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A Multi-Adaptive ODE-Solver

Anders Logg
March 13, 2000

Abstract

In this work I present a multi-adaptive finite element method for
initial value problems for ordinary differential equations, including
an a posteriori estimate of the error.

The method is multi-adaptive in the sense that the resolution of
the time discretization is chosen individually for each component of
the system of ordinary differential equations, based on an estimation
of the error.

The method has been successfully implemented in the Tanganyika
library, available for download. Included are a few example compu-
tations made with this library, as well as instructions for download-
ing and using the package.

Note

This report has been previously printed as the author’s MSc thesis in
1998, and is now being printed again for sake of availability. This ver-
sion is identical to the original report, except for a few minor changes.



Acknowledgements

I wish to thank

e Claes Johnson, my advisor, for his continuous encouragement
and support in the making of this project;

e Rickard Lind, Mathias Brossard and Andreas Brinck for beta-
testing the programs;

¢ Jim Tilander for his expertise help with C++;
e Greger Cronquist for some useful hints on the typesetting;
e Goran Christiansson for proof-reading the manuscript;

e Anna for letting me do this all summer.



Contents

1

5

6

Introduction

1.1 Quantitative ErrorControl . . . . . .. ... ... ... ....
1.2 Multi-Adaptivity . . ... ... o o oL

The Method — Multi-Adaptive Galerkin

2.1 Equation .

2.2 Finite Element Formulation . .. ... . ... ... ......
221 Details . .. ... ... ..
222 Evenmore Flexibility . . . . ... ... .........
2.3 ErrorEstimation. . .. ... ... ... ... . ... . ...,
231 TheConstantCy, ... ... ... ............
2.3.2 A Correction of the Error Estimate . . . .. ... ...
2.3.3 Other Error Contributions . . . . .. ... ... .. ..

2.4 Adaptivity

24.1 Moderating the Choice of Timesteps . . . . ... ...
2.4.2 Choosing Data for the Dual Problem . . . . . . .. ..

The Implementation — Tanganyika
3.1 Individual Stepping . . . .. ... ...... ... ... ..
3.1.1 Organization, Book-Keeping . . . ... ... .....

3.2 Quadrature

33 TheProgram . .. ... ... ...................
331 Language . ............... .. .......
332 Modularity ... ... ... oo o

Results

41 AFirstSimpleExample . . ... ......... ... ....
42 Wave Propagation in an Elastic Medium . . . . ... ... ..

4.3 Gravitation

44 TheLorenzSystem . .......................
4.5 True Error vs. the Error Estimate . . . . ... ... ... ...

Conclusion

Download

Bibliography

Appendix

15
16
16
17
17
18
18

29

30

31

32



A Notation

33



1 Introduction

Numerical methods for solving initial value problems for ordinary dif-
ferential equations have been around for a long time and the number of
methods is almost as large as the number of equations.

Common methods, such as the ones supplied with Matlab (ode45(),
ode23(), odel13(), ode-what ever () ), are often fast, meaning that
they terminate in a short time.

These methods often provide some sort of local error control, where
the error is controlled in some way in each integration step. This, however
does not mean control of the global error. Although a tolerance is speci-
fied, it is not related — otherwise than by some (hopefully) monotonically
increasing, and otherwise unknown, function — to the global error of the
solution. The program is thus not concerned with the actual value of the
error, leaving the user unaware of the quality of the computed solution.

In fact, it was wrong.
Bill Clinton (1998).

Using such a classical numerical solver usually means solving the prob-
lem at a number of different tolerance levels for the local error, and com-
parisons between these solutions. Error control is thus (perhaps) obtained
manually. This manual effort should also be taken into account when com-
paring the efficiencies of different solvers.

1.1 Quantitative Error Control

Using a posteriori estimates of the error, i.e. error estimates based on the
computed solution, it is possible to accurately control the size of the global
error.

Finite elements present a general framework for solving differential
equations, such as e.g. initial value problems for ordinary differential
equations, considered in this report. Depending on the choice of basis
functions, normally piecewise polynomials of different kinds, the result is
a new step method for solving the initial value problem. These methods
include cG(1), cG(2), ... ,dG(0),dG(1), ... .

Efficieny is obtained by adaptivity, putting the computational effort where
it is most needed. For initial value problems this usually means adjusting
the size of the timestep, thus choosing the timestep to be small where the
solution is especially sensitive to errors in the numerical method.
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Proper a posteriori error control requires knowledge of the stability of
the problem. Stability properties are in general obtained by solving a so-
called dual problem. Thus, error control requires some extra effort from
the solver, which in some cases is comparable to the effort of solving the
problem itself.

Work on quantitative error-control during the last ten years (see ref-
erences [1]-[10]) has resulted not only in extensive theoretical results, but
also in working implementations of the methods, such as e.g. CARDS
(solver of initial value problems for ordinary differential equations — see
[8]) and FEMLAB
(solver of partial differential equations).

The current approach to quantitative error control was originated with
the article by Johnson ([9]) in 1988, discussing error estimation for the
dG(0) and dG(1) methods. Error estimation for these methods are fur-
ther discussed by Estep in [5]. The c¢G(¢g) method, which is the basis for
the multi-adaptive method presented in this report, is discussed at length
in [7]. A more classical approach to error analysis can be found in [11].

A comprehensive and major article on adaptive methods for differen-
tial equations is [3]. A general and non-technical discussion on error con-
trol and adaptivity is [6].

1.2 Multi-Adaptivity

It is desirable, in short, that in things which do not primarily concern others,
individuality should assert itself.
John Stuart Mill, On Liberty (1909).

If we view a system of ODE:s as the representation of a mechanical
system and notice that different parts, components, of such a system may
behave very differently — some parts oscillating very rapidly and others
slowly, perhaps undergoing even uniform motion — we realize that differ-
ent components of an ODE-system may be differently sensitive to the reso-
lution of the discretization. There is obviously a need for multi-adaptivity,
allowing individual components of an ODE-system to use individual timesteps.

Normally, the same timestep is used for all components of an ODE-
system. The novelty of multi-adaptivity is thus allowing individual adap-
tion of the timesteps for the different components.
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Figure 1: These are the actual timesteps used for an example computation
on a simple two-dimensional system.

2 The Method — Multi-Adaptive Galerkin

This section describes the multi-adaptive method, complete with an a pos-
teriori error estimate.

The basis for the multi-adaptive method is a generalization of the con-
tinuous Galerkin method, ¢G(gq), described in e.g. [4].

2.1 Equation

The equation to be solved is

du _
dt (t) - f(ua t)a t € (OaT]a (1)
u(0) =y,

where f = (fi,..., fn) is some function'depending on the solution

u = (uy,...,uy)and ¢, which may represent time.

In order to guarantee the existence of a unique solution, it may be good to know that
f is Lipschitz continuous.



2.2 Finite Element Formulation
The weak (variational) formulation of equation (1) reads

Find u = u(t) such that u(0) = u and

T T
/ (,v) = / (f,v) for all test functions v, (2)
0 0

where (-, -) denotes the usual /?-inner product.
To define the multi-adaptive ¢G(g) method, we introduce the trial space,
V.Y, and the test space, WM, of functions on [0, 7|, where

VN = {v:v; € Pi(l;),j=1,...,M;, v;is continuous, i =1,... ,N};
ij:v = {UIUiEPqi_l(Iij),jzl,...,Mi,i:]_,...,N}.

Thus v € V¥ means that all its components v; are continuous and piece-
wise polynomial on the intervals {/;;}}%, and v € W} means that all its
components v; are in general discontinuous and piecewise polynomial (of
one degree less) on the same intervals as the corresponding trial function.

The multi-adaptive ¢G(q) method is then

Find U € V¥ such that U(0) = u and

T T
[ W= [ o wew. ®
0 0
The discontinuity of the test functions means we may rewrite this as

Find {&;x}{, such that

/ UZ‘U :/ fiv Yv e Pqi_l(li]‘), j=1,...,M;;1=1,...,N, (4)
I;; I

U(0) = up and U is continuous,

where the {{;;} are the parameters determining the piecewise polynomi-
als {U;}. Note that there are (¢ + 1) parameters determining a polynomial
of degree ¢, so the index k is from zero to g.

Finding the parameters {¢;;} in agreement with eq. (4) yields the de-
sired solution. What remains is to find the proper discretization, {/;;}, i.e.
the timesteps {k;;}. To choose the timesteps, we need an error estimate,
which will be the basis for adaptivity. By means of this error estimate, the
discretization will be chosen in a way to give a resulting final error smaller
than the specified tolerance.



2.2.1 Details

The parameters {;;;} may e.g. be the nodal values for a subdivision of
the intervals into g; subintervals. For an interval I;;, let the nodal points
of an equipartition of this interval be {¢;;;}}_,. The corresponding nodal
(Lagrange) basis functions, {\;;x : R — R}, are then defined on I;; for
k= O, 7Qi/by

b et oo (t = tos ) — s et = o
/\ijk(t) _ ( ZJO) ( 15,k 1)( Zj,k+l) ( Zth) ) (5)
(tije = tijo) == - (tajk — tigr—1) (tije — tijre1) - - (tije — tijg;)

On the interval I;;, U; may then be written (uniquely) as

q;
Ui = Zfijk)\ijk; (6)
k=0

for some values {1}
Inserting this into eq. (4), computing a few integrals (simple but te-
dious) and solving the resulting system of linear algebraic equations, yields

i = &ijo + [ e (13;(1)) fi(U, t)dt,
ij2 = &ijo + [i; wea(7i; (1)) fi(U, ),

: @)
Sije = &ijo + Jij Waias (T35 (1)) fi(U, 1) dlt,
where 7;;(t) = tf;_t;ij:l and the {wy }{_, are polynomial weight functions.

These are given in table 1 for ¢ = 1, 2, 3.

w11(7') =1
woy (1) = (5 — 67) wae(T) =1

w31 () = 5 (37 — 967 + 6072)  ws2(7) = 5-(26 4 247 — 6072)  was(7) =1

Table 1: Weight functions for the cG(g) integrals, ¢ = 1, 2, 3.



2.2.2 Even more Flexibility

Note that we could have allowed each component to be piecewise polyno-
mial without beforehand fixing the deqree of the polynomial on the whole
of the discretization. We could thus have allowed the polynomial degree
to change from one interval to the next. The method would then be even
p-adaptive, choosing the (in some sense) best degree of the polynomials
for every single interval I;;.

For simplicity, though, the polynomial degrees have been chosen to be
{¢:} rather than {g;;}. The difference would be an extra index j on g.

2.3 Error Estimation

The error estimate is obtained starting the same way as in references [1],
[4] and [10].

To estimate the error at final time 7 in the /*>-norm, the dual problem of
eq. (1) is introduced. The dual problem is

p(T) = e(M)/lle(T)]],
where e = U — u is the error, || - || is the I>norm and J* is defined as
] ' of '
J (U, Ua ) = _(Su + (1 - S)Ua )dS ’ (9)
0 ou

i.e. J* is the transpose (or more generally, the adjoint) of the Jacobian of f
at a mean value of u and U.

Note now that by the chain rule,

—J(u, U, )(U—u) = 01%(8u+(1—8)U, Yds(u —U)
= 01 %(Su + (1 —-s)U,-)ds (10)
= f(u")_f(U’ )

We may thus write
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(D) = (e(T),e(T))/[le(T)]]
T)

|
—

s
—~~

= (e(T), (T)) — (e(0), 9(0)) + [ (e, —¢ — J*(u, U, "))

= [(e(®), ()5 — [} (e,&) = [ (e, J*(u, U, )9)

= fﬂz(a QD) - fOT(J(u7 U7 ')6, 90) (11)
= f() (6 - J(u, U: -)6, QO)

= Jo U= f(u,") = (W, U, )(U = u),9)

= OT(U f(U’ ')’ QD)

= - fOT(Ra 90)7

where R is the residual, i.e.

R=f(U,)-U. (12)

Using the finite element formulation for g € W}, we continue to get

e = —f; (Ro—79)
= -2 fOT Ri(pi — ;)
= -2 Z;V[:ll fI,-j Ri(pi — ;) (13)

N M, B
izt 22j=1 SUPy, | B fIij |pi — 4l

N M ! Z_
S X3 Cukl sup [Bil [, 161",

where the {C, } are constants.

ININA

2.3.1 The Constant C,

Choosing the test function @ as the (¢ — 1):th-order Taylor-expansion of ¢
around (¢;; + t;;_1)/2 on I;; yields

1

qum.

(14)
The proof is simple. Noting that, with

foo1(@) = f(20) + f'(20) (T — T0) + ... + SO (o) (z — @)@V

(15)

(¢ —1)!

11



we have

@) =T = =, / fOW)y - 20)Vdy|  (16)

and thus, with zy = (a + b)/2,

=Tl = N (y — o)« Vdy|da
< @ (f |w—xo|q ldx) (f O (2)|de)
= g o~ ol £ b —aolt) L@ (17)
= '2q f ‘fQ)‘

’gq“)f [P

Another useful estimate (see the section on adaptivity below) is

b
/ =Tyt < Cylb— @) sup @), (18)

(a,b)

where

~ 1

= - 1
C (g+1)12¢° (19)
which is obtained as above, choosing f,_; to be the (¢ — 1):th-order Taylor
expansion around the midpoint.

2.3.2 A Correction of the Error Estimate

The method to be used is not, because of the difficulty involved with solv-
ing eq. (7), the true multi-adaptive cG(g) method, as will be described
further in section 3.

Not solving the equations properly will introduce the discrete residual,
which should be zero if the discrete equations, i.e. (7), were solved prop-
erly. The following analysis will result in an extra term in the error esti-
mate (13), including the discrete residual together with its proper stability
factor, accounting for accumulation of errors due to a non-zero discrete
residual.

Defining the discrete residual to be

12



R:R / fz_ fqu &]0) j—]_ Mi,’i:]_,...,N, (20)

we get for p; € P%~!(I;;) and some 7;; € I,

/I Rig: = i) / (Ui - ) = ~ 730 By 1)

ij ij
Thus, f ;.. Rip; differs from zero and we get an additional term in our error
ij
estimate, continuing from eq (11):

le(D)]| = - [ (R,¢)
= _Zz‘]LfoTRi%
= _ZZI\LIZ;\QI fz ZSDZ f[ ngz SOZ nZ])R}
= -SN S [y, Bilei - -)—wimj)R}

IN

N M; a i —
S 0 [ Cuckl supy, |R [ Ji, 165 + [Rys| sup, (]|

S [C K supy |Ril [, 91| + [Ry| supy, m-\] ,
(22)

Q

if we choose @ close to .

2.3.3 Other Error Contributions

Other error contributions that are not dealt with here are quadrature errors
and numerical errors due the finite precision arithmetic.

2.4 Adaptivity
Introducing the stability function, defined by

si(t)—s”—sup|g0(ql| tel;,j=1,...,M;,i=1,...,N (23)

ij

and the stability factor, defined by

T
Si(T):/ ) i=1,... N, (24)
0

13



the error estimate (13) may be written in two alternative ways as

N M; A i+1
Zi:l Z]:ll quswk%’-’_ Sup[,'j |R'L|’

) (25)
sz‘il Cog;Sisup,r) (k[ Ril).-

=
=
A IA

The stability properties are obtained by numerical approximation (by
the multi-adaptive cG(g) method) of the solution of the dual problem.

Notice that the error contribution from the non-zero discrete residual is
not included in these expressions, since I have chosen to base the adaptiv-
ity on the Galerkin discretizational error alone. However, the contribution
from the non-zero discrete residual is of course included in the computa-
tion of the error estimate and thus, indirectly, also in the adaptive proce-
dure.

Adaptivity is then based on the expression

|le(T)|| < error estimate = TOL, (26)
where TOL is a given tolerance for the error of the solution at time ¢ = 7.

The discretization is now chosen by equidistribution of the error, both
onto the different components and onto the different intervals, i.e.

TOL

> s kIt | = ——o
Cy;sijk; S}ip |R;| N (27)
Alternatively, we may whish to do
. TOL
C, i sup (K4 [R|) = 1L (28)

(0,1)

Knowing thus the residuals and the stability functions (or factors) we
may choose the proper timesteps. This is done in a way that is iterative
in two respects. Firstly, the timestep for an interval is chosen based on the
residual in the previous interval. Secondly, the {};}, are not known until
the end of the computation. The values { M;} are then a more or less clever
guess based on a previous computation. Of course, having computed the
solution, we don’t have to guess these values to compute an error estimate.

14



241 Moderating the Choice of Timesteps

Choosing timesteps as described in the previous section without any extra
moderation may cause problems. If the residual in one interval is small,
the timestep of the next interval will be large. A large timestep will (of-
ten) result in a large residual, which in turn in the same way means the
timestep of the next interval will be small. There is thus a chance the
timestep will oscillate if it is only based on the residual of the last inter-
val. What needs to be done is to make sure the timesteps (and thus also
the residuals) don’t differ too much between adjacent intervals. This may
be done in a lot of different ways, e.g. by choosing the (harmonic) mean
of the previous timestep and the value of the new timestep, as based on
the residual. (The Tanganyika library uses a somewhat more sophisticated
moderation of the timesteps.)

2.4.2 Choosing Data for the Dual Problem

According to eq. (8), we need to know the true error in order to solve the
dual problem. If we indeed knew the true error, we would not have to
bother with any of this, and since the true error is unknown, we have to
make a clever guess. We now discover another benefit of multi-adaptivity
— it makes it easier for us to estimate the data for the dual problem! Since
we equidistribute the error onto the different components, an estimation
of the proper data for the dual problem should be +1/v/N, N being the
dimension, for the different components. The signs for the different com-
ponents may be obtained by solving at different tolerance levels.

Since, however, we don’t know the stability properties of the problem
until the computation is done, we cannot expect the errors of an initial
computation to be fully equidistributed onto the different components.
Hence, we cannot expect +1/+/N to always work as data for the compo-
nents of the dual problem. Again, proper data is obtained by e.g. solving
at different tolerance levels.

3 The Implementation — Tanganyika

This section describes the actual implementation of the method described
in the previous section.

15



3.1 Individual Stepping

The individual stepping is done according to eq. (7). This requires knowl-
edge about U, including the values of all other components. These values
are evaluated by interpolation (or extrapolation), according to the order of
the method, of the nearest known values of the other components. The
solution of the integral equation is done iteratively for every component.

The order of the stepping follows one simple principle;

the last component steps first.

It is the fact that the equations are not solved simultaneously that re-
sults in non-zero discrete residuals.

3.1.1 Organization, Book-Keeping

Doing the stepping individually rather than stepping all components to-
gether requires some book-keeping, keeping track of the positions of all
components and which one is to step next.

The individual stepping is done according to figure 2 below. The im-
plementation pretty much follows this sketch.

16



|

positions 3’: |nf0rmat|0n %interaction

VTV TN TN Y
ST TN N WY

NN O T T

Figure 2: This is how the individual stepping is done. The different com-
ponents tell/send their respective positions and in turn they get their in-
teractions with (forces from) the other components. Thus, just as in nature
itself, progress is made by the exchange of information, small pieces of
information (gravitons or perhaps femions).

3.2 Quadrature

The integrals of eq. (7) are evaluated by Gaussian (Gauss-Legendre) quadra-
ture.

Since the order of the weight functions for the integrals of a c¢G(q)
method are (¢ — 1), we expect the total order of the integrands to be of or-
der ¢+ (¢—1) = 2¢—1 (and even more if f is of quadratic or higher order).
It would thus be wise to use quadrature that is exact at least for polynomi-
als of order 2¢ — 1, which is exactly the case for Gaussian quadrature with
¢ nodal points.

Thus, midpoint quadrature for cG(1), two-point Gaussian quadrature
for ¢G(2) and so on.

3.3 The Program

The method has been implemented as a library, called Tanganyika. To use
the library functions, all one needs to do is to

17



#i ncl ude <tanganyi ka. h>

in one’s C/C++ program. For more details, refer to the Tanganyika User
Manual. [Not included in this version of the paper.] For even more details
(all') download the source code — see section 6.

3.3.1 Language

The language of the Tanganyika library is C++, although its interface is
pure C. An object-oriented programming language such as C++ is obvi-
ously well-suited for such a program like the Tanganyika library, viewing
the different objects as classes; Solution, Component, Element, etc.

3.3.2 Modularity

A nice feature of the C++ programming language is the use of class deriva-
tion and inheritance, enabling a modular implementation of the different
methods. Implemented in the current version (1.0) of the library are cG(1),
¢G(2) and ¢G(3), but the implementation of another method, such as e.g.
dG(0), would require only the implementation of a new subclass, specify-
ing only what differs from the already existing methods. (This would in
reality mean perhaps 50 lines of code.)

4 Results

In this section I present the results from a few computations made with
the Tanganyika library.

4.1 A First Simple Example

As a first simple example, consider the following system of equations:

Uy = Uy,

Uy = —uy, in (0,7 (29)
u(0) = (0,1).

The solution is of course u(t) = (sin(¢), cos(t)). The equations are solved

by the multi-adaptive ¢cG(1) method with tolerance 8 - 10~* and T = 50.
(The tolerance was actually chosen to be .001. The resulting error estimate

18



was, however, 8 - 107%.) The true error is, according to figure 3, 6.8 - 104
and the component errors are 5.3 - 10~* and 4.2 - 10~* respectively.

Note the behaviour of the multi-adaptive method, choosing different
timesteps for the two components. The timesteps are chosen on basis of
the residuals and stability functions. These are shown, together with the
resulting timesteps, in figure 4. Note also the approximate equidistribu-
tion of the error.

Solution

X
TN o
QO ===z R LA A R RV ARVAR 3
Fa \\\\’( , \ AY

A N A U Y B S [N
N A

Figure 3: The solution of the simple harmonic oscillator problem, the er-
rors and the timesteps respectively.
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0.015 0.015
— 0.01 0.01
R
0.005 0.005
o 0
(o] 5 10 15 20 o] 5 10 15 20
1 1
i 0.5 0.5
o o
(o) 5 10 15 20 o) 5 10 15 20
0.03 0.03
0.02 0.02
=
0.01 0.01
00 5 l% 15 20 00 5 1% 15 20

Figure 4: Residuals, stability functions and timesteps for the two compo-
nents of the harmonic oscillator problem, shown for the interval (0, 20).

4.2 Wave Propagation in an Elastic Medium

As a second example, consider wave propagation in an elastic medium,
represented by a number of masses connected with springs according to
figure 5.

Figure 5: A system of N masses and N + 1 springs.

The proper equations are easily obtained from Newton’s second law of
motion.

20



(& = Az, where
-9 1 -
1 -2 1 0
$ 1 -2 1 (30)
o 1 -2
0 R |
\ i I =2

This may also be thought of as a FEM space discretization of the wave
equation.

With initial conditions corresponding to all but one masses being at
rest at ¢ = 0, we expect a propagation of the timesteps. At the beginning
all but one mass are at rest, so the timesteps for these masses may be large.
As the oscillations of a mass increase, the corresponding timesteps should
decrease and oscillate. This is also the case according to figure 6.

0.6
0.4
0.2

0.6
0.4
0.2

o
— Lo
=0 > o 5" o
0.2 0.2 -0.2
-0.4 —0.4 -0.4
-0.6 -0.6 -0.6
08, 5 10 15 08 10 15 % 5 10 15
t t t
0.05 0.05 0.05
0.04 0.04 0.04
0.03 0.03 =0.03
5 e 3y
0.02 0.02 0.02
omm 0.01 0.01
% 5 10 5 0 10 5 % 5 10 15
t t t

Figure 6: Solutions for components 1,5 and 10 of a system consisting of 10
masses and 11 springs, together with their respective timesteps, solved at
TOL = 5 - 10~* with the multi-adaptive c¢G(1) method.
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4.3 Gravitation

As a third example, consider a system of three bodies (planets) in a some-
what complicated situation where one of the planets is in orbit around a
larger one, and a third even smaller planet comes in making sort of a weird
sling-shot around the smaller planet.

The forces involved are 1/r? and for a certain choice of initial condi-
tions, the solution is as depicted in figure 7 below for TOL = .001, solved
with the multi-adaptive ¢G(2) method.

0.5

Figure 7: Orbits for the three planets. The circles drawn represent the
planets at time ¢t =T
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Figure 8: Stability functions for the z-components of the three planets.

As one might expect, the three bodies are differently sensitive to the
resolution of the discretization. This is also evident in figure 9, where are
drawn the timesteps for the components corresponding to the z-coordinates
of the three planets. (The problem is in two dimensions so there is a total
number of 12 components.) In this figure are also the number of timesteps
used for the different components. The larger planet, corresponding to
components 1,2,7 and 8, obviously doesn’t require as many steps as the
two smaller ones. The largest number of steps is, according to this fig-
ure, needed to resolve the y-velocities of the smallest planet, which is not
too strange, considering the main acceleration is in the y-direction at the
critical point.
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Figure 9: Timesteps (left) and the number of timesteps (right) for the 12
different components of the three-body problem.

It is obviously crucial for the timesteps (of the involved components)
to be small just when the smallest planet makes the sling-shot. This is re-
alized in the adaptive algorithm by extremely large values of the stability
functions for the involved components, as was shown in figure 8.

4.4 The Lorenz System

As a fourth and final example, consider the Lorenz system given by the
equations

z = o(y— 1), t € (0,7T],
y = re—y—axz, te(0,T],
¢ = ay—bz,  te(0,7], (31)
z(0) = 20, y(0) = yo, 2(0) = 20,

where 0 = 10, b = 8/3 and r = 28, and (x, ¥o, 20) = (1,0,0).
The solution at TOL = 2.5-10° and T = 10 is shown in figure 10,
together with the timesteps used for the computation. The “chaotic”, flip-
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ping, behaviour of the Lorenz system is not evident in this figure, since T’
is too small. The purpose of this example is however not to illustrate cer-
tain characteristics of the Lorenz system, but to illustrate the use of multi-
adaptivity for the three components.

x 10~
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27 [ |
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26,
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23
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22
e <o 10
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-10 4
2
y -15 12 _10 -8 -6 -4
X

Figure 10: At the left is the solution of the Lorenz system, solved with
the multiadaptive ¢G(1) method at TOL = 2.5 - 107° and with final time
T = 10. At the right are the timesteps used for the computation.

Below in figure 11 is given the behaviour of one of the stability func-
tions.
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Figure 11: The figure shows the stability function s = s(t) for the y compo-
nent of the Lorenz system. The other two components are similar to this
one.

4.5 True Error vs. the Error Estimate

In this section, we return to the first simple example, the harmonic oscil-
lator, and compare the true error to the error estimate. Ideally the true
error is smaller than and close to the error estimate. Is this the case for the
multi-adaptive ¢G(g) method proposed in this work?

To check the reliability of the solver, the solution of eq. (29) was com-
puted with 7" = 100 at a large number of tolerances. The results are given
for cG(q), ¢ = 1,2, 3, in figure 12.
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Figure 12: True error vs. error estimate for multi-adaptive c¢G(1), cG(2)
and c¢G(3) respectively. Solid lines indicate the ideal maximum size of the
true error.

As can be seen the true error is smaller than and close to the error es-
timate for the three methods. For this specific problem at these specific
tolerance levels, the error for the ¢cG(1) method is mostly discretizational
error (arising from the finite element discretization of the error), whereas
for the ¢cG(3) method the error is mostly mostly computational (arising
from a non-zero discrete residual). For the c¢G(2) method the situation
is somewhere in between. This explains the different variances in error—
tolerance correlations for the three methods.

Notice also how sharp the error estimate is, especially for the cG(1)
method. Again, this is due to the fact that at this tolerance level, most
of the error is the usual finite element discretizational error for the cG(1)
method.

For comparison, the same computations were performed with the often
used MATLAB ODE-solver, ode45() . As can be expected with a solver
lacking global error control, the tolerance is only nominal, in the sense
that its correlation to the true error is unknown.
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Figure 13: True error / tolerance vs. tolerance for MATLAB:s ODE-solver

ode45().

The above comparisons between true error and error estimate were
made for a simple 2-component linear system. We conclude this section by
showing the results for a computation on the following nonlinear problem:

(01
(L
(3
Uy

u(0)

Uy,

Uz + U1y,

Uz + U U,

Ug + U1U3 + UoU2,
Us + UiUg + UoUs,
(L 1: %a %a i)

(32)

The solution is (obviously) u(t) = (e, e*, 3%, 1e*, 1e™).

' 4

A comparison between true error and error estimate is given in figure
14 for the multi-adaptive cG(1)-method. Also for this nonlinear problem,
the true error is smaller than and close to the error estimate, as desired.
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Figure 14: True error vs. error estimate for the multi-adaptive ¢G(1)-
method. The solid lines indicate the ideal maximum size of the true error.

Finally, notice that these results were all obtained automatically, the
only data specified being the equation (including initial data) and the tol-
erance. The equations were then solved automatically, including the solu-
tion of the dual problem — which was automatically generated by numer-
ical differentiation of the given equation — and error estimation, giving a
resulting final error smaller than the given tolerance.

5 Conclusion

As was shown in the previous section, the correlation between error and
error estimate is as desired for the three methods — at least for simple
model problems.

Multi-adaptivity is thus a reality and the method is already imple-
mented — in the Tanganyika multi-adaptive ODE-solver library. This li-
brary (at least the current version, 1.0) was written primarily with the in-
tention to be a working implementation of the multi-adaptive method, sec-
ondarily with the intention to be a general, fast and reliable ODE-solver.
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Although the current implementation is indeed general and reliable, it is
still not fast and effective enough, mainly because of the large amount of
work needed to solve the dual problem. This has nothing to do with the
multi-adaptivity itself. It is a consequence of the generation and full solu-
tion of the dual problem. There are cures for this and in future versions,
more focus will be on speed and effectivity. The main focus, however, will
always be on proper error control.

The facts all contribute only to setting the problem,

not to its solution.
Ludwig Wittgentstein, Tractatus Logico-Philosophicus (1918).

6 Download

The program is available for download — as is this report — at
htt p: // ww. phi . chal ners. se

Included in the package is the Tanganyika library containing the actual
solver together with Antananarive, an X-interface for the library. The pro-
gram will run under any (not too antique) UNIX system, such as Linux,
Solaris, ... . You will also need GTK, the Gimp ToolKit, for the X-interface.
GTK is available for download at

http://ww. gt k. or g/

The program is distributed under the GNU General Public License
(GPL).
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A Notation

In this section, I explain the notation used in this report.

Unfamiliar expressions should in general be explained when first in-
troduced. Since, however, it is not always clear which expressions are
familiar and which are not, I include the following list of notation:

FEM
the finite element method, which is the basis for the multi-adaptive
cG(g) method proposed in this report

cG(q)
a Galerkin method with continuous piecewise polynomials of order

q

multi-adaptivity
adaptive error control, where the discretizations are chosen individ-
ually for the different components [of and ODE-system]

Tanganyika
besides being a geographical location in the south of Africa, Tan-
ganyika is the name of the multi-adaptive ODE-solver library, based
on this report

Antananarive
this is the X-Windows interface for the Tanganyika library

dual problem
an auxiliary problem that has to be solved in order to get an estima-
tion of the error

U
the solution, in this case of the initial value problem (1)
U
the finite element approximation of the solution u
t
independent variable, often thought of as the time
T
the end-value of ¢
N

the number of dimensions (components) of the ODE-system
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the number of intervals for the subpartition of (0, 7] for component i

VN

the trial space for our finite element formulation
Wy

the test space for our finite element formulation
¥

the solution of the dual problem
e

the error of our approximate solution, i.e. (U — u)
J

the Jacobian of f in eq. (1)
R .

the residual, i.e. (f(U,-) — U)

the size of the j:th timestep for component ¢, i.e. the length of the
interval I;;

Cq, Cy
numerical constants appearing in the error estimates

R
the discrete residual, i.e. the residual of the discrete equations ob-
tained from the finite element formulation of the continuous prob-
lem

S
the stability function for component i, a function obtained from the
solution of the dual problem, describing the local stability properties
for component i

Si

the stability factor for component i, a number obtained from the solu-
tion of the dual problem, describing the the global stability proper-
ties for component ¢

TOL
the tolerance, i.e. a beforehand specified upper bound for the error
of the solution
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