Op, ;£ _/0 By dz dz

10



duy, d L
b0, L = /sz L gy —/ oo da,
0

8U'U‘£:8A-A-£:O’
dy; d
On, L= /E ] "’Jd.

The Newton-step skt! = {5pk+1 5uk+1, /\I,CLH}T is acquired by solving the
linear system

d2L(pk, uk, XYL = —dL(pf, uf, \F)
ho Up, h» “h

3.2 Dealing with side conditions; penalty approach

There are two side conditions on p(z) to consider

L
/ p(x)dz = Ayy and p(z) >0
0

The penalty for deviating from the total volume condition may be chosen as

Si(p) =B (/OL p(z)dz — Atot)

where 3 is a penalty parameter. With a discrete version pp(z) = >, P;i; of
p the derivatives are

L L
Op, 51 (pn) = 28 /0 Vi do ( /0 ph(z) dz — Atot) ,

L L
0%,p,51(pn) = 28 /0 i dz /0 W, da.

In order to prevent p(z) to get too close to zero, and eventually become
negative and thus probably interrupt the optimization algorithm, one could
try adding a penalty of the form

Lo
Sg(p)ze/ LI
0

p(z)

2

where € is another penalty parameter. After discretization the derivatives
are

L )
6Pi52(ph) = _6/0 (p’:(pﬁ dz,

2 = 2¢ "l
aPinSQ(ph)_Z/O (pp(z))3

This penalty term grows rapidly close to p = 0, so the step in the optimiza-
tion algorithm must be small close to p = 0. In the test problem under

dz.

11



consideration small values of p leads to large deformations, resulting in large
displacements at the free end, so in general p will stay positive anyway.
Therefore the constraint can be omitted in this case (i.e. € = 0).

When using more than one penalty functionals the total penalty func-
tional is

S(p) = Si(p) + Sa(p)-

3.3 Dealing with side conditions; strongly imposed via a pro-
jected gradient

The side conditions for the total volume and positive values of the control
may be enforced by using a projection-like technique. Below, when we refer
to "projected gradient" this is what we mean: Let §P; be the desired change
in each nodal value P; and add to this change and a constant a, which is the
same for all control nodes (). The value of a is chosen such that the total
volume is Aiot, that is

L
) (Pi+6Pi+a)/ i do = Avor,
0

(3

Solving for a gives

o= Aot — > ;(Pi + 65;) foL ¥ dz
Zi foL i dz

The new nodal values of pp are given by PZ-IC+1 = Pf + 0F; 4+ a. If this
results in negative values for some PZ-kH, these are set to a minimal allowed
value and a new a is calculated, but this time only for the remaining Pf“.
By enforcing the side conditions this way, the penalty term S(pp) may be
omitted. This technique can be viewed as a penalty approach with infinitely
large penalty parameters without the numerical problems involved with such
an approach.

3.4 Line search

In the steepest descent algorithm the step length « is determined by a line
search. The line search used here is very simple. First a step length of
one is tested. The objective functional is calculated, and if the value of the
objective functional improves the step is accepted. If it is not, then the step
length halved is successively divided by two until a descent step is found. If
the step length has to be halved 50 times, it is assumed that line search has
converged.

12



3.5 Results for the 1D test problem

For simplicity we have considered piecewise constant (discontinuous) control
pn = »_; Pitp; on a uniform partition of [0,L| along the one-dimensional
bar under consideration with 15 elements, while the state and the dual are
discretized with piecewise linear basis functions. Figure 2 below shows the
converged optimal piecewise constant control (cross section area) pp as a
function of z along the bar with L = 1, p =1, F = 0.2, E = 1 and
B = 10000. Here we used Newton’s method, but also the Steepest descent
method perform as desired in this case. The optimal design pj is concave
which seems reasonable under the given conditions. Note that for p = 0 one
expects the optimal distribution of volume to be with a uniform p; = 1 cross
area, while with F' = 0 the optimal solution degenerate by putting all the
mass at x = 0.

2.2

0.8

0.6

0.4

0.2 I I I I I I I I I

Figure 2: Optimal py(z) (Newton’s method)

3.5.1 Steepest descent

We start with a bar with uniform cross-section area, P; = 1. In each iteration
the computing time, number of line search steps (L S step), change in the
displacement, change in the control F; and the displacement at the end is
calculated. The results are found in table 1. For comparison, machine, =
2.2204F — 16. The method converges, but rather slowly because the changes
in the control P; and the end displacement U(L) decrease slowly. These
should be close to zero when finished. The slow convergence depends partly

13



Iter | Time | L Sstep | AU(L) [|AFR| U(L)
1 1.468 1 -1.308E-01 | 1.394E+4-00 | 0.5692
2 4.403 1 -7.283E-03 | 3.429E-01 | 0.5619
3 6.755 2 -1.235E-03 | 1.075E-01 | 0.5607
4 8.830 2 -6.369E-04 | 7.150E-02 | 0.5601
) 10.918 2 -3.594E-04 | 5.686E-02 | 0.5597
6 12.992 2 -2.212E-04 | 5.254E-02 | 0.5595
7 15.229 3 -1.964E-04 | 3.461E-02 | 0.5593
8 17.276 2 -1.315E-04 | 4.172E-02 | 0.5592
9 19.380 3 -1.014E-04 | 2.565E-02 | 0.5591
10 | 21.460 2 -6.227E-05 | 2.325E-02 | 0.5590
11 23.528 2 -4.322E-05 | 2.322E-02 | 0.5590
12 | 25.669 3 -3.984E-05 | 1.667E-02 | 0.5589
13 | 27.753 2 -2.767E-05 | 1.626E-02 | 0.5589
14 | 29.778 2 -1.807E-05 | 1.693E-02 | 0.5589
15 | 31.937 3 -2.179E-05 | 1.240E-02 | 0.5588
84 | 176.271 1 -1.366E-14 | 6.359E-07 | 0.5588
85 | 178.543 4 -1.410E-14 | 1.462E-07 | 0.5588
86 | 181.760 11 0.000E-+00 | 5.021E-10 | 0.5588

Table 1: Results for Steepest descent, projected gradient

on the choice of line search method, because it finds a step length that
decreases the objective functional instead of a step length that minimizes
the objective functional.

3.5.2 Newton’s method

Again we start with uniform thickness (P; = 1). Since the state and the
dual equations are not solved explicitly in each iteration, the state solution
U™ corresponding to the current p is calculated for comparison, so that one
can see how far the current state is from a feasible one. The other quantities
measured are the same as in the steepest descent method. The results are
collected in table 2. Note that the changes in control and displacement at
the lower end decreases almost quadratically from iteration 2 to iteration 7.
Quadratic convergence indicates that Newton’s method works properly and
that the minima is well-defined.

3.6 Conclusion 1D test problem

This is a quite straightforward problem with a quite well-defined minima.
Both steepest descent and Newton’s method works fine, but compared to
steepest descent Newton’s method is faster both in time and in number of

14



Iter | Time | AU(L) |AP]] lop LNl | [IU-U"]| | UL)
1 | 1.052 | -2.810E-01 | 2.087E+00 | 1.574E-01 | 1.305E+00 | 0.4190
2 | 4.163 | 1.062E-01 | 1.74TE+00 | 4.904E-02 | 2.039E-01 | 0.5252
3 | 5.901 | 3.274E-02 | 6.061E-01 | 1.689E-02 | 1.058E-01 | 0.5579
4 | 7484 | 8.282E-04 | 4.422E-02 | 7.203E-04 | 6.240E-03 | 0.5588
5 | 9.237 | -4.366E-06 | 2.225E-04 | 1.522E-05 | 2.142E-05 | 0.5588
6 |10.830 | 1.130E-09 | 2.113E-08 | 1.656E-09 | 1.381E-09 | 0.5588
7 | 12.464 | -7.680E-16 | 6.638E-15 | 3.636E-13 | 2.073E-14 | 0.5588
8 | 14.221 | -1.445E-15 | 5.263E-15 | 3.633E-13 | 1.251E-14 | 0.5588

Table 2: Results for Newton’s method

iterations. This may change (but not likely) if more efficient algorithms for
the steepest descent (e.g. like using a conjugated gradient) and Newton’s
method (e.g. reduced Hessian) is used. We can be quite confident that the
adjoint methodology for the derivative of the objective functional is correct,
and since Newton’s method works fine, a stationary state to the Lagrangian
is a minima to the objective functional. We conclude that nothing in this
test problem contradict the methodology presented in the abstract setting.

15




4 2D test problem: The console

We now turn to a more interesting problem, seemingly not very complicated,
but as it turns out, in fact quite challenging. We consider a console viewed as
a 2D domain Q(p) with the left side (z = 0) rigidly attached (homogeneous
Dirichlet boundary) and the other sides 'y~ are free (homogeneous Neu-
mann boundary). On the upper right corner (L, 0) a point load g¢ is applied.
The gravity is assumed to have no influence. The control p(z) describes the
thickness in the y-direction with the upper boundary at y = 0 and the lower
boundary I', determined by the thickness p. The console is modeled with
linear elasticity (Naviers equations) with plan strain condition. For a very
short summary of linear elasticity see appendix A. Under the condition that
the total area of the domain has a given value Ay, find p(z) so that the
y-component u, of the displacement u = (ug, uy) at the right end (L,0) is
minimized. The console is also described in figure 3. The problem has the
mathematical formulation

(L,0) {90

Figure 3: The force gy applied at (L,0)

min_ — uy (L, 0) (10)

/ U(U):e(v)dQ:/ f-’udQ-i-/ g-vds, u(0,y) =0
Q(p) Q(p) Tz>o0

L
/ p(@)de = Ay, p(z) > 0.
0

Again we have a state equation of the form a(p;u,v) = I(p;v), now with the
bilinear form

a(p;u,v) = /Q(p) o(u) : e(v) dQ

and the linear form

l(p;v)z/ﬁ()f-'udQ—i—/F g-vds
p x>0

Here e(u) is the usual strain tensor and o(u) is the corresponding stress
tensor, which are related via Young’s modulus of elasticity £ and Poisson’s
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ratio v in Hooke’s law. Again, for a short summary, se appendix A. We have
no volume load f, (due to no gravity), furthermore ¢ is a point load of the
form go(0, —0(0, L)), where § is Dirac’s delta function. Integrating this gives
the resulting linear form

l(p; U) = —Qo’Uy(La 0)

The objective functional under consideration is (with a penalty term S(p)
added for generality)

Z(p,u(p)) = —uy(0,L) + S(p)
and the abstract Lagrangian is (as before p, u, A are independent)
L(p,u,A) = I(p,u) + a(p;u, A) — U(p; A)
with the abstract derivative
dpZ(p,u(p)) = OpT + dpa(p;u, A) — Gyl (p; A) (11)

where u is obtained by solving the state equation
/ o(u) : €(v) dQ = —govy(L,0) Vv eV (12)
Q(p)
and A comes from the dual equation
/ o(v) : €(A) dO2 = —/ (0,~3(L,0)) - vdQ = vy(L,0) YweV (13)
Q(p) Q(p)

since 9,7 = (0,—6(L,0)). We now continue our derivations in the discrete
setting with up, = >, Uipi, Ay = D; Aip; and pp, = >, Pip;. The first and
the last of the terms in the discrete counterpart of (11) is

Op,Z(ph,un(pn)) = Op,S(pn)

op,l(pn; An) =0

since [(pp; Ap) is in fact independent of pj in this case. The p-derivative of
the bilinear form is somewhat more complicated. In appendix B we show
that

L
Oralpiun ) = [ lotm) s €O, dids (14)

where [ - ]th means evaluation at I',, = {(z,—pn(z)) : 0 < z < L}. The
total derivative of the objective functional is then

L
OrZ(on,unln)) = 0nSon) + [ o) s O, dida

where up and )\, is obtained by solving the discrete counterparts of (12)
and (13).
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4.1 Newton, penalty approach

In Newton’s method, stationary points of the Lagrangian are sought. We
find (pp, un, Ap) so that the derivative of the Lagrangian is zero by iterating
with

d*L(p, uh, A)s* ! = —dL{pf, up, %)

where s¥ = {0p¥, du¥, §A*}T. The Lagrangian for this test problem is

L = —uy(0,L) + S(pp) + /Q( )a(uh) €(An) dQ+ goAyn (L)
Ph

The residual dC(pf,uf, \F) for the Lagrangian becomes

Op.L
dL(pk, uf, \R) = | Ou,L
On, L

with the terms

L
Op,L = /0 fo(un) : ey, s do+ Or, S(pr)

oL = [ ale):On) 2~ py(L.0)
Qpn)

onL = o(up) @ €(pi) dQ + gopyi (L, 0).
Q(pr)

The Hessian contains the second derivatives

‘912%Pjﬁ 812%',%‘ £ BIQ’i,AJE
d*L(pn, un, An) = aIZJ'i,Pj‘C 3121¢,U,-E 81211,Aj L
812\1',1? £ 812\¢ Uj £ 612\7: Aj £

with the terms (note the symmetry)
L
O £ = 9,1, Son) = [ 10, (0(n) : O, it da
9 L
041 L= /0 lo(0y) : ey, id
9 L
O = [ lotwn) s o))y, thda

L
Ot = [ o) ey, v o

0%, v, L= 0%,4,L=0
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Font= [ olo):clo)dr=ak L
d (p) !
u (

R p L= W; da.

The side conditions and the discretization look exactly the same as in
the 1D test problem (although p describes something different here). The
penalty terms introduced in subsection 3.2 can be used again.

€(wi)]

Tpp,

4.2 Newton, Lagrangian multipliers

Instead of a penalty or projection approach we may also enforce the side
conditions on p via Lagrangian multipliers. The area constraint is imposed
via a Lagrangian multiplier  and the side condition p(z) > 0 is here dealt
with introducing a new discretization for the control of the form

= Zepiiﬁi.

Corresponding to a change of variables P; — ef%, the thickness of the console
at node 7 is now efi. Because of this the new P can take any value without
violating the side condition of positive p. The state equation can also be
viewed as a constraint and it has already been included in the Lagrangian,
so it is natural to continue and include the area constraint as well. The new
Lagrangian is

ﬁz_“y(OaL)+S(Ph)+/Q( )0( r)  €(An) dQ2+goAn (L / Ze “thi— Agot).-
Ph

A stationary point to the new Lagrangian is found by the usual Newton
iteration.

dZ‘C(pllia uﬁa ’\;cw Uk)SkH = _d[’(pfw ufw ’\;cw nk)

where sk = {6p*, suF, 6A*, 6n*}T. The algorithm is the same as for New-
ton’s method described in subsection 2.5. The residual dL(pp, up, Ap,n) is

op, L

Ou. L
d‘c(phauhaAhan) = 8Kl£
8,LC

with the terms (for the derivation of the first term of dp, L, see appendix B)
p [F p ("
Op L = P / fo(un) : e, b do + n(e" / )
0 0
. L = / : €(Ap) dQY — @yi(L,0)
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o\ L= /( )U(Uh) : €(ps) dQ + gowpyi (L, 0)
Q(p

L
anE:/ Zepi"ﬁi_Atot
0

and the Hessian d?L(pn, un, Mp,n) is

OB p L Ob L 0%\ L 0L
62 L 82 L 82 L 82 L

d2£p SURy AR, T) = Ui, Pj U;,Uj Us,Aj U;,
(Ph; Uy Ay ) R, pL Rl RoaL 0 ,L
an,Pj‘C 8n,Uj‘C 0, ,A]»C 0. ’ L

with the terms (using the symmetry)

L L
O, p, L= —eliels /0 [0y (o (un) : €n))]p, Wit dz + 5ij77(€Pi/0 ¥; dz)

where 0;; = 1 for ¢« = j and 0 for 7 # j and the derivation of the first term
can be found in appendix B

L
Oy, L= P /0 [o(3) : €Oy, Wi do

L
aIQDi,Aj[' = ePi/O [o(up) : e((pj)zpi]rph dz
L
312%',77[’ = ePi/ P dw
0

8[2]i,AjE = /Q(P)U(goi) 2 €(pj) dS

The technique with Lagrangian multipliers for the constraints is in fact a
special case of a more general method for solving minimization problems with
side conditions. That method is called Sequential Quadratic Programming,
SQP, and a short description of SQP in a general setting can be found in
appendix C.

4.3 Implementation in matlab

For this test problem two matlab implementations have been made. One
using bilinear elements and one using triangular elements. It seems that the
quality of the mesh (i.e. how distorted the elements are) has an influence
on the shape derivative. In this aspect a bilinear element with an isopara-
metric mapping, 2x2 Gauss quadrature seems to bring some advantages as
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compared to a triangular mesh. For the steepest descent algorithm we use
the line search described in subsection 3.4, but the shape derivative is nor-
malized first. The side conditions on p are enforced strongly as described
in 3.3.

When the lower boundary I'), moves during the iterations the FE-mesh
has to be updated. For bilinear elements this is done by simply updating
the y-component for each node so that the position relative to the upper and
lower boundary is unchanged, a sort of "squeezing" process. Since the mesh
for bilinear elements is structured this works fine. For a triangular mesh
this method works only for small changes in I',, , but for large movements
on the lower boundary the elements gets distorted and can even turn into
an upside-down position. To come around this a new mesh is generated in
every iteration while the "squeezer method" is used in the line search. This
may result in the line search suggesting a step-length that does not decrease
the objective functional. Further, when a new mesh is generated, the state
up, and the dual Ap has to be updated. This is done by solving the state and
dual equations again. In the Newton method this results in that the current
state is always feasible.

4.4 Steepest descent bilinear elements

We start with 16 control nodes and the steepest descent algorithm, with
line search. Parameter values are Young’s module of elasticity £ = 1000,
Poisson’s ratio v = 0.3, the load at the end gy = 1, console length L = 4
and the total area is A4y = 4. These values are the same for all tests below.
For the bilinear elements the results can be found in table 3 and the resultin
shape in figure 4 It can be seen that very little happens after iteration 4.

Iter | Time | L Sstep | AU(L,0) [[AR|| | U(L,0)
0 0 - - - 0.2364
1 | 4.169 0 -6.707E-02 | 1.311E400 | 0.1693
2 | 10.857 1 -1.530E-02 | 4.783E-01 | 0.1540
3 | 17.857 2 -1.059E-03 | 1.576E-01 | 0.1530
4 25.610 3 -4.624E-05 | 6.561E-02 | 0.1529
5 | 57.021 32 -5.854E-14 | 1.143E-10 | 0.1529
6 91.222 35 -4.891E-14 | 1.428E-11 0.1529
7 | 138.860 50 8.965E-14 | 4.264E-16 | 0.1529

Table 3: Results for Steepest descent, projected gradient

The general shape seems intuitively correct, but there is a strange oscillating
behavior at the left end. Why this happens is not quite clear to us, but we

present some possible explanations below.
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Figure 4: The shape after 8 iterations

4.5 Steepest descent triangular elements

Again with 16 control nodes, using the steepest descent algorithm, with line
search we get the final shape figure 5 and the computed results in table 4.
Here almost nothing happens after iteration 7.

Tter | Time |L Sstep | AU(L,0) | |[|JAPR]|| | U(L,0)
0 0 - - - 0.2380
1 | 11.627 0 -5.136E-02 | 6.610E-01 | 0.1866
2 | 22.652 0 -3.091E-03 | 5.295E-01 | 0.1848
3 | 32.234 0 -2.345E-02 | 4.052E-01 | 0.1629
4 | 43.008 2 -6.543E-04 | 1.829E-01 | 0.1633
5 | 54.265 3 -9.976E-06 | 4.146E-02 | 0.1633
6 | 61.086 0 -1.816E-03 | 1.874E-01 | 0.1619
7 | 77.443 5 -2.686E-05 | 2.278E-02 | 0.1644
8 |139.850 33 -7.633E-15 | 7.926E-11 | 0.1644

Table 4: Results for Steepest descent, projected gradient

Here almost nothing happens after iteration 7 and the strange behavior
at the left end occurs again. This phenomenon has also been seen when
solving this test problem using matlab’s built in function fmincon, which
solves a general constrained optimization problem where the derivative of
the objective function is calculated using numerical differentiation.

4.6 Modifying the gradient

We start our search for an explanation for the phenomenon at the left end
by studying the derivative of the objective functional. When calculating the
total derivative of the objective functional, the derivative of the bilinear form
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Figure 5: The shape after 10 iterations

gives the most important contribution.

L
Op;a(pp; un, Ap) = /0 [o(up) : e(Ah)]th ; dx

When using linear basis functions 1; for the control, the first and the last
of the basis functions are supported on just one interval, while the rest
are supported on two adjacent intervals. Consequently the derivatives with
respect to P; and Py (N is the number of control nodes) are about half as
large as the derivatives P, Pny_1 respectively. This motivates the use of a
modified gradient where the first and the last terms are multiplied by two,
at least if the quantity o(up) : €(Ay) is of the same size along I'y. For a
uniform thickness of the console, the shape derivative is plotted in figure 6
with unmodified gradient on the left and a modified gradient on the right.
We note that at a minima, the gradient is zero, so this modification should
not change the optima, just the way to get there.

unmodified gradient modified gradient

0 0
-0.002 -0.002
—-0.004

-0.004
—0.006

-0.006
—0.008
70008 -0.01
-0.01 ~0.012
-0.012 -0.014

0 1 2 3 4 0 1 2 3 4

Figure 6: The derivative of the bilinear form when the console has uniform
thickness.

We try this modified gradient for bilinear elements with the results in
table 5 and final shape in figure 7

and for triangular elements the result and final shape can be found in
table 6 and figure 8 respectively.
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Iter | Time | L Sstep | AU(L,0) [|AF| U(L,0)
0 0 - - - 0.2364
1 4.190 0 -6.605E-02 | 1.364E+00 | 0.1703
2 13.009 1 -1.584E-02 | 4.957E-01 | 0.1545
3 20.110 2 -1.354E-03 | 1.573E-01 | 0.1531
4 29.010 4 -3.687E-05 | 3.215E-02 | 0.1531
5 41.159 8 -9.366E-08 | 1.914E-03 | 0.1531
6 70.574 28 -3.314E-14 | 1.820E-09 | 0.1531
7 | 106.306 36 -1.155E-14 | 7.109E-12 | 0.1531
8 136.342 29 -2.143E-14 | 9.099E-10 | 0.1531

Table 5: Results for Steepest descent, projected gradient

We see that using the modified gradient gives a more smooth shape and

Figure 7: The shape after 8 iterations

a smaller displacement at the end, but a small disruption remain.

4.7 Regularization

It seems that the strange behavior at the left end remains. A possibility is
that the minima is not well-defined, making it difficult to find the optimal
p. Therefore a penalization for abrupt changes in the first derivative of the
control p (large second derivatives) may be introduced. It can be viewed
as a regularization. Introduce the regularization penalty Sg(pp) with the
penalty parameter a. In the discrete setting with linear basis functions for
the control where d;pp, and Az is elementwise and P is nodewise so that

Ax; is bounded by P; and F;1;. The penalty term is chosen as

don=a ¥ (%) - (2)) -ax ("
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Iter | Time | L Sstep | AU(L,0) [|APR|| | U(L,0)
0 0 - - - 0.2380
1 5.780 0 -6.019E-02 | 7.424E-01 | 0.1778
2 15.055 0 -2.005E-02 | 5.058E-01 | 0.1576
3 22.251 0 -5.845E-03 | 3.637E-01 | 0.1522
4 29.457 0 -1.502E-04 | 1.772E-01 | 0.1522
5 39.797 2 -1.389E-04 | 7.697E-02 | 0.1526
6 | 120.338 50 -4.247E-14 | 9.710E-16 | 0.1521
7 181.490 37 -1.011E-13 | 1.769E-12 | 0.1521
8 240.595 36 -5.262E-14 | 3.539E-12 | 0.1521

Table 6: Results for Steepest descent, projected and modified gradient
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Figure 8: The shape after 8 iterations, modified gradient

The derivative becomes

N-1 2
0 P,-F P-P,
Or,Sr(pr) = 55 |@ > ( Ao Az
1 i—2 % i—1
_ 9g Piio—Pp Py - B 1
Azt Az; Ax;

n Pi—-P P-P —1_|_ -1
ALEZ' A:Ei_l A.TZ A:c,'_l

4 P-P1 P_1—-PF 1
Aziq Az;_o Az;_q

with the modification for the derivatives with respect to Py, P», Py_1, Pn
such that for dp, Sr(pp) only the first of the three terms remain, and for
Op,Sr(pp) the third term goes away. Analogously, for dp,_, Sr(pn) the
first term is not present and for dp, Sr(py) only the third term is left. If
the alternative discretization, p, =), efiq); is used the derivative becomes

slightly different.

We try this for bilinear elements with 16 control nodes, using the pro-
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jected gradient. The shape becomes smooth and we achieve a smaller dis-
placement at the end. In figure 9 we see the shape after 35 iterations setting
the penalty parameter a = 0.001.

Figure 9: The shape with regularization parameter o = 0.001

We compare different values of « in figure 10 and in table 7. The results
are similar for triangular elements.

— a=0
--- 0=0.0005 {
-- a=0.001

0a=0.005 ||

Figure 10: The displacement at the end as a function of iteration index for
different regularization parameters «

We see that we find a better shape but we have slower convergence for
increasing a. Note that during the first iterations the regularization has no
influence.

This method removes the problem at the left end, but it does not explain
why the phenomenon arises in the first place. We try to find an answer in
the following subsections.

4.8 Using a finer state mesh

If the FE-mesh is modified so that there may be many state elements for each
control element the oscillating behavior at the left end seems to decrease.
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« Iter for convergence | U(L,0)
0 5 0.1529
0.0005 17 0.1512
0.001 33 0.1510
0.005 61 0.1506

Table 7: Comparison for different

Figure 11 is for instance the optimal shape when two state elements for
each control element was used. We denote the number of state elements per

VA
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Figure 11: The optimal shape using a finer state mesh

control element d. In figures 12 and 13 are comparisons of the shape for
d=1,d=2,d=4and d =8.
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Figure 12: The shape with different partitions

Since the state mesh differs, the absolute value of the displacements are
not good enough for comparison. Therefore the improvement in percentage
is calculated and is together with the displacements collected in table 8.
It is really hard to say if a smooth surface is in fact better based on the
results here, because with a finer state mesh, the state solution becomes
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Figure 13: The shape with different partitions, zoomed in at the left end

more accurate, and since the continuous displacement is larger than the
displacement of the FE-solution ("the FE-solution is stiffer"), a finer FE-
mesh increases the displacement.

division | U(L,0) | improvement
1 0.1470 0.3603
2 0.1596 0.3398
4 0.1637 0.3342
8 0.1657 0.3301

Table 8: Results for Steepest descent, projected gradient, different meshes

In the following subsections we present possible explanations why a finer
state mesh is useful.

4.9 Minimizing the energy

Up to now we have only considered minimization of the displacement. If
instead the elastic energy of the console is to be minimized the objective
functional becomes

1 1
I= §|IUH% +8(p) = alp;u,u) + S(p)

where S(p) is a penalty functional. Then the Lagrangian in the discrete
setting is

1
L= §G(Ph;uh,uh) + S(pn) + a(pr;un, An) — U(pp; An)-

As above the u-derivative is to be zero, which gives the dual problem

1 1
5 @(Pn3 un, @) + Sa(Pn; @i un) + alpns i, An) =0 Vi € vh
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so that by the symmetry of a(p;-,-) the solution to the dual problem must
be A\, = —uy. But the state equation gives

a(pn; uns up) = U(pp;up) up € VP

so minimizing a(pp;up,up) is exactly the same as minimizing I(pp;up). If
now the only load is a point load, the displacement « in the point where the
point load is applied is minimized, providing a nice property: We minimize
the total elastic energy by adding material (i.e increase stiffness) where the
local elastic energy is high. More general, if a distributed load f is applied,
the f-weighted displacement is minimized. In the 2D test problem (10) above
a point load at the end is applied, and in that point the displacement is to
be minimized, so in fact the elastic energy is minimized!
The derivative of the bilinear form with respect to the control was (14)

L
Op,a(pns s ) = /0 fo(un) = €M)l i da.

According to the discussion above, the relationship between the state and
the dual solutions was up = —Ap. This gives

L
Op,a(ph; un, An) = —/0 [o(up) : e(uh)]rph ; dx.

This means that it is the elastic energy o(up) : €(up) on the boundary that
dominates the shape derivative. This elastic energy is plotted as an aver-
age on each element in figure 14. The energy at the initial shape has three
peaks, two at the left ends of the console and one where the force is ap-
plied. Notice the peak in the energy at the lower left end in figure 14. If the

15 45

L L L L L L L ,
0 05 1 15 2 25 3 35 4

Figure 14: The energy distribution on the original shape
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state mesh is not fine enough, the corresponding component in the shape
derivative gets too small. If a coarse state mesh is used, then multiplying
this component by two as suggested in the modified gradient above (subsec-
tion 4.6) compensates for this. Using the finer mesh also helps, as shown in
the previous subsection. The elastic energy is also plotted for the converged

11.4

11.2

L L L L L L L ,
0 05 1 15 2 25 3 35 4

Figure 15: The distribution of energy on the optimal shape with 15 control
elements, d = 2 and steepest descent without modification, 6 iterations

shape in figure 15. Note how the energy distribution is more smooth the
optimal shape compared to the initial shape. The maximum value of the
energy has decreased significantly. The energy distribution on the lower side
is almost constant, which correspond to an almost constant derivative, which
when the total area is kept constant (see subsection 3.3) correspond to a zero
derivative, i.e. a stationary point.

If this really is the explanation, the local refinement would be sufficient
and not a global one that is used above. This has not been tested for the
bilinear case, because it would require a significant rewriting of the code. For
the triangular elements a local refinement for the element close to the lower
left end has been done. The final shapes for different number of refinement
using 10 control nodes can be found in figure 16 and a comparison of the
displacement u,(L,0) at the end is found in figure 17. It seems that a
refinement of the state mesh at the lower left does not improves the optima.
This has also been tested for 6 control element, but no improvement in the
shape was found there either. This is probably because the peak in energy at
the left end is not very sharp. If the peak in energy would be the reason for
the strange behavior at the left end, then the energy at the left end would
have to be about twice as large as the energy at the second control node.
Looking at the energy plots above figure 14 and 15 we see that the difference
is much smaller, i.e. the peak is not sharp enough for the energy peak to be
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Figure 16: The optimal shape for zero, one two and four refinements, 10
control nodes

the whole explanation of the strange behavior at the left end.

4.10 Stability problems

Another possible explanation for the phenomenon at the left end is that
it in fact is a stability problem, a so-called checkerboard-phenomenon. We
see that the approximate solution pj overestimates and underestimates the
expected solution on every other node at the left end.

We have that the control py is piecewise linear. This means that for the
shape derivative to be able to control p, it also needs to be piecewise linear,
and since the shape derivative is more or less the quantity o(up) : €(Ap)
it too has to be piecewise linear, but with a piecewise linear u; and A\,
o(up) : €(Ap) becomes piecewise constant. This problem can be treated in
two ways. First quadratic base functions for both the state uj and dual A
and linear p, (or alternatively piecewise linear for the state and dual and
piecewise constant control pp) may be used. Or secondly a much finer mesh
for the state up, (and the dual A) can be used so that the piecewise constant
o(up) : €(Ap) becomes almost piecewise linear compared to the mesh for py,.

We revisit the 1D test problem where piecewise constant basis functions
for the control and piecewise linear basis functions for the state were used.
With the same FE-mesh for both the control and the state the solution
was stable. If a more coarse mesh for the state was chosen the control got
a shape that can be interpreted as checkerboard, which seems reasonable
because then the state space is not "rich" enough to stabilize the control.
For 15 state elements and 60 control elements using steepest descent method
the shape is plotted in figure 18.

Now returning to the 2D test problem with linear basis functions for the
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Figure 17: The displacement u, (L, 0) for zero, one, two and four refinements,
10 control nodes

Figure 18: Optimal p(z) (Steepest descent), 60 control and 16 states

state, dual and control. But with the FE-mesh for the control chosen to be
much more coarse i.e. with a higher value of d, which seems to be a good
cure for the problem encountered at the lower left part of the design.

Jog and Haber [8] studies the checkerboard phenomenon where the con-
trol and state have the same mesh on a 2D domain and a Newton-method
is used. They find that only certain combinations of elements for state and
control are stable, for instance a quadratic 8-node element for the state and
a elementwise constant control is a stable combination, while a linear 4-node
element for the state and elementwise constant control is unstable. Their
results cannot be directly translated to this thesis, because here the state
and control meshes are different.
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4.11 Newton’s method triangular elements

Here we use the method with the side conditions enforced via Lagrangian
multipliers as described in subsection 4.2. We begin with 10 nodes for the
control, using Newton’s method as described straight on gives the shape in
figure 19.

o5l

Figure 19: The shape after 12 iterations, Newton’s method, undamped

During the iterations it seems that the Newton-steps taken are too long,
resulting in an oscillating design path where the console is too thin in one
step and in the next iteration it is too thick, and in the next iteration too
thin again and so on. This might be compensated with the use of a damping,
where the Newton-step in the control dp is multiplied with a small constant.

When using a damped Newton’s method, with a damping of 1/2, i.e the
step in the control is 1/2 of the usual Newton-step the results are found in
table 9 and figure 20.

-0.5F q

0 0.5 1 15 2 25 3 35 4

Figure 20: The shape after 50 iterations, Newton’s method
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Tter | Time | AU(L,0) | NIABI | 8L 1T —U | UX,0) | U°(L,0)
0 0 - - - - 0.2343 0.2343
1 5.054 2.552E-04 | 4.830E-03 | 2.702E-01 | 2.166E-03 | 0.2341 0.2343
2 23.398 | 3.810E-02 | 7.887E-01 | 2.670E-01 | 3.132E-01 | 0.1950 0.2331
3 33.756 2.449E-03 | 4.844E-01 | 1.339E-01 | 1.611E-02 | 0.1503 0.1528
4 41.875 | 4.173E-04 | 3.078E-01 | 1.212E-01 | 4.011E-03 | 0.1445 0.1449
5 50.172 | -7.885E-05 | 2.367E-01 | 1.234E-01 | 7.361E-04 | 0.1463 0.1462
6 57.653 | 2.810E-05 | 1.305E-01 | 1.263E-01 | 4.276E-04 | 0.1480 0.1480
7 69.962 | -1.286E-04 | 3.139E-02 | 1.267E-01 | 9.712E-04 | 0.1493 0.1491
8 79.769 | 2.474E-05 | 2.153E-02 | 1.276E-01 | 5.417E-04 | 0.1500 0.1500
9 89.091 | -3.663E-05 | 1.844E-02 | 1.283E-01 | 3.462E-04 | 0.1503 0.1503
10 97.460 | 3.369E-05 | 1.542E-02 | 1.282E-01 | 3.378E-04 | 0.1504 0.1504
11 | 103.415 | -1.006E-04 | 2.531E-02 | 1.286E-01 | 2.595E-04 | 0.1505 0.1505
12 | 111.176 | 9.564E-06 | 7.315E-02 | 1.288E-01 | 1.430E-04 | 0.1505 0.1505
13 | 119.451 | 4.861E-05 | 3.798E-02 | 1.281E-01 | 5.032E-04 | 0.1506 0.1506
14 | 127.621 | -2.205E-05 | 2.403E-02 | 1.284E-01 | 2.539E-04 | 0.1505 0.1504
15 | 135.304 | 4.481E-06 | 1.725E-02 | 1.280E-01 | 4.433E-05 | 0.1504 0.1504
16 | 142.500 | -1.738E-05 | 1.359E-02 | 1.284E-01 | 1.903E-04 | 0.1505 0.1505
50 | 412.003 | 1.269E-05 | 6.476E-03 | 1.275E-01 | 1.064E-04 | 0.1505 0.1506

Table 9: Results for Newton’s method

We note that after about 10 iterations, newtons method does not come
any closer and comes in a sort of "steady-state". We see that we have found
a better shape using Newton’s method compared to the steepest descent
since the shape is smooth. When comparing to the results for the steepest
descent method (with or without modified gradient) we must remember that
here we have a more coarse grid since only 10 control nodes are used, so the
numerical values for the displacement cannot be compared straight on. Note
that there is no oscillating phenomenon at the left end. Although it seems
that there is no problem at the left end we test global and local refinement
of the state mesh. Local refinement at the left end gives after 50 newton-
iterations using a damping of 1/2 gives the shape in figure 21. The shape
for global refinement is also found in figure 21.

It seems that refinement induce some sort of instability. Similar phenom-
ena occurs when 12 or more control nodes are used, for all tested dampings.
Relating back to the discussion on stability in the previous subsection, we
have by our refinement made the state space more capable to describe the
piecewise linear control, so any instability phenomena should be reduced by
refinement, which suggest that the stability discussion above is not the full
explanation either.
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Figure 21: The shape after 50 iterations, local refinement (left) and global
refinement (right)

4.12 A not well-defined minima

Another possibility for instability problem is that for this test problem, the
minima is not well-defined. We do not achieve the typical quadratic conver-
gence of the Newton method (we need to use damping). We note that for
both the steepest descent method and for Newton’s method, we do a number
of iterations where a lot happens and we get close to the minima. Then the
steepest descent method cannot find a step length that reduce the objective
functional and Newton’s method goes in circles. For a not well-defined min-
ima a small change in the control does not result in a change in the objective
functional, and therefore a phenomenon such as in figure 4 and 5 may arise.
On the other hand, intuitively one feels that rather the minima should be
quite well-defined, as for the 1D test problem.
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5 Implementation aspects

The two test problems has been implemented in matlab. The code is quite
long and is therefore not included in this thesis. To acquire the code for
further testing, please contact the author.

The problems encountered during implementation are mainly due to the
administration of the control p. Mostly this makes the assembling of the ele-
ment contributions difficult. The element contributions themselves are quite
similar to each other, so when the code for the standard element stiffness
matrix is written the other matrices are easy to implement.

To solve the dual problem is in fact quite cheap. If the dual problem is
independent of the state problem they can be solved simultaneously since
they both have the same stiffness matrix. This gives a problem of the form
Alu A] = [F Gayal], where A is the stiffness matrix and F and Ggyq are
the load vectors for the state and dual equations respectively. If the dual
problem depends on the state equation then A may be LU-factorized to save
time.

The method for calculating the shape derivative considered in this thesis
is quite efficient, it requires first the solution of the dual problem (see above)
and then the cost for the shape derivative itself is about the same as for an
ordinary load vector. It is much more efficient than calculating the derivative
by brute force, i.e. calculating (Z(p + he;, u(p + he;)) — Z(p,u(p)))/h for all
i.
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6 General conclusions and other applications

In general the methodology outlined above seems to works fine, but evidently
the instability problem need further attention. We see that we can take care
of it by using a regularization or Newton’s method (with few control nodes).
Even though we are able to achieve a smooth shape, we have not found the
explanation for why the oscillating phenomenon arises in the first place. We
suggest three possibilities, a peak in the energy, a need for a rich state space
and a not well-defined minima. It seems that of these explanations the not
well-defined minima seems most likely.

There is an other issue that also need attention, how to deal with the side
conditions and the constraints. Mainly three options are available, penal-
ization, strong enforcement via some projection technique and Lagrangian
multipliers. We are unable to draw any certain conclusions about which one
is preferable since all methods works fine in some cases and not in other cases.
One way to avoid side conditions may be a clever choice of parametrization,
for instance using e’ instead of P; (see subsection 4.2) to avoid negative P;.

We see that there is a close connection between maximizing the stiffness
and minimizing the elastic energy. Since the energy is a quite local property,
a large optimization problem can be solved using adaptive techniques where
the state and control meshes can be locally refined where the elastic energy
is large and a more coarse mesh can be used where the elastic energy is small.
This would bring down the computing time significantly.

We can think of another application. Suppose we have the 2D test prob-
lem as stated above, but with uniform thickness in the y-direction. We
let the control p(z,y) instead describe the stiffness of the material at every
point, for instance the Youngs modulus of elasticity F, and we seek the con-
trol p(x,y) such that the displacement is minimized while the total available
material [, p(z,y) dQ is kept constant. A problem of this type is studied
by Bengzon [2]| with for example the application in the field of bone remod-
eling. Here there is a close connection to topology optimization where the
setting is similar, but with a restriction that the control must be either 1
or 0. There are some methods to achieve this, for instance a penalty of the
form a [, p(1 — p) dQ, see Bendsge [5] for an overview. There is a topology
optimization method called Evolutionary Structural Optimization, ESO. It
is a quite intuitive method; a loop starts where the state is computed and
the stress on each element is calculated. Then the elements with the lowest
stresses are removed and then loop starts again. If the criteria for removing
an element is based on the elastic energy o(u) : €(u) we are quite close to
the discussion of the elastic energy in the 2D test problem, subsection 4.9.
An introduction to ESO can be found in Xie and Steven [13]. We conclude
that the methodology presented in this thesis is quite general and has con-
nections to size-, shape- and topology optimization, which shows the close
connections between the three types of Structural Optimization.
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7 Future work

Of course the oscillating phenomenon at the left end of the 2D test problem
need much deeper studies than done here, foremost how well enrichment of
the state space using a finer state mesh really works. Local refinement at
the left end for the bilinear elements should also be tested to be certain that
the peak in elastic energy is not the cause of the problem.

In order to determine when an algorithm has converged, a posteriori error
estimates should be incorporated in this procedure. This might explain why
Newton’s method "goes into circles" close to the optima, the discretization
error might be of the same magnitude as the Newton-step.

Additionally it would be interesting to study how an error in the control
or the state results in an error in the objective functional. This may give an
alternative view on why stability problems occur. Becker et al [1] studies a
posteriori error estimates and adaptivity.

We have found a close connection between minimizing the energy and
maximizing the stiffness. Perhaps there is a more general formulation for
this, presumably using another energy norm, that will result in an simple
formula for finding where something interesting happens.

Another approach to shape optimization problem is to study mappings
where a reference mesh is mapped to a new domain and the problem is to
find the mapping which makes the new domain optimal. Becker et al [1],
Chenais et al [4] and Laumen [10] do their work using a mapping technique.
The advantage is that the FE-mesh does not need to be updated during
the design cycles. In practical use of FEM the mesh generation takes a
considerable amount of time, thus a method that does not need a new mesh
in each iteration is desirable.

Jog and Haber [8| gives a few suggestion on how to deal with the sta-
bility problem. They suggest among other things a regularization of the
Lagrangian, which may be further investigated. Preliminary test shows that
it works good. They also suggest a (patch) test to determine whether a
combination of state and control elements is stable or not. This test could
be performed for the test problems in this thesis too, and conform with our
findings that the state space should be somewhat richer than the control
space to obtain a stable optimization process.

Another aspect is that the state problem itself might not be determined,
for instance, the load in the 2D-problem may be a random variable both in
position and magnitude. Taking this into account may result in an other
optimal shape. This can be further investigated. It might even be so that
there is a connection between the a posteriori error estimations and this
probabilistic approach to the optimization problem.
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A A short summary of linear elasticity

This is a short description of Navier’s elasticity equations used in the 2D test
problem above. The equations are first stated in 3D and then we explain
how the plain strain assumption reduces the problem to 2D. For the details,
consult a standard textbook in solid science, here below we used Lai et al [9]
and Hansbo [7]. Let the indices %,j € {1,2,3} represent the directions of
coordinate axes z; The stress o is represented as a 3-by-3 matrix with the
components o;;. The strain € is also represented by a 3-by-3 matrix. The
displacement u is represented by a 3-by-1 vector and the volume force f has
also three components (represented in a vector). In the domain 2, we assume
force equilibrium, that is the stress ¢ and the volume force f are related by

—V.-o=f in Q

The relation between the stress and the strain is given by a constitutive law.
For linear elasticity that relation is Hooke’s law, which can be written as

o= ANV -u)I+2pue in Q (15)

where I is the identity matrix and A and p are Lamé constants, which can

be expressed by Young’s modulus of elasticity £ and Poisson’s ratio v by
vE E
A= , U= .
(1+v)(1-2v) 21 +v)

Assuming small strain, we get the relationship between the strain and the

displacement as
1 [ Ou; + 8uj
€j = = .
Y9 B.Tj ox;

Combining the above equations we get Navier’s elasticity equation
0%u, 0u
A — ——— =0 i=1,2,3. 16
A+ w) EJ: 0x,;0x; + #Zj: 0z;0z; ’ (16)

On a Neumann boundary 9€2; with the normal n the normal component of
the stress equals a stress vector g as o -n = g on 9€Q;. With a suitable test
space V' the weak form of (16) reads (c.f. Hansbo [7])

/Qa(u):e(v)dQ:/Qf-'udQ+/Flg-vds YveV (17)

which in an abstract setting would read a(u,v) = l(v) Vv € V. Now, if a
plane strain state is assumed, the components of the strain out of the plane
are zero. If x3 is the direction normal to this plane, then €13 = €93 = €33 = 0.
Inserting this in the constitutive law (15) gives 13 = 093 = 0 and o33 =
A(V - u) # 0. The fact that o33 # 0 is really not needed since it in (17)
is multiplied only with €33 which is zero. Therefore when assuming plane
strain the only change in the above equations is that now we only have two
directions i,j € {1,2}.
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B The derivative of the bilinear form with respect
to p

Taking the derivative of the bilinear form with respect to the domain, i.e.
finding Op,a(ph; un, Ap) and al%ipja(ph;uh, Ap) is not trivial. For simplicity,
consider a function f(z1,z2) on a domain Q(pp) defined by pp, = >, P,
where I is the zg-coordinate of the lower boundary (see figure 22).

N
T2 wﬁ‘f T3 ittt g
Q(pn) P,
%
AP, \ AAP)

Figure 22: How a change in P; changes the geometry

A small increase AP; in the node value P; extends the domain by the
small area A(AP;). The derivative Op, (fﬂ(ph) f(x1,22) dxy da:2> can then
be derived by using the limes definition of the derivative.

fA(APv) f(z1, 22) dzq dag

op; (/Q(ph)f(xl,@)dxl dm?) - Ag:go AP,

The Taylor expansion of f in the zo-direction from Zy gives

[aapy f@r, @) dordzy [y apy f(@1,52) + [, (21, 52) Azy + O(As3) doy dos
AP, N AP,
Iy Fw1, ) AP + S fL, (w1, 82) AP?Y2 + O(AP?) day
= AP

I L
1
= /f($1,$2)¢id$1+APi/ §f;2($1,532)¢i2d$1
0 0

L
+ / O(AP?) dx;
0

where we used that Aze = —AP;1);. And letting AP; — 0 gives the deriva-

tive .
op, (/ f(z1, ®2) dzy d$2) :/ f (w1, %2)4; dz.
pr) 0

A new small change in P; this time changes T

L fL f(xl To — AP?/J w dry — f wl T2 1/1 dxq
= . : 0 ’ Jj) ¥ 0 s i
Bpj </0 f(xl,mg)ip, dml) = hjm 0 .
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The Taylor expansion of the first term is

L
/O Flwr, @ — APy i doy

L
_ /0 F (@1, B2 — £ (21, B2) APypyidiy + O(AP?) iy

Taking the limit results in

L L
Op, </0 f(@1,22)ti dﬂvl) = —/0 fay (@1, 2) s dr.

With the bilinear form a(pp;up, A\p) = fQ(Ph) o(up) : €(Ap) dY the desired

derivatives become

L
Op,a(pn; un, An) 2/ [o(un) : €(An)]gz, ¥i dr1

0
Op,p;a(Ph; U, An) = /[a:cz (un) : €(An))]g, Yith; dz1.

If the discretization instead is pp, = ), efisp; the derivations are the same,
but the height of the extra area A because of AP, is instead AQ; = el TAFi —
ePi which in the calculations above gives Azy = —AQ;4; in the numerator.
Taking the limes this time gives

o(AQ})

Op,a(pp;up, Ap) = lim ce( g dy + —2t2 AP,

AP;—0 AP

- /O (o (un) : €O, i ey

Similarly

Oty olons s 2) =~ [ o o) O, ity
What is then Oy, (o(up) : €(Ar))? First we use the product rule
Oz, (0(un) : €(An)) = (Oz,0(un)) : €(An) + o(un) : (Oz,€(An)).

Using Hooke’s law to get the derivative of o5 (4,5 € {1,2})

- 8611 8622 BEZ]
awzo-zj A <8.’172 + 8.’1)2) + 2 8:172

where A och [ are the Lamé constants. Using the definition of strain to get

Oeij } 0%u; 82u]-
Ory 2 0r20x;  Ox20w;
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where the second derivatives of the displacements are needed. With the basis
functions @y they are (for the dual \; they are similar)

%u; ; 0%y,
— U
E)x% Ek: k {“)x%

Using linear triangular element the basis functions according to Ottosen and
Petersson [12] can be written as ¢ = a; + asz1 + agze. This means that for
linear triangular elements both second derivatives becomes zero. For bilinear
elements the basis functions can be written as ¢ = a1+ o1 +a3T2+Q4x1%2.
Here the double xo-derivative is zero while the mixed second derivative is «ayq.
According to [12] the C-method for determination of the basis function states
that for an element where (%, %) are the coordinates for the element nodes
the following relation is true

(o1 92 @3 @a]=[1 @1 @ mzp |CF

where

1 .1 1.1
Ly Ty T1xg

C=
3 .3 3.3

SR et

1 z7 x5 z775

[ S —
o
o
o
o

The desired a4 (one for each basis function on the element) is given as
the last row of C~!. Thus we have all the needed ingredients to calculate

Or, (o(up) : €(Ap))-
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C A general description of SQP

This section is a general description of SQP, Sequential Quadratic Program-
ming and can be found in Boggs [3] or Nash & Sofer [11]. SQP is a general
method for solving minimization problems of the type

min f (x)

h(x) =0

g(x) <0.

The minimization problem is solved iteratively by taking a step dy = x—xX.

This step is chosen as the minima of a simpler minimization problem. For
this simpler problem to be easy, but yet a good description of the original
problem a second order Taylor approximation in x of the objective function
and a first order Taylor approximation of the side conditions is used. This
gives a quadratic minimization problem

. 1
ngin r¥dy + EdEBkdx

Vh(x*)dx +h(x*¥) =0
Ve(x¥)dy + g(x*) <0

Which with r¥= V f and By, = V2f gives the desired step dyx. Other choices
of the vector r¥ and the matrix By, are possible for obtaining better numerical
characteristics or to have a better global convergence. This is not studied
here. The reason for approximation to a quadratic subproblem is that an
efficient solver for this problem can be constructed, and thereby making SQP
efficient for many different problems. For the special case when only equality
constrains are present the quadratic subproblem can be solved very easily.
We introduce the Lagrangian multiplier u with the step d, for the equality
constraint to get the Lagrangian

1
£ = V(310 Tdx + 5dx V2 (a)dx + (Vh(x ) dy + () ) du
We find a stationary point for £ by solving the linear system

e Al [ R il

which gives an update for x and u. Summing up, when only equality con-

straints are present an iteration in SQP is done by solving a linear system
as in the usual Newton’s method.
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