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Abstract

In this paper we formulate the finite element method for a self-
adjoint elliptic eigenvalue problem and present an a posteriori error
bound of the eigenvalue error and the eigenvector error in the L%-norm.
In the eigenvector case we need to solve a dual problem. This is done
numerically which means that we also need to do some perturbation
theory to ensure that the numerical solution is a good approximation
of the exact one. The error bounds from the a posteriori theory are
expressed in terms of an error function defined as a constant on each
element in the mesh and this function is used to refine the elements
where the error is big. This gives us an adaptive algorithm. The
algorithm is used to solve the time-independent Schrédinger equation
for a hydrogen atom on a platinum surface. The system of a Hydrogen
atom on a metal surface is of interest among other things for design
of fuel cells and Hj-storage. We use this problem from physics to
evaluate how well the adaptive algorithm works and we compare it
to the non-adaptive solution. The result we get is that the adaptive
algorithm gives what seams to be a sharp bound of the eigenvalue error
and higher accuracy than the non-adaptive method with less than half
of the number of nodes in the mesh.
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1 Introduction

Eigenvalue problems occur in various branches of science. From the acoustic
wave from a guitar string or a drum to electronic circuits, structural me-
chanics and quantum mechanics. The first step to take when solving these
problems is to make a mathematical model. That is formulate the problems
in mathematical terms, equations. But if every aspect of the problem has to
be represented in the model we will almost always end up with a very com-
plicated equation that will be impossible to solve by hand. From here there
are mainly two ways to go. One is to simplify the problem until it is possible
to solve by hand, that is to solve the approximate problem exactly. Another
approach is to solve the original problem approximately. This paper will
focus on the latter way of dealing with this problem.

We will describe how to solve these problems with the finite element
method (FEM) both in theory and in practice on the computer. We will
present an a posteriori error analysis which will give us an estimate of how
close our approximate solution is the exact one which is very important,
since an approximate solution does not really help us if we have no idea of
how good it is. We will then focus on a specific eigenvalue problem that
arises in quantum physics.

The wave equation in quantum physics is called Schrodingers equation
named after the inventor, Erwin Schrédinger. Because of Heisenbergs uncer-
tainty principle which becomes important in really small scales, the exact
position and momentum of a particle cannot be found at the same time.
Instead the Schrodinger equations gives the likelihood of finding the particle
in a specific place as its eigenvectors or eigenfunctions and the energy of
the state as its eigenvalues. We will sometimes refer to such a pair, of an
eigenvalue with the corresponding eigenvector, as an eigenpair.

The theory and implementation will be done for one particle in a three
dimensional potential. This could represent a light (weight) particle on a
metal surface. There are many applications in this area and we will here
calculate some results for the problem of a hydrogen atom on a platinum
surface where the platinum surface is described as a potential. This problem
has applications in the field of fuel cells.

So the aim of this paper is to present an error analysis that can be
applied to the time-independent Schrodinger equation for one particle in a
potential and to calculate eigenvalues of this problem that is of interest for
physicists and give the eigenvalues with an error bound that is as sharp as
possible.



2 Problem formulation

2.1 Preliminaries

Let us first settle some definitions and notations that will be frequently
used in this paper. All the calculations are performed on a convex three
dimensional domain €, see figure (1). The scalar product (-, -) is the ordinary
L? = L*(Q) product and || - || is the corresponding norm. The boundary
of Q will be refereed to as 02 and it will be divided into two boundary
parts I'1 and I'y associated with Dirichlet and periodic boundary conditions
respectively. For these parts we have 'y UT's = 99 and T'y N Ty = 0.
I'y needs to have some more properties since its associated with periodic
boundary conditions. Instead of describing this in a general case we just
study the geometry and boundary conditions that are going to be used in
the calculations. The boundary conditions on the two planes parallel to
the zy-plane will always be homogeneous Dirichlet and the other four parts
will either all have homogeneous boundary conditions or all have periodic
boundary conditions.

We need to define a function space on this domain. Since we have two
different choices of boundary conditions we need two spaces.

Definition 2.1 The space H{ is the set of all functions in L*(Q) such that
Vu also is in L?(Y) and that have the value zeros on 9S). The space H&,per
is defined as the set of all functions in L?(Q) such that Vu also is in L?(2)
and that have the value zeros on I'y and are periodic on T's.

Hj and Hj ., are in fact Hilbert spaces [4] with associated norm [15]

3
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Since the results applies on both types of boundary conditions and for both
these spaces we will reduce the number of equations by referring to both of
them as H{ from here on. For the discretised problem we also need a space
containing piecewise polynomials. Let VP C H{ be the set of all piecewise
polynomials of degree at most p on a partion 7 of €2 into tetrahedrons 7
of size (diameter!) A = h(7). The function vol(T) denotes the volume of a
tetrahedron 7 € 7T}, and d7 will denote the boundary of tetrahedron 7 in the
interior of 2. The norm || - ||; is the L?(7)-norm.

We recall that a bilinear function ¢ is elliptic on H& if there exists a
constant K > 0 such that ¢(z,z) > K||z||%: (> K||z||?) for all z € Hj and
that an operator is self-adjoint if (Lz,y) = (=, Ly) for all z,y € Hj.

!Diameter is the length of the longest edge of the tetrahedron.



Figure 1: A plot of the three dimensional domain 2.

2.2 The eigenvalue problem

Since the final aim here is to solve the time-independent Schrodinger equa-
tion we only consider a small class of eigenvalue problems namely the ones
that can be written in the following way

—Au+cu—Au=0 inQ, (1)
u=0 only,

u periodic on I,

where ¢ = ¢(z) is a function dependent of the three space variables. The
operator L = —A + ¢ is self-adjoint and the associated bilinear functional
a(v,w) = (Vv, Vw) + (cv,w) for v,w € H} is elliptic. The reason why we
do not get any contributions from the boundary in the bilinear functional is
because w = 0 on Ty and [, n- Vowdz = 0 due to periodicity.

To prove self-adjointness we just need to integrate by parts and use that
v,w € H} that is

(Lv,w) = (—Av + cv,w) = (Vv, Vw) + (cv,w) = (v, Lw).

To ensure ellipticity we study how the bilinear form a can be estimated from
below using a function v € H{

a(v,v) = (Vo, Vo) + (cv,v) > min(1, ¢)|jv||4:-

So we just need to assume that ¢(z) > K > 0 and ellipticity follows. For the
error analysis we also assume that the eigenvalues of L are simple, which
means that they have multiplicity one or a one dimensional eigenvalue space
[4]. We will also assume that ¢(z) < C < oo Vz € Q.



2.3 Weak formulation and properties of self~adjoint opera-
tors

We will start with deriving the weak formulation of the original problem
(1). By multiplying (1) by a function v € H, integrating over the domain
), and using integration by parts, we get the weak formulation which reads:
find v € H} and A€ R such that

a(u,v) — AMu,v) =0, Vo€ H]. (2)
This equation is in fact equivalent with (1) since it follows from (2) that
(~Au+cu—u,v) =0 Vo€ H],

from which we may conclude that —Au + cu — Au = 0.
We will now derive some familiar properties of self-adjoint elliptic oper-
ators [4].

Theorem 2.2 A self-adjoint elliptic operator A defined on a Hilbert space
has the following properties (a) the eigenvalues are real (b) the eigenvalues
are greater then 0 (c) the eigenvectors corresponding to different eigenvalues
are orthogonal and (d) there ezxists an orthonormal basis {v;}2, of eigen-
vectors, with associated eigenvalues {\;}52,, of A in Ly.

Proof. Let uy # 0 and ug # 0 be eigenvectors corresponding to the distinct
etgenvalues A1 and Ay of A.

(a) self-adjointness is used

M (ur,u1) = (Mur,ur) = (Aug,ur) = (u1, Aur) = (w1, Aiwr) = A (ug, u1)

Since (u1,u1) > 0 we conclude A\; = .
(b) ellipticity is used

0< K(ul,ul) < (Aul,ul) = Al(ul,ul)

Again since (u1,u1) > 0 we conclude A\; > 0.
(c) self-adjointness and distinct eigenvalues are used

A (w1, ug) = (Aug,ug) = (Aug, ug) = (u1, Aug) = (u1, Agug) = Ao(ur, uz)

Since A1 and Ay are distinct this means that (ui,ug) = 0.

(d) this requires a more complicated proof which can be found in [4]. We
just notice that the inverse operator A~ has the eigenvectors {v;}2 as well
and that it is a compact operator so the Hilbert-Schmidt theorem can be used.
|

We let {);}$°, be the eigenvalues of L and {v;}°; be the corresponding
basis of orthonormal eigenvectors in Ly. A = A; will represent an element
from the set {A;}$°,. Since we have assumed simple eigenvalues we can also
order the eigenvalues in the following way

D<A <A< Ag<....



2.4 The Finite element method

The equation that arise from Galerkins finite element method, based on
replacing H} in (2) by the finite dimensional subspace V/, is now: find
up, € Vhp and A€ R such that

a(uh, ’Uh) — )\h(uh, ’Uh) =0, Yo, € V,f (3)

From now on we also assume that ||uy|| = 1. Our aim is to find this
solution by choosing a suitable basis for V}” and solve the discrete eigenvalue
problem that will arise. To do this we choose a basis {¢;}], where n is the
degree of freedom in the mesh, such that span{y;} = V2. This gives us the
following version of the discretised weak formulation: find up = >"7"; U; ¢;
and M\, € R such that

a(un, @5) — An(un, 0j) =0, Vje{l,...,n}. (4)

This discrete problem has n eigenvalues and corresponding eigenvectors.
We denote these eigenvalues by {\*}?_, and the eigenvectors by {ul}",.
In the discrete case the eigenvectors can be identified with an orthogonal
basis of the Hilbert space R™. In the next section we will see how well they
approximate the exact eigenvalues and vectors.

*>This makes (3) and (4) equivalent.



3 Error analysis

We are going to study two different measures of the error of a solution. The
first one is the eigenvalue error A\, — A and the other is the eigenvector error
defined by e = up, — u where u is chosen such that (e,u) = 0 and (u,up) > 0.

3.1 A priori error estimate

We will present results from an a priori error analysis of the eigenvalue error
[1], [7], [6] and the eigenvector error [7] in L?-norm. We need to assume the
following.

For any v € H}, k < p there is a function mv € V,f’ such that

Cy||B*H DM || (5)
02||thk+1U||

lo — ]|

<
V(v =m)]| <

with constants C; and Cs independent of v and h.
We recall that the Rayleigh quotient of our operator can be expressed as

a(v,fu).
(v,0)

This formula together with (2) gives that RQ(u;) = Aj. From the well
known min-max principle [1] we have

RQ(v) =

A, = min maxRQ(u), k=1,2,...
chHé u€eVy
dim(Vy)=k

for the exact eigenvalues and

M= min maxRQ(u), k=1,2,...,n
ViCVP  u€Vk
dzm(Vk):k:

for the approximate eigenvalues and since fo’ C H{ we have that )\2 > Ak
fork=1,...,n.

This gives us an estimate of the desired quantity Ay, — A form below. The
next thing to do is to find an estimate from above. Here we just refer to [7]
were this matter is discussed and we get the following result

0 < Ap — A < C||WPDP 2. (6)

Higher eigenmodes tends to have eigenvectors which varies a lot on small
distances which will make the derivatives of the solution bigger. This means

that the approximate solution will be better for low eigenvalues then for
high.



It is also possible to derive an a priori error estimate for the eigenvector
error in terms of h and derivatives of u. Again this is done in [7] and the
result is the following inequality

22
I = unl| < C(1+ =)Dl (7)

where d > 0 is the distance between the eigenvalue X\ associated with u
and its closest neighbour eigenvalue. p is as usual the maximum order
of the piecewise polynomial in the approximation. Since we will consider
eigenvalues of moderate size, and assume that there are well separated, have
assumed simple eigenvalues the factor C(1 + %) will be of moderate size.
These results are derived for homogeneous Dirichlet boundary conditions
but should hold also for periodic since the bilinear form a is equivalent in
the two cases.

3.2 A posteriori error estimate

In the a posteriori error analysis below we shall consider both the eigenvalue
error A\ — A for a chosen eigenvalue and the corresponding eigenvector error
e = up — u. More precisely we shall estimate error functionals of the form
(e,) for a given function 1. In particular we shall consider the case of
9 = e/||e|]| to obtain an L?(2)-norm error estimate of e. To do this we set
up a dual problem in the usual way by taking the adjoint of the u-dependent
terms in the original problem in the left hand side and put v in the right
hand side [15] that is (L — AI)*¢ = 1), where I is the identity. Notice that A
now is a fixed chosen eigenvalue. Since L is a self-adjoint operator we just
get

—Np+cp—Ap=1 inQ, (8)
¢=0 only,

¢ periodic on I's.

For the the eigenvector error e = up — u we now obtain

() (9)
(un, ) — (u, )
= a(un, ) — Mup, ) — (—Au + cu — Au, ¢)
= a(un, ®) — An(un, @) + (An — ) (un, 4),

where we used integration by parts and the fact that —Au+cu—Au = 0. We
recall that we have an orthonormal basis of eigenvectors {v;}22; of —A +c.
One of these is the eigenvector u/|lu|| = v; with corresponding eigenvalue
A = )\; and we now seek to express ¢ in terms of the basis {v;}:2,;. We then
notice that our left hand side operator in (8) is singular in the direction of



u. This component of ¢ will not contribute to the product (e, 1) so to have
uniqueness we may as well assume the solution of the dual problem to be
orthogonal to u. Moreover, since the range of —/AA + ¢ — A\ does not contain
u, (but all other eigenfunctions) we need to choose 1 to be orthogonal to wu.
The idea is now to get rid of the (A, — A\)(up, ¢)-term in (9), because A is
unknown. Using the equality

(%W) = (_A¢ + C¢ - )‘]¢a Ui) = ()‘Z - )\])(QS,’UZ)

we get

p=> ($,vi)vi=) )E:ﬁ,_v;\)J i,

i#£]j i#£]
which leads to
(¥, v3)
1> = (up, v3)|
Ai — Aj
i#£]
< max ——— z:|1p,'uz e, ;)|
1#£j |)\ — A | it
< max———|ell[[#]-
i#i | Xi — Al

Since we just deal with distinct eigenvalues and we know from the a priori an-
alysis (6) that the eigenvalue error is bounded from above by C||h? DP*1y)|?
so that for small enough h we can assume that ()\? — \j) max;-; |ﬁ| <4,
where J is much smaller then one.

In the case when 9 = e/|e|]| we now get the following bound of the
eigenvector error in the L?-norm

(1 =0)llell < la(un, ¢) — An(un, B)I- (11)

To get a similar equation for the eigenvalue error we set ¥y = 0. Then
the dual problem (8) becomes equivalent to the original problem but with
A given which means ¢ = u is a solution. Here we have also assumed that
u is normalised so that (e,u) = 0, that is, we consider the eigenfunctions
u for which (u,u) = (up,u), which is clearly possible provided wuy is not
orthogonal to w. In particular, the dual problem is then well posed. From
the a priori error estimate of the eigenvector error (7) we have for a small
enough h that our solution has the property (e,e) < ¢ where 4 is a number
much less than one. Which means that we can write (up, ) = (up,u) =
(up,up) — (u+e,e) =1—(e,e) >1— 6. Inserted in (9) we get

(1= 8)(An = A) < lalun, ¢) — An(un, 4)|- (12)



Since (3) holds we are allowed to replace ¢ with ¢ — 7¢ in (11) and
(12) where m¢ € V. So we need to estimate the quantity a(up, ¢ — 7¢) —
An(up, ¢ — w@) in order to get an upper error bound for the eigenvalue error
and the eigenvector error as desired.

This section have so far followed [12] closely but with a slightly different
operator. In [12] the dual problem is used to derive a stability constant
which together with the residual gives an error bound on the eigenvalue and
eigenvector error. We will here attend to actually solve the dual problem
to get information of how the stability influences the error in different parts
of the domain. Our final aim is to make an adaptive algorithm for solving
these problems more efficiently by calculating the residual and stability and
than get a local "error function” defined on each tetrahedron that can be
used to refine the mesh on certain parts of the domain.

To achieve this we follow [6] closely by integrating |a(up,d — mp) —
Ap(up, ¢ — wd)| by parts on each tetrahedron in the following way

|CL(Uh, ¢ - 7”]5) - Ah(uha¢ - 7T¢)|

< 1> /(—Auh+cuh—Ahuh)(¢—ﬂ¢)dﬂﬁ|
T€TL T

+ 1Y [ gplne Vsl - mg)hds

< Z /(|—Auh+cuh—/\huh|
T€Ty U7
1
+ gpmax|n- Vup]|)[¢ — ¢l do
= Y [ (Ri+R)|¢—ng|dz

T€TL T

where R;(up, Ap)|r = |Aup—cup+Apup| and Re(up)|; = 57 maxgr |[n-Vuy)|.
[-] denotes the ”jump” in the function over an interior boundary. The second
term in the first inequality is not on the original form as it would appear
after a partial integration. Each interior boundary will be counted twice
so we divide the contributions from the normal derivative on these two
tetrahedrons with a weight of one half [6].

We can now formulate the error function f defined on each tetrahedron,
T € Tp, like this

£0) = 1o0) = i [ (Bi+ RO\ — ] da. (13)

~ wol(7)

So for ¢ =0 we get A\, — A < C X cq fo(T) - vol(7) =: E()), while for the
corresponding eigenfunction error e = uj —u we get |le]| < C X o7 fy(T) -
vol(1) where ¢ = e/||e|]| and C' = 1/(1—6). These formulas makes it possible

10



to solve the problem adaptively and they also give an upper bound of the
error.

As mentioned before we want to solve the dual problem and since it
is equally hard to solve as the original problem we need to use the finite
element method for solving this problem as well.

Unfortunately we can not solve the problem numerically as it is stated
in (8). Both 9 = e/|le|| and A are contained in the formulation of the
dual problem and they are both unknown. This means that we need to
make approximations of these quantities and we will now analyse how much
perturbations affects the solution of the dual problem.

We start by discussing how to approximate ¢ = e/||e||. The only thing
we know about 1 for sure is that it has to be orthogonal to u so we have a
consistent system of equations and that it has to have L?-norm one. These
properties can be guaranteed also when solving the dual problem numeri-
cally. The thing we can not guarantee is that our normed orthogonal func-
tion %) is equal to the normed error. So we want to show that we can choose
1 quite far from e and still get an OK error bound on the eigenvector error
in the L%-norm.

If we combine (9) and (10) we get the following equation

(e, ¥)| < laun, ¢ —7¢) — An(un, d — 7¢)| + bllelll|4|

If we let 1 = (e + de)/||e + de||, where ||de|| < ||e||, we can estimate the left
hand side from below in the following way

e+ de le]l? lelllidell _ llellCllell = [1del])

(e, |2 =
lle +dell ™~ llell + llaell  [lell + [|del] lell + [|dell

which gives us

lell = lIell

[
el 1sel

5) < |a(u’ha ¢ - 7T¢) - Ah(uha ¢ - 7T¢)|

Again from the a priori error analysis we assume that § < 1. This means
that the a posteriori analysis for the eigenvector (11) still holds but the
(1—4) in the left hand side is replaced by (Hi”;”gi” —4). Since e is unknown
we can not calculate this factor but we can still see that even if our guess of
e/|le|| is not very accurate we still can get an OK error bound. For example
if ||del|/||el| = 1/2 we get (1/3 — §) which is not to bad.

The next issue to deal with is the fact that the dual problem contains the
unknown A. The only sensible thing to do must be to replace A with A\, which
is the best approximation we have. To do this we need to ensure that small
perturbations in the eigenvalue gives small changes in the solution of the
dual problem. We will need to study a new space for the weak formulation
of the dual problem to get a well posed problem. Lets call the space of all

11



functions in H} that are orthogonal to a certain eigenvector u corresponding
to the eigenvalue X in the dual problem V.

We will now state the weak formulation of the dual problem: Find ¢ € V
such that

a(p,v) — Mg,v) = (¢¥,v), Vv eV.

The aim in the following theorem is to give an upper bound of how much
the solution changes for on small perturbations in A.

Theorem 3.1 Let (a) a(p,v) — N\j(d,v) = (Y,v), Vv eV and let (b)
a($,v) — )\;-‘(q;,'u) = (¢,v), Vv € V. Then we have

19 = 8l o =2 (14

ma. -
Bl ~ A AR — A

Proof. Subtract (a) from (b) and we get
a((;s - ¢7U) - )\-};((}3 - ¢,U) = ()‘;l - )\])(QS, U)

but ¢ —d € V C Lo which means that ¢ — ¢ = Ei#((z — ¢, v;)vi. This gives
us

(A} = X)) (,v)

_ G(Z(QE — ¢, 'Uz')'Uia'U) — )\;’(Z(q; — ¢, 'Ui)'Uz',’U) -

i#j i£]
= Z((Zfg - QS,’UZ')CI(’UZ',’U) - A;l Z(QZ’; - (,ZS,’Ui)(’Ui,’U) =
i#] i#]
= Y (d— b, vi) (A — M) (vi,v)
i£]

since a(v;,v) = Nj(vi,v). With v =wvg, k # j we get

M=)

Ak — A?’ (¢a Uk:)'

((g - ¢,Uk) =

Using this equality we get

Ip— I =(d— b — ) = (d— 6, (¢ — p,vi)vi) =

i
; A=A M
= — ¢ v;) L N < j e
;Oﬁ b3 i (¢,vi) < max| N 6 — ¢llllgll

which proofs the theorem. M

12



Figure 2: The upper bound of the error from (14) is plotted versus A\,. The
integers on the z-axis refers to eigenvalues \; starting with the one we want
to approximate.

As long as the approximate eigenvalue is fairly close to the exact eigen-
value, that is much closer to the right one then to any other eigenvalue in the
spectrum, will the solution to the modified problem be close to the solution
of the exact problem. But if the approximate eigenvalue is so poor that it
coincides with an other exact eigenvalue we will have no idea of how good
the associated dual solution is from the estimate. This is not strange since
we then get the dual solution associated with an other eigenvector which
may vary a lot from the one we wanted. To get a better qualitative view of
this we will plot (figure (2)) the right hand side in the theorem above versus
the parameter Ay, in a special case. Notice the dashed line where the relative
error is equal to one. When the right hand side is close to or bigger than that
we can not say anything about the accuracy of the solution since the error is
of the same order as the solution itself. Again we draw the conclusion that
we need a good approximation of A to get a good approximation of ¢. We
also notice the continuous behaviour of the right hand side close to the exact
eigenvalue which gives convergence to ¢ when A\, — A. It is important to
notice that this theorem is also of interest when calculating the eigenvalue
error. It means that we just have to worry about discretisation errors since
we have control over the modification of the equation.

As a summary of the last part of this section we can say that we have
noticed the singularity of the dual problem, understood that the solution
in a certain direction is not interesting. Then reformulated the problem to
the interesting part of the solution and got rid of the singularity and proved
that the solution of the dual problem depends continuously on changes in
the eigenvalue .

13



4 Implementation and numerical aspects

Lets go back to the discrete weak form of the original problem (4) with uy
replaced with > 7" U; ;. Forallj€1...n

0
= a(d_Uiwi, ;) — M(O_ Ui, ¢))

=1 i=1

n n
= > Uialpi, 5) = M ) Ui (i, 95)
i=1 i=1
or on matrix form:

AU = \ MU (15)

where {Al Z,j} = a’(‘Pia@j)? {Ml Z,]} = ((Plagoj) for all ’L,] € {11 v an} and
U is a (n x 1) vector containing the U; values.
Similarly we get the following equation for the dual problem

Ay® — AMy® =F (16)

where F' is a (n x 1) vector containing the nodal values of the scalar product
(1, ;) for all i € {1,...,n}. The matrices A;, Ay and My, My depends on
the method and mesh which do not have to be the same for the original and
dual problem.

There are some good reasons for solving the two problems with the same
method and mesh thou. The first is of course that time can be saved since
the matrices are already calculated. An even more important thing is that
U will be known which means we know the null space of our matrix and we
can use this to find the solution to the dual problem orthogonal to U. This
reason is in fact good enough by itself as we will see later in this section. We
can also see that it is going to be a big problem if our approximate eigenvalue
Ap is close to the corresponding eigenvalue of the alternative discretisation
(which we hope it is!). This is because we can not take away the singular
direction in the new discretisation since we have not solved the eigenvalue
problem on this mesh which means that we will most likely end up with very
ill-conditioned or singular matrices that we can not solve in an effective way.

A fourth reason comes from the discrete version of theorem (3.1) which
reads

18 — 3| A= h
< = (-

where we instead of the eigenvalues A; of the operator L now have the
eigenvalues Af of the matrix M~ A. This is derived by matrix pertubation
theory. The constant C' can now be calculated since the eigenvalues of M~ A
are known and we get a good measure of the effect of replaceing A with Ap.
We leave the this discussion and focus on how to construct the matrices A
and M.
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4.1 Basis functions and matrix assembling

We need to choose a proper set of basis functions for V. In this paper we
will focus on two different choices.

Definition 4.1 (piecewise linear basis function) Given a mesh we de-
fine ¢;, the i:th basis function, to be the piecewise linear function with value
one in the i:th node of the mesh and zero in all other nodes.

So we have n different basis functions all with local support. On each tetra-
hedron just four basis functions will be non-zero. Lets call these ¢1, ¢2, ¢3
and ¢4. They all have the value one in one node and the value zero in the
other nodes on the tetrahedron. Since a tetrahedron has four nodes we get
four different combinations. The resulting method with this choice of basis
functions is often refereed to as ¢G1l or continuous Galerkin of order one.
The other case is piecewise quadratic functions and can be defined like this:

Definition 4.2 (piecewise quadratic basis function) Given a mesh we
construct a new node in the middle of each edge on each tetrahedron. This
means that each tetrahedron will consist of ten nodes. We define 1);, the i:th
basis function, to be the piecewise quadratic function with value one in the
i:th node of the new mesh (now consisting of more than n nodes) and zero
in all other nodes.

If we again look locally on one tetrahedron we will now have ten different
basis functions with non-zero values. Lets call these functions {1;}1%,. We
can construct them from our four linear functions on each tetrahedron in
the following way:

Let i = {corner nodes}, then 1h; = 2¢? — ;. Let | = {new node between
j and k}, then 9, = 4¢;py. In analogy with the piecewise linear case this
method is called cG2.

Now we’re ready to discuss how to evaluate the A and M matrices.
There are mainly two problems that arises here, the first problem is how to
evaluate the scalar products for each entry in the matrices. Since the terms
(Vi, Voj) and Ap (@i, ;) has polynomials in the integrand they can be
calculated exactly using the formula [3]

3!m1!m2!m3!m4!
(m1 + mg + ms3 + myq + 3)!

[ g e i do vol(r) (1)
T
where m; € N. In the ¢G2 case we just need to express the quadratic basis
functions in terms of the linear as described above. This means that the
integral is mainly independent of which tetrahedron it is calculated on. The
only tetrahedron dependent factor is the volume . This can be used to speed
up the matrix assembling algorithm a lot.

The remaining part to be evaluated now is (c(z) ¢;, ¢;). Since c(z)
can be an arbitrary positive function it is often impossible to calculate the
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scalar product exactly. There are two ways to go from here, one is simply
to approximate ¢(z) with the value in the centre of each tetrahedron and
move it outside the scalar product and proceed as above. The other way is
to numerically calculate approximations to the whole product (c(z) ¢;, ¢;)
by calculate the integrand values in certain points called Gauss points and
calculate a weighted sum of these values. For a discussion of how this is
done in one dimension see [16].

Depending on the number of points it is possible to achieve exact inte-
gration up to a given polynomial degree and then hopefully a good approx-
imation to the exact value. The problem in three dimensions is that the
number of points increases rapidly for higher order of accuracy.

In the dual problem the products in the F-vector is calculated in the
same way as the products in the matrices A and M. Whether Gauss points
is used here or not depends on how hard the function 1 is to integrate.

The second problem is how to administrate all these different products
in a computer code. To describe this we need to know how the mesh infor-
mation is stored in the computer. The software used to generate mesh and
plot solutions for this paper has been FEMLAB made by COMSOL. The
mesh generator uses the Delaunay algorithm and stores the mesh informa-
tion in three matrices p, ¢t end e. The p-matrix contains three rows with
the space coordinates for each node. The t-matrix contains one column for
each tetrahedron. Each column mainly consists of the four nodes associ-
ated with that tetrahedron. If ¢G2 is used each column have to contain ten
nodes. The e-matrix contains information of the boundary. Among other
things each column contains the three node associated with each boundary
triangle. The number of columns is the number of boundary triangles. With
this in mind we can explain roughly how the matrix assembling is done in
MATLAB using the ¢G1 method with the potential approximated by the
centre value of each tetrahedron.

First allocate memory for the two matrices A and M. Then calculate
the first part of (17) once for all combinations of the four basis functions,
that gives a (4 x 4)-matrix, then loop through all tetrahedrons and calculate
the gradients of the basis function, the volume of the current tetrahedron
and the value of the function ¢. Finally add the contributions from this
tetrahedron to the rows and columns in the matrices associated with the
current tetrahedron in A and M. For a more extensive discussion of this
matter see [15].

4.2 Boundary condition

The boundary conditions considered in this paper are homogeneous Dirich-
let, that is u = 0, on 92\ I's and periodic boundary conditions on I'y, where
[y is either empty or the four sides of figure (1) perpendicular to the zy-
plane. To get Dirichlet conditions we just need to take away the rows and
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columns associated with the boundary nodes from the matrices (and vector
in the dual case). This works since we already know that the solution has
the value zero in these nodes so associated rows and columns will have no
influence on the solution in other nodes.

Periodic boundary conditions means that the solution repeats itself over
the boundary to an imagined identical domain. They are a bit more tricky
for several reasons. First of all the periodic condition must be applied on
two identical parts of the boundary because there must exist two part with
the same solution if the solution is periodic. These two parts must also
have the same distribution of mesh points so each node on the first part
has a ”twin” node on the other part. Then it is important to give one of
these parts the status of being the master and the other one to be the slave
since we just want the actual equation system to contain interior nodes and
master nodes. The slave nodes will just be given the same value as their
twin master nodes. Unfortunately we can not just take away the rows and
columns associated with the slave nodes, as in the case with Dirichlet condi-
tions, because its "neighbours” (closest nodes) will now also be neighbours
to the master nodes. So before erasing the rows and columns associated
with the slave nodes the neighbour information must be passed on the rows
and columns associated with master nodes. It is of course possible to mix
Dirichlet and periodic condition as long as it is on different parts of the
boundary and the ”periodic part” fulfils the demands described above.

This ends the problem of calculating the matrices and vector needed to
solve the discrete problems (15) and (16).

4.3 Numerical methods for solving eigenvalue problems

There are two main methods for solving eigenvalue problems, direct and it-
erative. Direct methods are used when all eigenvalues and optionally eigen-
vectors are wanted for a given matrix. The complexity of the direct methods
are normally of the order O(n?). In MATLAB the direct solver in is called
eig. To read more about direct methods see [10]. Iterative methods are
used when just some eigenvalues and eigenvectors in the spectra are desired.
MATLAB:s iterative solver is called eigs.

Since the matrices that arises from a finite element matrix assembling
are sparse and big the choice of method in this case is really simple. First
of all would it be hard to store all eigenvectors that comes from the direct
method because they do not need to have the same sparse structure as the
original matrix, the complexity is to high, it would take to much time to
solve the system and last in our application the only eigenvalues of interest
are the lowest ones. So everything is then set to use iterative methods.

Let Au = Au be our example problem®. To get an idea of how an iterative

3Eigenvalue codes works for the equation Au = AMu as well.
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algorithm works we first need to define Krylov subspace.

Definition 4.3 (Krylov subspace) The k-dimensional Krylov subspace
Ki(A, ) is span(z, Az, A%z, ..., A¥1z).

We can see that the power method [10] for finding the eigenvector cor-
responding to the highest eigenvalue given an initial vector z;, spans the
Krylov subspace Ki(A,z1) with its k first approximations. In the power
method the vector z;, = A¥ 'z is chosen as an approximation of the eigen-
vector corresponding to the highest eigenvalue, in more sophisticated meth-
ods the "best” approximation in the Krylov subspace is chosen instead of
just zg. In fact this subspace can be used to calculate the k first eigenpairs
by using the Rayleigh-Ritz method. If other parts of the spectrum are de-
sired we need to use inverse iteration with shift which means that we have
to look for an optimiser in Ky ((A — o)™}, z1) instead.

Let K denote the Krylov subspace

[1,Az1,...,A¥"1z1] = [21,29,...,24]). Then AK = [z9,..., 74, A¥z1]. As-
sume that K is non-singular, then let ¢ = —K ~'A*z; which gives AK =
K [eq,e3,...,ex,—c] = K C, where e; is the i:th column in the identity ma-

trix. C is upper Hessenberg [5] and K~!AK = C. Let K = QR be the
QR-decomposition of K. Then we have

K 1AK = (R 'QT)A(QR)=C = QTAQ=RCR '=H. (18)

R and R™! are both upper triangular (think of how you would calculate
R~! with the Jacobi method) and C is upper Hessenberg which means that
H is upper Hessenberg. Since we are working with symmetric matrices
this means that H is also lower Hessenberg hence tridiagonal since H' =
(QTAQ)T = QTATQ = QT AQ = H. The columns in @ can be computed
one at a time using the Arnoldi or Lanczos algorithm described in [5].

Let now Q = [Qk, Qy] where Q) is the first k£ columns of @ calculated
with for example the Lanczos algorithm and @, are unknown columns of Q.
Then the eigenvalues of A can be approximated by the Ritz values which are
the eigenvalues of the tridiagonal matrix T} = QfAQk. The corresponding
eigenvectors are given by Q.V if T, = VAV is the eigendecomposition of
Tk. It can be shown [5] that this approximation is the best in the current
Krylov subspace in the sense that [|A(QxV) — QxV Al|2 is minimised.

As mentioned before the built-in MATLAB function that uses iterative
methods is eigs. There is an other code written by A. Ruhe at Chalmers
University of Technology more suitable for solving big sparse eigenvalue
problems called fleig which have been used in this paper. This program is
included in FEMLAB.
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4.4 Algorithms for solving singular systems of linear equa-
tions

The matrix equation that arises from the dual problem (16) may at first
sight look like an ordinary system of linear equations. Well it is a system of
linear equations but it is singular since ® = ®y + av, where o € R and v is
the null space of B = A— AM, solves the system as well. To get a consistent
system we need as mentioned before to ensure that the right hand side has
no component in the ”singular direction”. This means that it has to be
orthogonal to U with respect to the scalar product (v, w) = v? Mw which is
the discrete variant of the L? scalar product. From the a posteriori analysis
(3.2) we see that we just want to find a solution to (16) that is orthogonal
to the null space of B. This can be done in different ways.

We have a matrix B € R™*" with rank n — 1 since if ® is a solution to
B® = F then so is ®+v where v € null(B). We want to find the component
d( of @ that is orthogonal to v. This is the same as finding the solution ®
that has minimal 2-norm.

Let [U,%,V] be the SVD of B withU = [u1,...,u,], V = [v1,...,v,] and
¥ = diag(o1,...,0n-1,0). Then it can be shown [9] that & = 2?2—11 u{ibvi
minimises || B® — F'|| as desired. This can also be expressed in terms of the
Pseudo-Inverse, BT, of B. Bt = VX1tU” where &1 = diag(g—ll, e, ﬁ, 0).
In this notation ® = BTF. The pseudo-inverse can be found in MATLAB
and is called pinv.

This way of solving the problem may work in theory but it is not a good
solution because it takes too much computation time. For a typical problem
will the computation of the pseudo inverse could take ten times longer than
all other computations together which is not acceptable. A better approach

is to use the fact that we know the solution U of the original matrix problem

T
15) which means that we can construct the matrix P = I — UW U)” which
UTMU

filters out the singular direction of the matrix. For example U7 M (Pv) =
T

UT My — UTMYMY)_y — gT My — (MU)Tv = 0 for any vector v since M
is symmetric. By multiplying both sides of (16) with this matrix P we will
remain in the orthogonal complement of U when we use iterative methods
for solving the system of equations which means that we are solving the
system PB(P®) = PF instead. This problem have been studied by G.
Sleijpen and H. A. Van der Vorst among others and it occurs when deriving
the correction in the Jacobi Davidson algorithm. To read more about this
see [2].

The best thing to do from here, in fact this is almost always the best
way to go when dealing with three dimensional problems, is to use itera-
tive methods to solve the system of equations. Depending on the choice of
eigenvalue in the dual problem we will get either a positive semi definite ma-
trix or an indefinite matrix. These different cases require different iterative
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algorithms. In the first case, which only occurs for the lowest eigenvalue,
conjugate gradients can be used. In the indefinite case we use the minimum
residual method. It could of course also work for the lowest eigenvalue but
conjugate gradient is a very fast algorithm and therefore better to use if pos-
sible. For an extensive explanation of these methods see [9]. These methods
are so well implemented* that the time of solving the dual problem here is
in the same order as the matrix assembling.

4.5 Adaption

We are now ready to discuss the adaptive algorithm which has been one of
our final aims in this paper. The theory that will be used is all presented
in the error analysis chapter. The equation of most interest is the error
function (13) which as we will see gives all information about the refinement
of the mesh we need.

The first thing to do when using an adaptive algorithm based on an a
posteriori estimate is to solve the discrete version of the original problem
(15) to get the approximate solutions to the eigenvectors and eigenvalues
of the problem. The next step is to choose which eigenpair (u,\p) we
want to analyse and improve our solution for. We will discuss the algorithm
for eigenvector adaption since the eigenvalue analysis does not include the
solving of a dual problem.

Given an approximate eigenpair we need to calculate the different com-
ponents in the error function (13). The residual part is done by calculating
the contribution for the interior and the boundary of the tetrahedrons sep-
arately. Since we are using piecewise linear functions the Laplacian will be
zero in the interior. The values of ¢(z) is just approximated by its value in
the centre of the tetrahedron as when the original problem is solved. This
value is taken minus the approximate eigenvalue and multiplied by the ap-
proximate solution in the centre of the tetrahedron. For the boundary part
of the residual we use the fact that the gradients of linear basis function
has already been calculated while deriving the A matrix. Since we are deal-
ing with ”jumps” here we also need to know which two tetrahedrons that
lives on each side of every interior surface. This can be done by creating a
structure with seven values for each surface. The first three are the nodes
associated with the surface. Four and five are associated with one of the
tetrahedrons that borders the surface. Five is the tetrahedron number and
four is the local index of the corner of that tetrahedron which is not in the
surface. Six and seven are the same for the tetrahedron on the ”other side”.
This structure makes it possible to derive the ”jumps” in the gradients of
the approximate solutions. Finally the ”jump” terms of the four (at most)
surfaces associated with the current tetrahedron are compared and the max-

“Here have Fischers implementation been used from [8].
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imum is taken. The total residual can now be calculated by adding these
two contributions and take the absolute value.

For the other term in the error function we obviously need to solve the
dual problem. Since we have the same method and mesh all the matrices
will be the same. The only new thing to derive is the vector F' in the right
hand side. We then need to choose a function . It is supposed to match
the normed error e/||e||. We know that it needs to be orthogonal to u which
in the discrete case means FT MU = 0. This can be done by multiplying F
with the matrix P mentioned earlier. It also needs to be normed which can
be done by dividing it with ()7 M4))/2, where ) is a vector containing the
nodal values of 9. Then the vector F' is calculated in the usual way by multi-
plying a test function and integrate over the domain. The dual problem can
now be solved using methods described earlier. The dual solution is consid-
ered to be exact throughout the whole error estimate. This is important to
have in mind when we approximate it with the numerical solution. We can
not just subtract the nodal linear interpolant from it as written in (13) since
we then will end up with the result zero. So we need to think about what
this quantity is supposed to describe. It is a continuous function subtracted
by a linear interpolant and from the estimates ||¢ —7¢| < C||h2D?¢|| we can
see that it behaves like the second derivative. One way of getting the essence
from this behaviour from a piecewise linear function is to subtract an other
piecewise function from a more sparse mesh. This is done by creating a lo-
cal interpolant on each tetrahedron by making a nodal interpolant from the
four closest nodes outside the current tetrahedron, that is the four nodes
not included in the current tetrahedron that belongs to the four surface
neighbours to the tetrahedron. Both the dual solution and the interpolant
are evaluated in the centre of each tetrahedron and the difference will after
taking the absolute value be called the stability function.

We are now ready to multiply the residual and the stability function on
each tetrahedron and perform the integration from (13). Since the functions
are considered as constants on each tetrahedron the integration just means
multiplying the integrand with the volume of the tetrahedron. To get a mean
value of the error on each tetrahedron we finally divide the result with the
volume. This gives us a piecewise constant function that defines an upper
bound of the eigenvector error on each tetrahedron. From this function we
determine which tetrahedrons that will be refined and how much. We know
from the a posterior theory [12] that the eigenvector error depends on the
square of the mesh parameter A. With this in mind we can find how many
times we will divide each tetrahedron to get an equidistributed error on the
whole mesh. So what we finally end up with is a vector telling us how many
times we shall divide each tetrahedron. This is given to the mesh generator
and we will get a refined mesh that we can use to calculate a new solution
to the problem.

It should be mentioned that it can be quite hard to succeed with the
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n=339 n=576

Figure 3: The three first plots shows the mesh after zero, one and two runs
through the adaptive algorithm for the first eigenvalue. Each mesh point is
marked by a x. The fourth plot shows slices from the first eigenmode.

equidistribution of the error in one iteration and thats why we often uses
the adaptive algorithm several times to get a small error. Unfortunately
there is one problem that limits the number of adaptive refinements. Since
the tetrahedrons in each refinement are divided they will have worse quality
after each run through the adaptive algorithm. That is why we just uses
the adaptive algorithm a few times and then start over again with a finer
quasi-uniform mesh.

Figure (3) shows a sequence of refined meshes using the algorithm above
on the hydrogen-platinum problem described in section (5.2) with homoge-
neous Dirichlet boundary conditions. The adaption is done for the eigenvalue
error of the first eigenvalue. We can clearly see on the three first pictures
how the new mesh points tends to focus in a small part of the domain. The
fourth picture shows six slices of the solution.

As we can see the lowest eigenvector has the value zeros almost every-
where except in the lower left corner. This is probably the strongest reason
for using adaptive FEM on this problem.
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5 Application in Quantum physics

We will now leave the general discussion and focus on a certain eigenvalue
problem from the field of quantum physics. To do this we need some back-
ground information about the Schrédinger equation.

5.1 The wave equation of Quantum Physics

Before we present a motivation of the formulation of Schrédinger equation
lets underline that this is not a proof of the equation and there exist no such
proof either. The only proof you will get is that the equation seems to give
really reliable results compared to experiments.

After Maxwells work with the theory of electro-magnetics in the second
half of the 19:th century and experiments with interference there where no
doubt about that electro-magnetic radiation was a wave phenomenon rather
than a particle one. This picture changes drastically in the early years of
the 20:th century. Albert Einstein wrote a very famous paper about the
photo electric effect in 1905 where light (electro-magnetic radiation) must
be considered as particles or light quanta (photons). This meant that there
where clear evidence for both interpretations at that time and this problem
is often refereed to as the particle-wave duality of light.

In 1924 the French physicist de Broglie took a big step towards under-
standing the physics in really small scales. He claimed that the duality of
light in fact also existed for other particles. This meant that all particles has
an associated wave package. It can be described by a wave vector k pointing
in the direction of the wave with magnitude 27 /X where X is the wavelength
and an associated energy E. De Broglie came up with the following famous
results in his doctoral theses

F = hw,
7= hk,
where w is the angular frequency and p is the momentum. The aim was
now to find a mathematical expression for this wave package as a function
of space and time that could describe the likelihood of finding the particle in
position 7 at time t. It was also important that the solutions could be super-
positioned to be able to describe interference phenomenon which means that
the desired wave equation should be linear and with coefficients independent
of quantities depending on the movement of the particle.
Starting with a plane wave, denoted ¥(7,t), and de Broglies laws we get

O(71) = ez’(E-f’—wt) — i (FF-Et)

Than we construct an arbitrary wave function by superposition of plane ones
with different wave vectors

Vitt) = [ al@etFT I
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Along with this information we know that for a particle in a potential we
have E = % + V(7,t), where m is the mass of the particle and V(7,¢) is
the potential, that is the energy of a particle is the sum of the kinetic the
potential energy. We can now formulate the following partial differential
equation

0T K2 i i
h— —A\I/—V\IJ:/ E— L _Vien@™E) Bz _ .
‘ ot + 2m a(ﬁ)[ m ]6 D
This gives us finally the Schrédinger equation for a particle with mass m in
a potential V (7, )
ov K2

he = - AT+ V.
th ot 2m tVv

The quantity | ¥ (7, ¢)|? describes the likelihood to find the particle at position
7 at time t.

If the potential term is independent of time we can separate the space
and time dependence in the equation as follows

(7, 1) = u(@)o(t)

which gives us
0 R’
ihua—z = —%’UA’U, + Vou
after division by uv we get
ih O 1, »?
Z;8—:(75) = E[—%Au + Vu](z) = constant = E.
This gives the following two equations for v and v respectively

2

h
XA .y 1
v u+Vu u (19)
ov
h— = Ew.
tho v

The first of these equations is often refereed to as the time-independent
Schrodinger equation and is sometimes written as

Hu = Fu
where H = —%A + V is called the Hamiltonian operator. The trivial
solution to the second equation gives that |¥| = |u| which means that the

interesting quantity is time-independent.

So given a particle, with known mass, and a potential we can now solve
the time-independent Schrédinger equation and get a picture of in which
state the particle can be found. We will also get corresponding energies for
these states as eigenvalues of our Hamiltonian operator.
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5.2 The Hydrogen-Platinum problem

The interaction of hydrogen with metal surfaces has become a very interest-
ing field lately due to the many applications that exists. Among other thing
we can learn a lot about how to store Hs which can help us to replace the
fossil fuels used in cars today with fuel cells which is much better for the
environment. There are mainly two reasons for this. Fuel cells use hydrogen
which is a renewable resource, we will eventually run out of oil. The rest
products from the fuel cells gives no pollution and does not harm the ozone
layer which is not the case with oil. We can already see that some American
cities tries to lower the amount of cars running on gasoline which means
that there also exist commercial reasons to do research in the field of fuel
cells. In this paper we will specially study a platinum (Pt) surface but it is
important to point out that all the theory and results in this paper can di-
rectly be applied just by specifying an other material (potential). Platinum
is often used in catalytic converter which is a vital part of the fuel cell.
The question we ask now is how does the eigenmodes of a hydrogen atom
laying on a platinum surface look like and what energy levels (eigenvalues)
do they have? The mass in the Schrodinger equation (19) will be the proton

mass®. The units can of course be chosen in several ways but we use eV,

fs and A to make the matrix elements moderate in size®. This defines &
and the unit of the potential in the equation. The crucial coefficient c¢(x)
is an approximation of the potential the hydrogen atom detects form the
platinum surface and it is calculated numerically in certain points in the
domain. This is by no means trivial since the potential is generated by a
large number of Pt atoms but we will not go in to that problems here, see
[11] for more information in this area. We just assume that a potential is
given in these points. Then interpolation is done to the actual mesh points.
A potential is defined only up to a constant since the zero level can be chosen
arbitrarily. For simplicity we choose the zero level to be the lowest potential
value in the domain. The coefficient ¢(z) will be bounded by a constant C
so we have fulfilled all the requirements of the operator we had in the theory.

To specify the domain in which the equation is solved we need to look at
the structure of the Pt(111) surface [14]. In figure (4) the atoms are repre-
sented as big circles. From the structure of the atoms it is easy to see that
just every second gap between three atoms can have an atom directly under
it. This reduces the symmetry so the smallest cell becomes the rhombus
cell shown in figure (1). The domain is of course three dimensional. So the
ideal would be to take a prism that starts from the centre of the highest
layer and goes to infinity since the likelihood of an hydrogen atom to pene-
trate through the first layer is very small. Unfortunately this is numerically

5The electron associated with the hydrogen atom is assumed to mix up with the valence
electrons from the metal.
5We want to avoid ill-conditioned matrices.
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Figure 4: The big rings represents platinum atoms in the highest layer and
the small rings indicates where the atoms are in the second highest layer.
The surface is divided into identical cells which can cover the hole surface.

impossible so instead we just cut the prism when the potential from the sur-
face gets to big which means that we approximate the solution most likely
will be zero on the outer boundary. For these reasons we get homogeneous
Dirichlet conditions in the zy-planes.

On the other boundaries periodic conditions would be the natural thing
to have since the cell structure repeats itself. There are no reasons for
the solution to look different on different cells. For physical reasons which
we will not go into here it is of interest to consider homogeneous Dirichlet
conditions on these boundaries as well. Both cases are studies in this paper.
When we from here on talk about periodic boundary condition we mean
the surfaces perpendicular to the zy-plane since we always have Dirichlet
conditions on the two planes parallel to the zy-plane. Dirichlet boundary
conditions will mean homogeneous Dirichlet conditions on all boundaries.

In figure (5) the minimum value of the potential in the z-direction is
plotted in the zy-plane. We can see two wells, one down to the left and
one up to the right. The first one is often refereed to as the fcc-site and the
second one as the hcp-site.

From this plot we would expect that the lowest eigenmode will be lo-
calised in the fcc-site and the second lowest will be localised in the hcp-site.
These two eigenmodes are two of the most interesting in the spectra and
the typical measures the physicists are interested in is the difference in en-
ergy between the "fcc mode” and the "hcp mode”. Another measurement
of interest is how much the lowest eigenvalue changes when the periodic
boundary conditions are replaced by homogeneous Dirichlet. This is called
the bandwidth of the hydrogen ground state. For a more extensive discussion
of these matters see [11]. We will also calculate the two lowest eigenmodes
for a deuterium atom in the platinum potential. This is simply done by
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Figure 5: The minimum in the z-direction of the potential from the platinum
surface plotted in the xy-plane.

multiplying the mass in the Schrédinger equation by a factor two.

There are more modes that are of physical interest but we will focus on
these two in this paper. Mainly for two reasons. The first is that these
modes together with a third one called the "top mode” has the most lo-
calised eigenvectors which means that the adaptive algorithm will work best
on these. The reason why the top mode is not studied is that certain limi-
tations in the FEMLAB mesh refinement code made it impossible to make
an adaptive mesh for this eigenmode’.

In the lower right picture in figure (3) we can see a typical solution in
the "fcc mode”. The solution is zeros almost in the whole domain which
means that the hydrogen atom will most unlikely be found outside the ”fcc
site”. The situation with the second eigenmode is very similar. We want to
use the fact that the two lowest eigenmodes are very localised to small parts
of the geometry to improve the solution by using more mesh points in these
areas.

The adaptive FEM algorithm does exactly this in a systematic way since
the aim with the algorithm is to minimise the error. It also gives an error
bound of the approximate eigenvalue and eigenvector which of course is an
important feature.

"Version 2.1 dose not support mesh refining for periodic boundary conditions. It is
possible to go round this problem if the refinement is inside the domain but it is not so
easy if the refinement needs to be done on the boundary.
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6 Results

Before we present the results of the hydrogen-platinum problem we will
study a test problem with known solution to ensure that the solver behaves

properly.

6.1 Test problem

The test problem is created simply by replacing ¢(z) in (1) with zero and
letting Q be the unit cube. That is

—ANu— A u=0 1inQ,
u=0 on 0.

To test the implementation of the matrix assembling we compare the first
eigenvalue of the discrete problem with the exact first eigenvalue which is
3n2.

Figure (6) (left) shows how the error depends of the number of nodes in
the mesh for the cG1 method. The dashed line is a approximated polynomial
of the form Cn* where n is the number of nodes in the mesh. C and k have
been found using the least square method to be about 140 and -0.7 . We can
get some understanding of why we got this dependents of n even if we do
not have a totally uniform mesh. For a uniform quadrilateral mesh we have
h3n =wol. To get a qualitative approximation the distances between nodes
h we can use the same dependence between n and h for the almost uniform
(quasi-uniform) mesh generated by FEMLAB if we approximate h by some
constant in the whole domain. This can be motivated in the following way.
The number of nodes is proportional to the number of tetrahedrons in the
mesh. The volume of each tetrahedron can be written as Kh? where 0 <
Ky < K < 1. So if we assume that the function h is fairly constant for
the initial mesh we have that k3t ~ wvol ~ 1, where t is the number of
tetrahedrons, which means that h ~ n=1/3.

From the a priori analysis we have that the error depends on h? which in
terms of n would mean n~2/3 which is close the value —0.7 we got from our
guess of the form of the error. In the cG2 case we see the same behaviour
now with C = 1100 and & ~ —1.4 which indicates an error dependence of
the form h* which also agrees with the a priori estimate.

From this we draw the conclusion the matrix assembling seams to behave
as we expected and that the discretisation error for linear basis functions
is of the order h? which gives us information about how well we need to
approximate the function ¢(z) so the error will be of the same order as the
discretisation error of the other matrices.
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Figure 6: The eigenvalue error is plotted against the number of nodes in the
mesh for the ¢cG1 method (left) and ¢G2 (right).

6.2 The Hydrogen-Platinum problem

In this section we will only use the cG1 solver. This is due to the fact that the
implementation of the cG2 code is to slow for this problem. Mainly because
the potential needs to be calculated in so many points (gauss points) to keep
the fourth order accuracy and also because the administrative part of the
matrix assembly will be very slow since it is done in MATLAB. For each
tetrahedron we have to insert a 10 x 10 matrix in the A and M matrices.
This may look as a simple operation but in fact it takes more cpu time than
calculating the entries of the 10 x 10 matrix. The best way of going around
this problem is probably to use a lower level language such as Fortran or C.

We will start by presenting results where the adaptive algorithm has not
been used. Again the mesh generated by FEMLAB will not be uniform in
the sense that there will not exist a constant mesh parameter h to measure
the distances between neighbour nodes. But we will still refer to this mesh
as uniform or non-adaptive since it is close to uniform specially compared
to the adaptive meshes we will study later, compare for example picture
one and three in figure (3). These meshes are often refereed to as being
” quasi-uniform”.

Table (1) shows the results from a calculation of the two lowest eigenval-
ues using periodic boundary conditions for different uniform meshes. The
quantity physicists are interested in is the difference between the two low-
est eigenvalues. We notice quite slow convergence for the same reason as
in the test example. The problem is again three dimensional so we have
h ~ (1/n)'/3. Convergence of the order h? then in terms of n means n~%/3
which means we need to increase n 30 times to get a new correct digit. To
confirm this we will again try to approximate the data by a function of the
following form C; + Con~2/3. The coefficients for \; are C; ~ 0.123 and
Cy = 2.49 and for A9, C; = 0.151 and Cy = 2.46. The result is shown in
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n A1 A2 A2 — A1
1361 | 0.14523 | 0.17183 | 0.026603
2472 | 0.13677 | 0.16417 | 0.027397
4346 | 0.13247 | 0.16070 | 0.028227
5642 | 0.13058 | 0.15898 | 0.028394
6686 | 0.12995 | 0.15811 | 0.028161
9651 | 0.12858 | 0.15673 | 0.028151
11584 | 0.12783 | 0.15613 | 0.028305
14520 | 0.12714 | 0.15555 | 0.028409

Table 1: This table shows results from eigenvalue calculations on a non-
adaptive mesh with periodic boundary conditions. n refers to the number
of nodes used in the computation.

figure (7) (left). Again these numbers are just a quantitative measure of the
error and are just presented here to show the rate of the convergence in a
practical case. We will refer to these solutions (C;) as an extrapolation of
the approximate solutions.

We will use the values of table (1) as reference values rather than the
coefficient C; when we evaluate the adaptive results. The same thing is
now done with the homogeneous boundary conditions and the results are
presented in table (2). Here we got the following values of the coefficients

n Al )\2 AQ - A1
1355 | 0.14604 | 0.17279 | 0.026758
2482 | 0.13607 | 0.16484 | 0.028771
4272 | 0.13257 | 0.16085 | 0.028284
5609 | 0.13097 | 0.15926 | 0.028286
6833 | 0.13008 | 0.15819 | 0.028108
9718 | 0.12859 | 0.15686 | 0.028268
11885 | 0.12779 | 0.15619 | 0.028397
14641 | 0.12732 | 0.15563 | 0.028313

Table 2: This table shows results from eigenvalue calculations on a non-
adaptive mesh with homogeneous Dirichlet boundary conditions. n refers
to the number of nodes used in the computation.

C1 = 0.123 and Cy = 2.49 for the first eigenvalue and C; = 0.151 and
Cy = 2.45 for the second. The result is plotted in figure (7) to the right.

Next we will see how we can improve the convergence by using the al-
gorithm for eigenvalue adaptivity. Table (3) shows the number of nodes,
the first eigenvalue and the estimated eigenvalue error from the a posteriori
analysis for the periodic problem.
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Figure 7: The two lowest eigenvalues are plotted against the number of
nodes in the mesh. The lines are the C; +Can~2/3 approximations to the two
eigenvalues. Periodic boundary condition to the left and Dirichlet conditions

to the right.

1361 | 0.14523 | 0.02616
1614 | 0.13630 | 0.01346
2054 | 0.13237 | 0.00877
2731 | 0.13031 | 0.00673
2472 | 0.13677 | 0.01725
2981 | 0.13115 | 0.01117
3593 | 0.12978 | 0.00608
4531 | 0.12859 | 0.00441
4346 | 0.13247 | 0.01222
5191 | 0.12875 | 0.00531
6515 | 0.12746 | 0.00362
8207 | 0.12687 | 0.00300
5642 | 0.13058 | 0.01009
6652 | 0.12805 | 0.00464
8297 | 0.12693 | 0.00318
10606 | 0.12636 | 0.00248

Table 3: We start with a uniform mesh of 1361 nodes and then use the
adaptive algorithm three times to refine the mesh. Then we start over again
from a 2472 node uniform mesh and so on. The third column contains the
calculated upper bound of the eigenvalue error.
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The final mesh with 2731 nodes gives for example a better approximation
to the eigenvalue then we got from the uniform mesh with 5642 nodes, table
(1). The second eigenvalue from this calculation was 0.16888 which is close
to the result from a uniform mesh with 1361 points which means that the
only the first eigenvalue has been improved. It is also interesting to see how
the error bound seems to give a lower bound of the exact solution A; to be
about 0.123-0.124. Our best approximate eigenvalue from this calculation
is A" = 0.12636 with A} — \; < 0.00248 for 10606 nodes. The results from
the same calculation but with adaptivity for the second eigenvalue with
periodic boundary conditions is very similar so we just present the final
sequence of the last adaption in table (4). In the homogeneous Dirichlet

n Al E(\)
5642 | 0.15898 | 0.00927
6694 | 0.15668 | 0.00490
8339 | 0.15565 | 0.00337
10542 | 0.15511 | 0.00248

Table 4: We start with a uniform mesh of 5642 nodes and then use the adap-
tive algorithm three times to refine the mesh. The third column contains
the calculated upper bound of the eigenvalue error.

case with adaptivity for the first eigenvalue we get similar results presented
in table (5).

All over we can see that we roughly need half the number of nodes to
get the same accuracy as we got with the uniform mesh. This together with
the fact that we have an upper bound of the eigenvector error makes the
adaptive method superior over the uniform and it shows that the a posteriori
analysis works in a constructive way. The results of physical interest will
be taken from the adaptive calculation starting with a quasi-uniform mesh
with 5643 nodes and it will be presented in table (6).

To get a good estimation of the bandwidth of the ground state we would
need to solve the problem with much more nodes since the upper bound of
the errors are much greater than the difference of the eigenvalues. Another
problem is that the meshes are not the same for periodic and Dirichlet con-
ditions. The best approximation in this paper is probably the extrapolation
which gives a bandwidth of the order of 0.1 meV. We see from the tables
above that the errors of our calculations are at least 2 meV so this value
is very uncertain. These values can be compared with the once found by
using finite differences in [11] where A — A\? was found to be 29 meV and
the bandwidth 0.2 meV.

Results from computations in the exact same manner with deuterium
instead of hydrogen is presented in table (7). The eigenvectors will play a
more central role in this calculation. This is due to the fact that the "hcp
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Al EN)
1355 | 0.14604 | 0.02481
1689 | 0.13532 | 0.01179
2110 | 0.13241 | 0.00874
2837 | 0.13006 | 0.00629
2482 | 0.13607 | 0.01628
2974 | 0.13130 | 0.00781
3781 | 0.12900 | 0.00531
4946 | 0.12803 | 0.00409
4272 | 0.13257 | 0.01247
5020 | 0.12917 | 0.00612
6170 | 0.12762 | 0.00408
7715 | 0.12699 | 0.00306
5609 | 0.13097 | 0.00987
6658 | 0.12795 | 0.00445
8272 | 0.12690 | 0.00338
10591 | 0.12641 | 0.00247

Table 5: We start with a uniform mesh of 1355 nodes and then use the
adaptive algorithm three times to refine the mesh. Then we start over again
from a 2482 node uniform mesh and so on. The third column contains the
calculated upper bound of the eigenvalue error.

lower bound

upper bound

2\ 0.12388 0.12636
B 0.15263 0.15511
A A 0.02627 0.03123

Table 6: These results are calculated on adaptive meshes with approximately
10600 nodes using periodic boundary conditions for the hydrogen-platinum

lower bound

upper bound

A\ 0.08610 0.08920
3 0.11723 0.12094
A — b1 0.02803 0.03484
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Table 7: These results are calculated on adaptive meshes with approximately
6300 nodes using periodic boundary conditions for the deuterium-platinum




Figure 8: The eigenvector associated with the first eigenvalue to the left
and the second to the right using Dirichlet boundary conditions. Slices are
shown through the domain where the solution has its biggest value, z=0.35
for the first eigenvector and z=0.39 for the second.

mode” now is represented as the third eigenvalue. The diffusion term in the
equation has become smaller which makes it possible for the first mode to go
further down the ”fcc well” so the former third eigenvalue will now decrease
so much that it will be lower than the eigenvalue of the "hcp mode”.

Finally we will solve the hydrogen-platinum problem using the eigenvec-
tor adaptivity algorithm instead. The physical properties of interest men-
tioned in this paper are mainly associated with the eigenvalues so in this
last part we will focus on how the a posteriori analysis of the eigenvector
differs from the analysis of the eigenvalue.

We will first plot the eigenvectors associated with the two lowest eigen-
values in figure (8). We can see how the first eigenvector is localised in
the "fcc site” and the second one in the "hcp site”. We will now focus on
the first eigenvector and study how the eigenvector adaptivity improved the
L?-norm of the error. We will start from a mesh with 5609 nodes.

The residual looks a lot like the solution wuj since the main term is
|(c — Ap)up|. The stability factor behaves a bit different. In figure (9) is
the solution to the dual problem plotted. We can see some big variations
in the solution but fortunately they are far from the centre of the ”fcc-site”
where the residual will be small. The L?-norm errors are presented in table
(8). It is very hard to say anything about how sharp these bounds are. It
is clear from experiments that the bounds in some cases becomes very bad.
Probably because of the absolute value taken in (13). We can never use the
fact that the dual solution changes sign when the residual does not which
would mean cancellation.

34



Figure 9: The solution of the dual problem using an adapted mesh of 6539
nodes.

nodes | upper bound of ||e]| ‘
5906 0.12385
6593 0.06206

Table 8: These are results for the first eigenvector calculated with Dirichlet
boundary conditions.

6.3 Future work

This paper is a starting point for further work in the area of using adaptive
finite element methods for solving problems with light particles on a metal
surface with high accuracy and error control.

The computational part of this paper has been done mainly to illustrat-
ing the theory and not to create a software that can compete with the best
in solving the time-independent Schrodinger equation for a particle in a po-
tential. To go one step further we would probably need to change language
to a faster one such as C or Fortran and to think more about implementa-
tion aspects such at memory allocation. If this could be done higher order
method such as ¢G2 would be very interesting to study. Since the boundary
conditions are periodic and the geometry is fairly simple it would probably
also be a good idea to try spectral methods on this problem specially for
calculating the bandwidth in the deuterium case which we have not men-
tioned here. It suppose to be in the order of 10~ eV [11] which of course is
far from what we have been able to resolve in this paper. Spectral accuracy
might do the trick here.

The software limitations with periodic boundary conditions mentioned
before will hopefully disappear in the next versions of FEMLAB which will
make it possible to study higher eigenmodes in the same manner as the
two lowest ones. It would be nice to get a sharper upper bound for the
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eigenvector error in the L?-norm when we can study these higher modes.
Another thing that could improve the eigenvector error bound is to put
more thought into how to choose 1, in the dual problem and to bound the
interpolation error for the potential term.
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