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Multi-Adaptive Error Control for ODEs

Anders Logg
March 13, 2000

Abstract

In this report we present a multi-adaptive continuous Galerkin
method for the solution of initial value problems for ODEs. The
method is multi-adaptive in the sense that the timesteps for the dif-
ferent components are chosen individually and adaptively, as based
on an a posteriori estimate of the maximum global error.

It is also shown how the computation can be done in one sweep,
with fixed and correct data for the dual problem and without having
to iterate and alternate between the primal and the dual problems,
and also without an excessive amount of work needed for the error
control.

Note

This report has been previously printed as Oxford University Com-
puting Laboratory Technical Report 98/20 in 1998, and is now being
printed again for sake of availability. This version is identical to the
original report, except for a few minor changes.
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1 Introduction

Initial value problems for ordinary differential equations, i.e.

together with some initial condition, are an important class of problems,
both in their own right — arising in different fields of science (biology,
chemistry, finance and, of course, physics, to name just a few) — but also
considered as space discretizations of PDEs.

Thus, solving equation (1) is an important issue. The numerical
method for this equation (and others) should ideally have the following
properties:

Given a tolerance TOL > 0 and a norm || - ||, the numerical
method should produce an approximation U of the true solution
u, such that:

e |le]| < TOL, wheree =U — u;

e the computational cost for obtaining the approximation U at this tol-
erance level is minimal.

This turns out to be rather difficult in reality. Thus, traditional ODE-
solvers usually work by trying to achieve the following:

Given a norm || - ||, the numerical method should produce an
approximation U of the true solution u, such that:

e |le|]| — 0 as the amount of work goes to infinity;

e the computational cost for obtaining the approximation U is minimal
at every (unknown) tolerance level.

The concept of controlling the error e to within a given tolerance is thus
thrown out the window and we cannot infer the actual size of the error! A
better approach, the one that is followed in this report and is described in
[2], is to do the following:



Given a tolerance TOL > 0 and a norm || - ||, the numerical
method should produce an approximation U of the true solution
u, such that:

o |le|]| < TOL, wheree = U — u;

¢ the computational cost for obtaining the approximation U at this tol-
erance level is minimal, taking into account the extra amount of work
needed to be able to control the error.

1.1 Quantitative error control

Finite elements present a general framework for solving differential equa-
tions, such as e.g. initial value problems for ordinary differential equa-
tions, considered in this report. Depending on the choice of basis func-
tions, normally piecewise polynomials of different kinds, the result is a
new method for solving the initial value problem. These methods include
cG(1), cG(2), ..., dG(0), dG(1), ... ; Galerkin methods using continuous
and discontinuous piecewise polynomials respectively. Using a posteriori
estimates of the error, i.e. error estimates based on the computed solution,
it is possible to accurately control the size of the global error.

Efficieny is obtained by adaptivity, investing the computational effort
where it is most needed. For initial value problems this means adjusting
the size of the timestep, thus choosing the timestep to be small where the
solution is especially sensitive to errors in the numerical method.

Proper a posteriori error control requires knowledge of the stability of
the problem. Stability properties are in general obtained by solving a so-
called dual problem. Thus, error control requires some extra effort from
the solver, which in most cases is comparable to the effort of solving the
problem itself.

Work on quantitative error-control during the last ten years has re-
sulted not only in extensive theoretical results, but also in working im-
plementations of the methods, such as e.g. CARDS (solver of initial
value problems for ordinary differential equations — see [8]) and FEMLAB
(solver of partial differential equations).

The current approach to quantitative error control originated with the
article by Johnson ([10]) in 1988, discussing error estimation for the dG(0)
and dG(1) methods. Error estimation for these methods are further dis-
cussed by Estep in [5]. The c¢G(¢) method, which is the basis for the multi-
adaptive method presented in this report, is discussed in [6].
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A comprehensive and major article on adaptive methods for differen-
tial equations is [2]. A general and non-technical discussion on error con-
trol and adaptivity is [7].

1.2 Multi-adaptivity

It is desirable, in short, that in things which do not primarily concern others,
individuality should assert itself.
John Stuart Mill, On Liberty (1909).

If we view a system of ODEs as the representation of a mechanical sys-
tem and notice that different parts, components, of such a system may
behave very differently — some parts oscillating very rapidly and others
slowly, perhaps undergoing even uniform motion — we realize that differ-
ent components of an ODE-system may be differently sensitive to the reso-
lution of the discretization. There is obviously a need for multi-adaptivity,
allowing individual components of an ODE-system to use individual timesteps.

Traditionally, the same timestep is used for all components of an ODE-
system. The novelty of multi-adaptivity is thus allowing individual adap-
tion of the timesteps for the different components.
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Figure 1: These are the actual timesteps used for an example computation
on a simple two-dimensional system.

1.3 One-sweep computation

The a posteriori error estimate is usually of the form

lel] < S max{k?|R][}, )

where & = k(t) is the timestep, ¢ the order of the method and R the resid-
ual; the residual measures how well the approximate solution satisfies the
differential equation:

R(U) = f(U,) - U. 3)

Notice that the residual is a known quantity, compared to the so-called
truncation error, which is not.

The quantity S is a stability factor, which measures the accumulation
of errors in the numerical method, and this quantity depends both on the
actual equation being solved and also on the computation. It is important
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to notice that the size of the stability factor reflects a global property, which
is necessary if it is supposed to say anything about the accumulation of
erTors.

In the following sections it will be more clear how this stability factor,
or as it turns out for multi-adaptivity — factors, are defined, but for now
we just assume the generic form (2) for the error estimate.

A difficulty arises from the fact that the stability factor is computed
from solving the linearized adjoint problem, the dual problem. As is dis-
cussed further below, the dual cannot be solved until the solution to the
primal has been computed. This means that we do not know all quantities
of the error estimate (2) when solving the primal. Since we also base the
choice of timesteps for the primal on this expression, we have to make an
initial guess for the stability factor S, e.g. S = 1. Once the computation
is done, we can then solve the dual and compute the value of S and thus
obtain the error estimate.

The usual way this is done (see e.g. [8]) is thus to choose an initial value
of S and use this for the computation. The error estimate is then compared
to the tolerance and if too large, the computation is done once again with
smaller timesteps. This procedure is repeated until we finally end up with
an error estimate small enough.

This refinement procedure is expensive, since we have to do the com-
putation over and over again. It would surely be nice to be able to do one
computation of the solution, a one-sweep computation, starting at the be-
ginning, ending at the end, with an error estimate smaller than and close
to the tolerance.

1.4 Data for the dual

Choosing data, i.e. the data corresponding to an initial value, for the dual
problem is another difficulty one has to deal with in order to get a proper
error estimate. The dual problem solved in the usual way uses the true
error as input. The true error is, of course, unknown, so we have to make
a clever guess for the (normalized) value of the true error. This can be
done by comparing solutions at different tolerance levels or by just as-
suming that the stability factors are not very sensitive to the data for the
dual problem. In fact, this is presented as a conjecture in [8].

It is, however, possible to exactly specify the data for the dual problem
without making any guesses. The price one has to pay is to solve more
equations, a number of dual problems, with different data. As is shown
below, this is not more expensive than solving one dual problem, simply
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because the dual is linear.

1.5 Tanganyika

The multi-adaptive method has been implemented as a library, the Tan-
ganyika multi-adaptive ODE-solver library ([11]), which is available for
download through

http://www.phi.chalmers.se,

together with its X-interface, Antananarive. Though the solver is fully
multi-adaptive, the current version does not approximate the stability fac-
tors in the way it is described in this report. Instead the full dual problem
is solved and resolved, alternating with solutions of the primal, until the
error estimate is smaller than the tolerance.
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2 Multi-adaptivity

This section describes the multi-adaptive method, for which the basis is a
generalization of the continuous Galerkin method, cG(g), described in e.g.

[3].

2.1 Equation

The problem to be solved is

du _
E(t) - f(uat)a le (OvT]v (4)
u(0) = g,
where f = (fi,..., fn) is some function depending on the solution, u =
(u1,...,un), and t, which may represent time.
2.2 Method

To define the multi-adaptive ¢G(g) method, we start out from the weak
(variational) formulation of equation (4) and introduce the trial space, V",
and the test space, W}, of functions on [0, T], where

VN = {v:v; € P4(l;;),j =1,...,M;, v;is continuous, i = 1,...,N},
Wl = {v:iv,ePi(l;),j=1,... ,M;i=1,... ,N},

for some set of positive integers {¢;}1 ;.
Thus v € V¥ means that all its components {v;}Y ; are continuous and

piecewise polynomial on the intervals {Iij};-v[:il, i =1,..., N respectively,

and v € WY means that all its components {v;}}¥, are in general discontin-
uous and piecewise polynomial (of one degree less) on the same intervals.
The multi-adaptive ¢G(g) method is then:

Find U € V¥ such that U(0) = u and

T T
/ (U,v):/ (F(U,),v) VoeWD. 5)
0 0
The discontinuity of the test functions means we may rewrite this as
Find {&;x }{_, such that:
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/ UZ'U: fZ(U,)’U VUEPqi_l(IZ’j), ]21, ,Mi,izl,... ,N, (6)

U(0) = up and U is continuous,

where the {{;;} are the parameters determining the piecewise polynomi-
als {U;}. Note that there are (¢ + 1) parameters determining a polynomial
of degree ¢, so the index k is from zero to gq.

Finding the parameters {¢;;;} in agreement with (6) yields the desired
solution. What remains is to find the proper discretization {I;;}, or, equiv-
alently, the timesteps {k;;}. To choose the timesteps, we need an error es-
timate, which will be the basis for the adaptivity. By means of this error
estimate, the discretization will be chosen in a way to give a resulting final
error smaller than the specified tolerance.

2.2.1 Details

The parameters {;;x} may e.g. be the nodal values for a subdivision of
the intervals into ¢; subintervals. For an interval I;;, let the nodal points
of an equipartition of this interval be {t;x}}_,. The corresponding nodal
(Lagrange) basis functions, {);;x : R — R}, are then defined on I;; for
k=0,...,q,by

A . (t - tijo) s (t - tij,k—l)(t - tij,k+1) e (t - tijqz')
ijk(t) = . @)
(tije — tijo) =« (Lage — tije—1) (tijk — Tiges1) -+ (Bijk — Lijas)

On the interval I;;, U; may then be written (uniquely) as

qi
U= &Gieijis 8)

k=0

for some values {&;;i}.
Inserting this into (6), computing a few integrals (simple but tedious)
and solving the resulting system of linear algebraic equations, yields

Sij1 = gijO+fijwqil(Tij(t))fi(U’t)dta
iz = &ijo + [i; Waa(735(1)) fi(U, t)dt, o)

Sijg, = &ijo + [ Waias (735 ()) fi(U, )dt,
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U)H(T) =1
way (1) = (5 — 67) wae(T) =1

ws1 (1) = 57(37 — 967 + 607%) w3z (7) = 55(26 + 247 — 6072)  wys(7) =1

Table 1: Weight functions for the cG(g) integrals, ¢ = 1, 2, 3.

where 7;;(t) = tf;_t;ij;_ll and the {wy }{_, are polynomial weight functions.
These are given in Table 1 for ¢ = 1, 2, 3.
Note that the weight functions {w,,} are unity, which is of course a

direct consequence of equation (6), choosing v = 1.

2.2.2 Even more flexibility

Note that we could have allowed each component to be piecewise polyno-
mial without beforehand fixing the deqree of the polynomial on the whole
of the discretization. We could thus have allowed the polynomial degree
to change from one interval to the next. The method would then be even
p-adaptive, choosing (in some sense) the best degree of the polynomials
for every single interval I;;.

For simplicity, though, the polynomial degrees have been chosen to be
{¢:} rather than {g;;}. The difference would be an extra index j on g.

2.3 Individual timestepping in practice

In this section are described details specific to the Tanganyika implemen-
tation of the multi-adaptive method. The following is thus a description of
one way of implementing the multi-adaptivity and how to actually solve
the discrete equations.

The individual stepping is done according to equations (9). This re-
quires knowledge about U, including the values of all other components.
These values are evaluated by interpolation (or extrapolation), according
to the order of the method, of the nearest known values of the other com-
ponents. The solution of the integral equation is performed iteratively for
every component. In the Tanganyika library, this is done by fixed point
iteration on the equations (9).

The order of the stepping follows one simple principle;
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the last component steps first.

The fact that the equations are not solved simultaneously results in non-
zero discrete residuals, i.e. the residuals of the discrete equations (9). Since
other components are stepped after the values of a certain component
have been updated, the values used for updating that component may
have changed, and therefore also the information used for the step. Thus
the equations (9) might not be solved properly. By iteration over the differ-
ent components, by choosing smaller timesteps or by some other method,
we may be able to do better. Anyhow, the error introduced is measured
properly by incorporating the discrete residual in our error estimate.

2.3.1 Organization

Doing the stepping individually rather than stepping all components to-
gether requires some book-keeping, keeping track of the positions of all
components and which one is to step next.

The individual stepping is done according to figure 2 below. The im-
plementation pretty much follows this sketch.

|

] infOI’matiOn iinteraction

TN N WY

SN Y TN

Figure 2: This is how the individual stepping is done. The different com-
ponents tell/send their respective positions and in turn they get their in-
teractions with (forces from) the other components. Thus, just as in nature
itself, progress is made by the exchange of information, small pieces of
information (gravitons or perhaps femions).
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All this can be achieved rather nicely and simply in an object-oriented
language such as C++, which is the language of the Tanganyika library.

2.3.2 Quadrature

The integrals of (9) are evaluated by Gaussian (Gauss-Legendre) quadra-
ture.

Since the order of the weight functions for the integrals of a c¢G(g)
method are (¢ — 1), we expect the total order of the integrands to be of or-
der ¢+ (¢—1) = 2¢—1 (and even more if f is of quadratic or higher order).
It would thus be wise to use quadrature that is exact at least for polynomi-
als of order 2¢ — 1, which is exactly the case for Gaussian quadrature with
¢ nodal points.

Thus, midpoint quadrature for ¢G(1), two-point Gaussian quadrature
for ¢G(2) and so on.

3 Error analysis

The error estimate is obtained starting out in the same way as in references
[1], [3] and [12].

To estimate the error at final time 7 in the /*-norm, the dual problem of
(4) is introduced. The dual problem is

—%@)y = J(u,U,t)p(t), t €[0,T),
{ (p(i(rg - LPT(’ )e(t) (10)

where J* is defined as

J(u,U,-) = (/0 %(w#— (1-s)U, -)ds) : (11)

i.e. J* is the transpose (or more generally, the adjoint) of the Jacobian of f
at a mean value of v and U. The data for the dual problem is ¢ and we
wait until later to choose the value for ¢7.

Note now that by the chain rule,

—Jw, U, U —u) = [l%(su

o o (su+ (1 —8)U,)ds(u—U)
= 01 %(s +(1-s)U,)ds (12)
= f(u’)_f(U’)



We may thus write

(e(T)pr) = (e(D)
(e(0)
fo (6,

(T)) — (e ( ),90(0))+f0 e,—¢ — J*(u,U,-)p)ds
)]s — . s (e,¢)ds — [ (e, J*(u, U, -)p)ds
Yds — fo J(u,U, e, p)ds

S

3S)

l S

= foT(e J(u,U, e, p)ds
= fo (U flu,) = J(u,U, YU — u), p)ds
= fO (U f U? )790) 8
= IOT(RﬂSD d87
(13)
where R is the residual, i.e.
R=f(U,)-U. (14)

Using the finite element formulation for some @ € W}¥, we continue to
get

(e(T), ) = | [ (B¢~ eodsl

\ZZ L[y Rilgi —,)ds|

= [y 129 1 J1, Rilei — 2)ds|

< YL X supg |Ril [, 1o — @ilds.

(15)

This is alright as long as U solves equation (5). If, however, U fails to
solve the discrete equation (5), which may be rewritten as

T
/ (R,v)ds=0VYv € W), (16)
0

we have to make a correction for this in our error estimate.

To measure this correction we introduce the discrete residual, which
should be zero if the discrete equations were solved properly. The follow-
ing analysis will result in an extra term in the error estimate (15), including
the discrete residual together with its proper stability factor, accounting for
accumulation of errors due to a non-zero discrete residual.

Defining the discrete residual to be

16



1
kij

(17)

we get for p; € P%~1(I;;) and some n;; € I,

/ Rip;ds = @(ma‘)/ (U; — £:(U,")ds = =5, (nij ) ki Rij. (18)

I;; I;;

Thus, |, ;.. Rip;ds differs from zero and we get an additional term in our
ij
error estimate, continuing from eq (13):

(©(T),er)] = | Jy (R ¢)ds]
= |Zz 1fo R;p;ds|
= SN S (S, Repds — [, Rigids — B0k R |
IS [, Rals - )ds - 20 kT |
< YL Y [Supfij |Ril [}, |oi — ilds + [Rij ki supy, |@|} :
(19)

which is the same as (15) if the discrete residual is zero.
From this point, we may continue in two different ways. We may either
want to use the fact that we may write

i — Bilds < Cy ke / 09ds, (20)
iJ'

I;;

introduce the stability factors

STy = [ 1p@ds, i=1,...,N,

M ' ) ) . ) 21
SAT) = XM kgsupy, [@ihi=1,... N, @
and write the error as
N —_ —_—
(T, or)| <> (Cz-Si(T) I[{)lg,>]<{kqi|Ri|} + Si(T) 1[101%@](|Ri|> . (22)
._1 b} b}
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Or we may wish to write

[l ilds < Gk sup 7, @)
Iij ij

introduce the stability functions

si(t) = sij =supy, \gpgq")|, tely,j=1,...,M;;i=1,... N,

_ _ _ . ] 24
si(t) = sy =supy, [@il, t€ Ly, j=1,..., M, 1=1,... N, 24)

and keep these as weights:

N M

(e(T)er) <D (éqisijkffl sup | Ri| + §ijkij|§ij\> . (25)

i=1 j=1

This latter expression is used for error control in the multi-adaptive
ODE-solver Tanganyika described in [11]. The way we shall do it in this
report and the way it is done in CARDS (see [8]) is to use (22), since this is
less expensive.

Note that in both cases the different errors have different stability fac-
tors, since these errors in general accumulate at different rates.

What remains now is to compute the constants C, and C,, and to
choose ¢r, the data for the dual problem. This will be done in the fol-
lowing two sections.

3.1 The constants C, and C,

Since we are free to choose the test function @ as any function in the test
space W), we want to choose the one that in general gives the best, the
sharpest, bound on the error. Rather than tackling the problem of finding
the best approximations in general, yielding the smallest values for the
constants, we show how to compute simple upper bounds for these con-
stants. These bounds are perhaps not the best possible bounds, but they
are good enough.

Choosing the test function @ as the (¢ — 1)th-order Taylor-expansion of
@ around (t;; + t;—1)/2 on I;; yields

1

Cy
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The proof is simple. Noting that, with

_ , 1
Fimi(2) = £(@0) + [ o) (a = a0) +.+ =

f(q_l)(xo)(x — iL'())(q_l)
(27)

we have

r 1 ? q q—1
@)~ Tona) =2 / 0w ) ] @9

and thus, with zy = (a +b)/2,

fab If = 7q—1|dx

Lo | o FOy) (y — 20) @Dyl da

oy (= aofr ) (2179 o))

2 (Ja = |7 + b= zo|) [ | /@|da (29)
o [, 119 da

O o [21£@]da.

I IA

I

Estimating C, is done in the same way:

b
/ =T skl < o= ! sup 1), (30)
where
C, = o 31
q — (q + 1)!2(15 ( )

which is obtained as above, choosing f,_; to be the (¢ — 1)th-order Taylor
expansion around the midpoint.

3.2 Choosing data for the dual problem

Note now that the expressions derived for the bound on the error hold for
every choice of data for the dual problem, provided the stability properties
are computed for the same choice of data. What remains is to choose the

19



data in such a way that the left-hand side, i.e. |(e(T'), ¢7)|, tells us anything
about the error.

The way this is usually done is to choose the data to be the normalized
error, i.e.

pr = e(T)/[[e(T) i, (32)
resulting in {? norm error control. The difficulty with this approach is ob-
vious: the error is not known, for otherwise we wouldn’t have to compute
a bound for it.

Another possibility is to choose the data to be 1, i.e. a unit vector with
the nth entry equal to one and all the others zero.
The expression for the error estimate is then:

N
en(T)| < C;S™M(T) max{k%|R;|} + S; (T)max |R;| ), n=1,..., N,
a0 < 3 (1) st 1R )+ 57T s

(33)

where the n superscript denotes the stability factors computed for ¢, =
1,,. To control all the individual component errors, we thus need to solve N
different dual problems. This however, does not have to be more expensive
than solving one dual problem, as will be shown below.

Note now that T does not necessarily have to be the end time value.
For error control in the maximum norm,

||en|‘oozr[%%(‘en‘a (34)

our final expression for the error estimate is then:

N

lenloo < [max 2 (C%Si"(t) Il[fgg]x{kqﬂRil} +5; (1) max |R~\) ,n=1,...,N,

(35)

where now the data is specified at time ¢ rather than at 7.

3.3 Other error contributions

Other error contributions that are not dealt with here are quadrature errors
and numerical errors due the finite precision arithmetic. Note however
that the quadrature errors could have been dealt with in the same way as
the non-zero discrete residual.
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4 Adaptivity

Adaptivity is based on the expression

|le]| < error estimate < TOL, (36)
where TOL is a given tolerance for the error.

Now let TOL = (TOL;, TOL,,...,TOLy) be given individual toler-
ances. What we want to do is to choose the timesteps {k;;} such that:

N

< S % R;|} +S; R;|) <TOL,, n=1,...
llen|loo < [max 4 (quS, (1) n[éaé]x{k |R;|} + S; (t) If(l)%]X‘RZ‘) <TOL,, n=1,
(37)
If we define the local tolerances r and 7 by
Cq maxpg{k%|Ri|} < ri(t), t€(0,7],i=1,...,N, (39)
maxo, |EZ| < Fi(t), te (O,T], 1= 1, R ,N,
and the stability matrices § and S by
Sni(t) = Sit),te€(0,T],i=1,...,N,n=1,...,N, (39)
Sult) = Si(t), te(0.1],i=1...,.N,n=1,.. N,
we can write this as
Sr + 87 < TOL. (40)

This expression should hold on [0, T']. Effectively, this means that the local
tolerances at every time ¢ should be chosen in order for this expression to
hold with the values of S and S on the interval [t, T).

Knowing thus the residuals and the stability factors we can choose the
proper timesteps, e.g. by choosing

Sr TOL/2,

<
SF < TOL/2. (41)
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5 Approximation of the stability factors

In this section, we describe how approximations of the stability factors (the
stability matrices) can be computed with little effort.

For simplicity and brevity, we consider here only the case ¢ = 1 and
the computation of S.

To begin with, we give a short review of some properties for matrix
exponentials, since these will be used to compute the stability factors.

5.1 Matrix exponentials

The matrix exponential : RV*N — RV*V js defined by

A=y A 2)

where A? is the identity matrix.
Now recall the following properties of the matrix exponential:

e = 1, (43)

(e?) = e (44)
etef = B if Aand B commute (45)
%(em) = A = Ae!, (46)

where A and B are constant matrices, I is the identity matrix, 0 the zero
matrix and ¢ is a scalar.
These properties all follow easily from the definition (42).

5.1.1 Numerical approximation

The cost of numerically computing the matrix exponential of a matrix is
essentially the same as the cost of computing its inverse. The method used
in our numerical experiments is essentially Algorithm 11.3.1in [9]; prescal-
ing, computing a Padé approximation and then rescaling.

5.2 Solving the dual

The equation to be solved, the dual problem (10), can be rewritten as

22



—G @) = A()e(t), t €[0,T)
dt ’ P 47
{an @
where we make the approximation
_ (9 '

rather than

1 *

A= ( a—f(su +(1-9)U, -)ds) , (49)
o Ou

since the true solution is unknown.

In the case where A is a constant matrix, we can immediately — using
the properties stated above for the matrix exponential — write down the
solution as

p(t) = D40, (50)

For time-dependent A, viewing A as piecewise constant and passing to
the limit (or otherwise), the solution can be written as

p(t) = lim IT e 4migop, (51)

n—oo

where the {k,;}7_, are positive weights such that

Sor i ky = T—t, VneZ;and

Ani = A(t+Z;=1 kn])) L= 1’25"' 1T, Vn € Z+' (52)

Writing the product as a sum in the exponent, it may be tempting to
write this expression as a generalization of (50):

p(t) = el A (53)

This, however, is not true! Though the exponents in two (or any finite
number of) adjacent factors in the above product commute approximately
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— A, is close to A, 1 — this is not true in the limit. Assume that this
was indeed the case. Then we could divide the product into two parts
and replace the product with a sum in the exponent for both of them. The
remaining product of two matrix exponentials can then not be replaced by
the matrix exponential of the sum of the two exponents, since these two
may not commute — they may be virtually anything.

For ease of notation we shall write the solution (51) as

o(t) = I} e oy, (54)

5.3 Stability matrices
The c¢G(1) stability matrix S is given by

Sult) = 510 = [ Il (55)

where ¢(t) = 1,. Differentiating the expression for the dual solution, we
obtain the following expression for the stability matrix:

Sult) = [y [19(w)|ds
Jo 1159 \dw

Jy i AT A1, (56)
= [ 1A )H; A(y>dy1n|dx.

Now, let |A| denote the element-wise modulus of a matrix A. The ex-
pression we obtain for the stability matrix S is then

S(t) = ( /0 t |A(x)H;eA<y>dy\da:)*. (57)

The way the approximation is done, is by direct application of this ex-
pression for the stability matrix, using finite timesteps {k;}. The approxi-
mation we make is thus

(ka 7 “f\) n=1,..., M, (58)

for the positive sequence of numbers {k;}}Y,. In reality though, some
quadrature other than this is applied. This is described in more detail
in the sections below.
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5.4 Error analysis

We analyze the error of the approximation (58) for the case of using the
midpoint values of A in every interval for the finite products and the finite
sum.

Notice that we do not claim that these estimates are optimal. Normally,
one wouldn’t even try to do error estimation for the solution of the dual.
However, in order to control the error of the solution itself, it is obvious
that we also need to control the error of the solution to the dual, and this
is one attempt of doing so.

The error can be divided into two parts, the first one being the error
from not solving the dual problem properly (not computing the infinite
product) and the second one from not computing the integral for the sta-
bility matrix properly (not computing the infinite sum).

Now let A be the piecewise constant interpolant of A that takes the
midpoint value of A in every interval, i.e.

A(t):A,:A(tZ—kZ/Q),tEIZ,Z:L,M, (59)

and define B and B as

B(z,t) = A(x)LeA®% 1€ 0,t), t € (0,T],

Blz,) = A(x)Tledod 4 ¢ [0,1), t € (0,T]. (60)
We can then write the error as
S-8[<I5-8|+[5-5], (61)

where

S(t) = (f;|B(x,t)\dx)*, te (0,7,

= (f1B@nldz), te 1], (62)
S(ta) = (S0 1B —k/2ta)lk) , n=1,..., M.

5.4.1 The first part of the error

The first part of the error is the error from approximating the infinite prod-
uct. We estimate this error as
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|f0 |B(z,1) |d$—f0 |B(z, t)|dz|

fo |B(z,t) — B(z,t)|dz )

fO ‘A Ht A ) A( )Ht A dy|d$ (63)
] ( Az )) IT! AW | gz

+ MA@ (nt Aw)dy _ 1 A<y>d:u) \da.

IIA

IN

Notice now that (for A and A piecewise continuous on (0, 1)) it follows
by repeated addition and subtraction that

MieAWd — [MheA®® = Tim, o M, en A0/ — lim, o T 1e—AW")
— limn_)w~zi:1 H‘;_leeﬁA(j/") (e%A(Z/n) _ en (U"))H'Jn
= fol [1ZeAW)dy (A(ac) - A(x)) IMeAWdy g,
(64)
where we have chosen the interval to be (0, 1) rather than (z, ¢) for ease of

notation.
We thus have

S-S < fy1(A@) - A(x)) TeAD |y
+ [y |A(w) [; TIgeA()d= (A(y) - A(y)) [T e dy| da
(65)
and this is as far as we get without making a few more or less crude ap-

proximations. We thus drop the first term in this expression and ignore to
what extent the matrices commute, leading to the approximation

- dA L
—SI*t) < -
|§ = S[(t) Srg[g>t<{ ~k(s) max|- |}/0 |A(z)

(66)

since, for s € [0, 1],

(t— )k(s) max; ) |
maxse[o,ﬂ{t Esk(s )maxI | |}

[t = 5)(A(s) — A(s))] (67)

ININA
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where the maxima are elementwise, i.e. for A : t — RV*¥V,

1; m;ax{|A|}1j = m?X|1;fA1j\. (68)
Now let
1
on(t) = gl max{(t — s)k(s) max | I}Hoo (69)

Then, assuming that A is close to A, we end up with the approximation

18 = S[lt) = 118"~ &l (?)
S (O]l fy 1A(@) s [ et O T eA e dy|do] o
= Ty 4@ [T Oy o 70)
= ai(®)]] fy [A@@) e |d|o
= a(t)]|5"[|0(t)
ax ()[|S[1 (%),
since the || - ||; norm is the || - ||oc norm of the transpose.

5.4.2 The second part of the error

The second part of the error is simply the quadrature error for approxi-
mating the integral with the sum, and it is bounded by

S =S [(ta)

| Jo" 1B, t)ldz = 30 | B(wi = ki/2,t) ki
pyays (|B 2 1)| = | Blws — kif2,ta)]) da

Sty Jp, |B(#,tn) = Blas — ki/2, 1) |dx (71)
Yoo, maxy, |42 |f12 2= (2 — ki/2)|do

kZ
D ie1 4 maxy, |

Now, noticing that the derivative of B on I; is nothing but

VANVAN

dB , .
—= (@, tn) = — AT TN Y = = A B(a, 1), (72)

we can write the error as
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) 1’“—'maxf{|A||B\}

Sy Ak maxy, {| B} (73)
gmaxiy. o {kilAil} D20, ki maxp {| B[}
maXi:l,...,n{ki|Ai‘}8*(tn),

|8 — S (tn)

R ININIA

4
where again the maximum is elementwise.
Now let

1 .
oa(t) = gl max{k|Al}|oo, T =t1,... . tur. (74)

Then, taking the norms as before,

18 = S111(t) S x@®)ISIL(2), t=t,... ,tu. (75)

5.5 Adaptivity

From the previous section, we know that the relative error in the ||-||; norm
for the c¢G(1) stability matrix at times ¢ = t;,... ,ty is (approximately)
bounded by

O!(t) = al(t) +(12(t) ~
= llmaxsepoq{(t — s)k(s) maxy(s) |G [Hloo + 71l maxjo s {k|A[}H]|o-
(76)

Given a tolerance, RELTOL, for the maximum relative error of the ap-
proximate stability matrix on [0, 7], we thus choose

1 dA 1 ~

— — — A < RELTOL, (77

oIl max {(T = )k(t) max|--[}loo + 7 [ max{k|A[}lo < RELTOL, (77)
noticing that o;(t) < o;(T), t € [0,T], @ = 1, 2. This can be done by choos-
ing

a1(T) < RELTOL/2,

<
0s(T) < RELTOL)/2. (78)
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Since the maxima in time are individual for the different elements,
we cannot choose the proper timesteps by evaluating the norms at every
timelevel. Instead, noting that the || - ||, norm is the same as the maximum
row sum, we achieve (78) by choosing £(t) such that

LT — t)k(t) maxij{Ni* maxy |“2(} < RELTOL/2, € [0,T],
ik(t)maxij{]\fi*\flij(t)\ < RELTOL/2, t € [0,T],

(79)

where N is the number of nonzero elements in the ith row of A.

6 Omne-sweep computation

As mentioned earlier, we would like to be able to solve the dual at the same
time as we are solving the primal, thus avoiding excessive storage of data
that has to be available for the following computation of the dual solution.
If we could also cleverly use the information we get from solving the dual
simultaneously, we would be able to solve the equations with global error
control in a one-sweep computation, i.e. a computation starting at time ¢t = 0
and ending at time ¢t = 7.

There are two major concerns with this, and those are how to compute
the stability matrix and how to use the information obtained. We discuss
these issues in the sections below. Again we only discuss the computation
of the stability matrix S for a ¢cG(1) computation.

6.1 Efficient computation of stability matrices

As discussed in the previous sections, we compute the approximation of
the stability matrix S as

S (t,) = (i\é(xi—ki/&tn)\ki> cn=1,...,M, (80)
=1

where

B(z,t) = A(2)ITLe®% 2 € [0,1), t € (0,T] (81)

and A is the piecewise constant interpolant of A that takes the midpoint
value in every interval.
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What we then need to do at every time ¢, is to compute the values of
B at times {t;, — k1/2,... ,t, — kn/2} according to (81) and at the same
time compute the sum (80). This can be done easily by using the previous
computations at times {t1, ... ,%,_; }, realizing that the only thing we have
to do is to adjust the previous values of B by a multiplication of the proper
matrix exponential from the right.

Thus, essentially, at every timestep for the dual (notice that these may
be different from the ones used for the solution of the primal), we have
to compute one matrix exponential, do (n — 1) matrix multiplications and
then the summation. Notice that in this simple way we solve N times M
different dual problems, i.e.

Cdopy — g
{ F() = J(uUt)p(t), t €[0,tn), 82)
® tm) = ]-na
forn =1,...,N, m = 1,..., M. The result is maximum norm (both in

space, i.e. with respect to the different components, and time) error con-
trol, with correct data for the dual problem.

6.2 Extrapolation of stability factors

It is obvious that at time ¢, we know the value of the stability matrices
only in the interval (0, ¢]. On the other hand, we really need to know the
values of the stability matrices in the interval [¢, 7] in order to choose the
proper timesteps at time ¢. It thus seems to be impossible to do one-sweep
computations in practice. This is not the case.

What we do is to extrapolate in some way the stability matrices from
the interval (0, ¢]. This may of course be done in many different ways and it
is not clear which one is the best, simply because the subsequent evolution
of the stability matrices may be virtually anything!

However, whichever way we choose to do the extrapolation, at final
time T, we will know how well we did doing the extrapolation and we
will have a proper estimation of the maximum error.

What we thus seek at time ¢ is the values of the stability matrices in the
interval [t, T'] that give the worst (largest) possible value of the left-hand
side of (40). If we underestimate these values of the stability matrices,
the final value of the error may be larger than the given tolerance. On
the other hand, overestimating results in excessive computation. In either
case, we will know at final time 7', and perhaps — if the user so wishes —
do the computation once more. Notice that the stability matrices do not
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have to be computed once more, since the data for the dual is fixed. Thus,
at most, the primal has to be solved twice and the stability matrices com-
puted once. (Because of the fixed data for the dual problem, we could also
think of storing the values of the stability matrices in a large data bank for
different equations, storing in this data bank stability matrices not previ-
ously computed, and reusing already computed stability matrices instead
of computing them.)

For the example computations in the next section, the method of ex-
trapolation is simply linear extrapolation, together with some additional
smoothing. Though this is not the most clever way to do the extrapola-
tion in general, we content ourselves with this simple approach for our
example computations.
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7 Numerical results

As already mentioned, multi-adaptivity is not yet implemented in the
form presented in this report. The numerical examples presented in this
section are therefore of two kinds.

The first of these are examples computed with the multi-adaptive Tan-
ganyika ODE-solver library described in [11]. These examples demon-
strate the features of the multi-adaptivity and the sharpness of the com-
puted error bounds.

Secondly, we give some examples of stability factors (matrices) com-
puted with the method (by matrix exponentials) described in this report.

7.1 Multi-adaptive multi-sweep computations

The following examples were computed with the Tanganyika multi-
adaptive ODE-solver library. For these examples, the dual problem was
thus solved in its full, using some guess for the data based on compar-
isons of solutions. Also, for the error estimates, the derivatives of the dual
solution were kept as weights (stability functions), rather than computing
stability factors.

Notice that these results were all obtained automatically, the only data
specified being the equation (including initial data) and the tolerance. The
equations were then solved automatically, including the solution of the
dual problem — which was automatically generated by numerical differ-
entiation of the given equation — and the error estimation.
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7.1.1 A first simple example

As a first simple example, consider the following system of equations:

Uy = Uy,
”Lig = —Ui, in (O,T], (83)
u(0) = (0,1).

The solution is of course u(t) = (sin(¢), cos(t)). The equations are solved
by the multi-adaptive ¢G(1) method with tolerance 8 - 107* and 7' = 50.
(The tolerance was actually chosen to be .001. The resulting error estimate
was, however, 8 - 107%) The true error is, according to figure 3, 6.8 - 107*
and the component errors are 5.3 - 10~* and 4.2 - 10~* respectively.

Note the behaviour of the multi-adaptive method, choosing different
timesteps for the two components. The timesteps are chosen on basis of
the residuals and stability functions. Note also the approximate equidis-
tribution of the error.

Solution

< /\v\
AN fopnon
//\\ //\\/
I
NoX \ /

Y

AY 1
\ A
/
IRV \\/ sVl
A I O A U

\
Sy
1 1 1 1 1 1 1 1 1

. 30 35 40 45 50
Timesteps

0.04

Figure 3: The solution of the simple harmonic oscillator problem, the er-
rors and the timesteps respectively.
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Figure 4: Residuals, stability functions and timesteps for the two compo-
nents of the harmonic oscillator problem, shown for the interval (0, 20).

Since the solution for this system of equations is known, we are able
to compare the error estimate with the true error. Ideally the true error is
smaller than and close to the error estimate. Is this the case for the multi-
adaptive cG(q) method?

To check the reliability of the solver, the solution of (83) was computed
with 7" = 100 at a large number of tolerances. The results are given for
cG(q), ¢ =1,2,3, in figure 5.
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Figure 5: True error vs. error estimate for multi-adaptive ¢G(1), cG(2) and
cG(3) respectively. Solid lines indicate the ideal maximum size of the true
error.

As can be seen the true error is smaller than and close to the error es-
timate for the three methods. For this specific problem at these specific
tolerance levels, the error for the ¢cG(1) method is mostly discretization er-
ror (arising from the finite element discretization), whereas for the cG(3)
method the error is mostly computational (arising from a non-zero discrete
residual). For the cG(2) method the situation is somewhere in between.
This explains the different variances in error—tolerance correlations for the
three methods.

Notice also how sharp the error estimate is, especially for the cG(1)
method. Again, this is due to the fact that at this tolerance level, most
of the error is the usual finite element discretization error for the c¢G(1)
method.

For comparison, the same computations were performed with the often
used MATLAB ODE-solver, ode45(). As can be expected with a solver
without global error control, the tolerance is only nominal, in the sense
that its correlation to the true error is unknown.
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Figure 6: True error / tolerance vs. tolerance for MATLAB:s ODE-solver
oded5().
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7.1.2 A simple non-linear system

Consider now the following nonlinear system:

Uy
s
U3
(I

u(0)

The solution is (obviously) u(t) = (', e*, e

Ui,

Uz + U1U,

Uz + Ui Ug,

Ug + ULU3 + UU2,
Us + UL U4 + UUs3,

(84)

(1a ]-7 %a %a %)
3t’ %6475’ ie5t).

A comparison between true error and error estimate is given in figure
7 for the multi-adaptive ¢G(1)-method. Also for this nonlinear problem,
the true error is smaller than and close to the error estimate, as desired.
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Figure 7: True error vs.

x 10

x 10

error estimate for the multi-adaptive ¢G(1)-

method. The solid lines indicate the ideal maximum size of the true error.
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7.1.3 Wave propagation in an elastic medium

As a third example, consider wave propagation in an elastic medium, rep-
resented by a number of masses connected together with springs of equal
stiffness. The equations are easily obtained from Newton’s second law of
motion:

(& = Az, where
ST -
1 -2 1 0
- 1 _2 n. .
0 |
\ i I =2 ]

(This may also be thought of as a FEM space discretization of the wave
equation.)

With initial conditions corresponding to all masses but one being at
rest at ¢ = 0, we expect a propagation of the timesteps. At the beginning
the timesteps for the masses at rest may be large. As the oscillations of a
mass increase, the corresponding timesteps should decrease and oscillate.
This is also the case according to figure 8.
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Figure 8: Solutions for components 1,5 and 10 of a system consisting of 10
masses and 11 springs, together with their respective timesteps, solved at
TOL = 5 - 10~* with the multi-adaptive c¢G(1) method.
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7.1.4 Gravitation

As a fourth example, consider a system of three bodies (planets) in a some-
what complicated situation where one of the planets is in orbit around a
larger one, and a third even smaller planet comes in making sort of a weird
sling-shot around the smaller planet.

The forces involved are 1/r? and for a certain choice of initial condi-
tions, the solution is as depicted in figure 9 below for TOL = .001, solved
with the multi-adaptive ¢G(2) method.

As one might expect, the three bodies are differently sensitive to the
resolution of the discretization. This is also evident in figure 11, where
are drawn the timesteps for the components corresponding to the z-
coordinates of the three planets. (The problem is in two dimensions so
there is a total number of 12 components.) In this figure are also the num-
ber of timesteps used for the different components. The larger planet, cor-
responding to components 1,2,7 and 8, obviously doesn’t require as many
steps as the two smaller ones. The largest number of steps is, according to
this figure, needed to resolve the y-velocities of the smallest planet, which
is not too strange, considering the main acceleration is in the y-direction at
the critical point.

It is obviously crucial for the timesteps (of the involved components)
to be small just when the smallest planet makes the sling-shot. This is re-
alized in the adaptive algorithm by extremely large values of the stability
functions for the involved components, as is shown in figure 10.
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Figure 9: Orbits for the three planets. The circles drawn represent the
planets at time ¢t = T
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Figure 10: Stability functions for the z-components of the three planets.
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Figure 11: Timesteps (left) and the number of timesteps (right) for the 12
different components of the three-body problem.
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7.1.5 The Lorenz system

As a fifth and final example, consider the Lorenz system given by the equa-
tions

T = o(y—ux), t e (0,77,
y = re—y—xz, te (0,7,
io= ay-bz  te(0,T] (86)
37(0) = .T(),y(O) = yOaZ(O) = 20,

where 0 = 10, b = 8/3 and r = 28, and (x, Yo, 20) = (1,0, 0).

The solution at TOL = 2.5-107° and 7" = 10 is shown in figure 12,
together with the timesteps used for the computation. The “chaotic”, flip-
ping, behaviour of the Lorenz system is not evident in this figure, since T’
is too small. The purpose of this example is however not to illustrate cer-
tain characteristics of the Lorenz system, but to illustrate the use of multi-
adaptivity for the three components.
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Figure 12: At the left is the solution of the Lorenz system, solved with
the multiadaptive ¢G(1) method at TOL = 2.5 - 10 ° and with final time
T = 10. At the right are the timesteps used for the computation.
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7.2 Computation and extrapolation of stability matrices

The following are examples of the computation of stability matrices (the
¢G(1) stability matrix for the accumulation of the Galerkin discretization
error) by the method of matrix exponentials for a number of different
model problems, most of which are taken (with some modification) from
Don Estep’s Stability Factor Gallery ([4]).

We give the solutions to the primal problem, the solutions to the dual
for () = 1,, the evolution of the stability factors for this choice of
data, the extrapolations of these stability factors to time ¢t = 7" and finally
the adaptive timesteps used for the computation of the stability matrix as
function of time.

Notice that although we only plot the stability factors for this specific
choice of data, the full stability matrix is computed.

For some of these examples, the extrapolation of the stability matrix
works fine, and for others the extrapolation fails. This can be blaimed
on the somewhat simple method used for extrapolation. Notice also that
the error estimate for the computation of the stability matrix seems to be
somewhat pessimistic. We could have taken larger timesteps than what
follows from the error estimate.

All examples were computed with relative tolerance RELTOL = 50%.
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7.2.1 The harmonic oscillator

We start out with the simple linear problem

dl = Uy,
dz = —Ui, in (O, T],
U’(O) = (0’ 1)?

where we choose T = 20.

The approximation of the ¢G(1) stability matrix is then:

: 12.6 12.9
5(1) = [ 12.9 12.6}

and the relative error at final time is

1S — Slls

13| (T) ~ 0.40% < RELTOL.
1

(87)

(88)

(89)

For this simple problem the extrapolation works as desired, resulting

in a one-sweep computation.
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Figure 13: The solution of the primal and the solution of the dual for data
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Figure 14: The evolution of the stability factors for ¢(t) = 1, together with
the extrapolation of these stability factors and the adaptive timesteps for
the computation.
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7.2.2 Exponential growth

Consider now a problem with exponentially growing stability factors:

Uy = Up+ Uy,
’U:Q = 2(U1 + ’U,Q), in (O, T], (90)
U(O) = (15 0)’

where we choose T" = 3.
The approximation of the ¢G(1) stability matrix is then:

% 2700 2700
S(T) = [ 5400 5400 ] G
and the relative error at final time is
%(T) ~ 9.6% < RELTOL. (92)
1

For this problem the extrapolation does not work as desired. (How-
ever, it would have been possible to do a better job with the extrapolation,
covering also the case of exponential growth.) The result is that we have
to do the computation of the solution to the primal once more, this time
knowing everything we need to know.
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Figure 15: The solution of the primal and the solution of the dual for data
o(T) = 1..
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Figure 16: The evolution of the stability factors for ¢(t) = 1, together with
the extrapolation of these stability factors and the adaptive timesteps for
the computation.
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7.2.3 From instability to stability

Consider now the following system of equations:

U.l = —100(U1UQ)2,
’U:Q = 100(U1UQ)2, in (O,T],
u(0) = (1,0.1),

where we choose T = 1.

The approximation of the ¢G(1) stability matrix is then:

: 1.0 0.034
5(1) = [ 1.0 0.034}

and the relative error at final time is

1S — Slls

13| (T) ~ 0.11% < RELTOL.
1

(93)

(94)

(95)

For this problem the extrapolation works as it should, overestimating

the maximum over the remaining interval for every stability factor.

Notice how the stability factors settle to the constant values (of one
and zero) after the initial peaks. (The initial value (1,0.1) is a perturba-
tion of the unstable steady solution (1, 0), whereas the solution at time T’

approaches the stable steady solution (0, 1).)
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Figure 17: The solution of the primal and the solution of the dual for data
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Figure 18: The evolution of the stability factors for ¢(t) = 1;, together with
the extrapolation of these stability factors and the adaptive timesteps for
the computation.
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7.2.4 Signal transmission in the nerve of a giant squid

Consider now the following system of equations:

{ U'l = —ul(ul — i)(ul — 1) — U2,

Uy = %ul — Ug, in (OvT]a (96)
u(0) = (0.1,0),
where we choose 1" = 15.

These are the Fitz-Hugh-Nagumo equations, which are a model for the
Hodgkin-Huxley equations. These in turn are a model for the electromag-
netic signal transmission in the nerve of a giant squid ([4]).

The approximation of the ¢G(1) stability matrix is then:

z 0.99 1.2
§(T)= [ 0.12 1.1 ] ©7)
and the relative error at final time is
%(T) ~ 6.8% < RELTOL. (98)
1

Also for this problem the extrapolation works as it should.
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Figure 19: The solution of the primal and the solution of the dual for data
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Figure 20: The evolution of the stability factors for ¢(t) = 1, together with

the extrapolation of these stability factors and the adaptive timesteps for
the computation.
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7.2.5 The Duffing problem

The following is the Duffing problem with a periodic force:

{Ul(t) = us(t),
o(t) = wui(t) — ud(t) — 0.15us(t) + 0.3 cost, t € (0,T],
u(0) = (0,0)

where we choose 7" = 10.
The approximation of the ¢G(1) stability matrix is then:

I

LNE

and the relative error at final time is

IS — SlIs

& (T) ~ 2.5% < RELTOL.
1

(99)

(100)

(101)

For this problem the extrapolation does not work well enough for a

one-sweep computation.
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Figure 21: The solution of the primal and the solution of the dual for data

M =135

Figure 22: The evolution of the stability factors for ¢(t) = 1,, together with

the extrapolation of these stability factors and the adaptive timesteps for
the computation.
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7.2.6 A nonlinear problem

The following is some nonlinear system of equations, chosen at random:

Uy = U — us,
Uy = —Uj — us,
’ljg = (’U,l + U2)3 — Uus, in (O,T], (102)
u(0) = (1,0,0),
where we choose 7" = 10.
The approximation of the ¢G(1) stability matrix is then:
: 6.2 5.5 5.3
S(T)= |53 49 45 (103)
1.2 1.1 1.6
and the relative error at final time is
7HS|I;IIS (1) ~ 1.2% < RELTOL. (104)
1

For this problem the extrapolation works reasonably well.
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Figure 23: The solution of the primal and the solution of the dual for data
o(T) = 1..

M =277
7 0.35F ‘ ‘ ‘ ‘
6
S
N
O) 4
3
2
1
OO 2 4 6 8
t
15
&~
N
N
5
00 2 4 6 8
t

Figure 24: The evolution of the stability factors for ¢(t) = 1, together with
the extrapolation of these stability factors and the adaptive timesteps for
the computation.
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7.2.7 More on the Lorenz system

Consider again the Lorenz system:

z = o(y—ux), t € (0,7T],
y = re—y—axz, te(0,T],
zZ = xy-— bz, t € (0,T],
z(0) = 9, y(0) = yo, 2(0) = 2y,

where 0 = 10, b = 8/3 and r = 28, (x¢, Y0, 20) = (1,0,0) and T = 5.

The approximation of the ¢G(1) stability matrix is then:

] 16 28 20
S(T)= |22 40 30
18 36 29

and the relative error at final time is

1S — SlIs

& (T) ~ 13% < RELTOL.
1

(105)

(106)

(107)

The extrapolation works reasonably well, although we wouldn’t have
ended up performing a one-sweep computation for this problem, if we
really wanted the resulting error estimate to be smaller than the given tol-
erance. (Perhaps we could have tolerated the resulting error estimate to

be close to but somewhat larger than the tolerance.)

For this problem we have chosen the timestep to be constant £ = 7'/100.
This is to demonstrate that the error bound is too pessimistic — based on
this bound, the number of timesteps would be about ten times as large,

which is obviously not necessary.
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Figure 25: The solution of the primal and the solution of the dual for data

M =100
20 . . , .
25 0.05
—_
420
S~—
Nis
0.04F
5
0 —~
0 1 2 ¢ 3 4 5 o003
=2
120
0.02
100
—~
N =0
N
N e 0.01fF
40
20
% 1 2 3 4 5 % 1 2 3 4 5
t i

Figure 26: The evolution of the stability factors for ¢(t) = 1, together
with the extrapolation of these stability factors and the timesteps for the
computation.
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7.2.8 Gravitation again

Finally, we investigate the following 2-dimensional 2-body problem:

where we choose T = 3.

The approximation of the ¢G(1) stability matrix is then:

7.1
4.0
4.9
8.0

11
3.6
5.8
11

and the relative error at final time is

IS — SlIs
[1S1]s

Uy = us,
’dz = U4,
U:3 = — 3
< v ui+u}
. “usy
Uy = u%—i—u%s’
\ U(O) = (0,1,1,0),

8.9
2.8
3.5
8.4

9.5
3.3
3.4
6.6

(T) ~ 1.7% < RELTOL.

(108)

(109)

(110)

For this problem the extrapolation does not work as desired, which
cannot be expected with the stability factors growing slowly at first and
then faster. For this system, we would thus have to solve the primal once

again.
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Figure 27: The solution of the primal and the solution of the dual for data
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Figure 28: The evolution of the stability factors for ¢(t) = 1, together with
the extrapolation of these stability factors and the adaptive timesteps for
the computation.
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8 Conclusions

We have introduced the multi-adaptive method for ODEs and demon-
strated the use of it for a number of different model problems. The cor-
relation between error and error estimate is as desired (with the true error
smaller than and close to the error estimate), at least for our simple model
problems.

We have also shown how to do the error control with fixed and cor-
rect data for the dual, and how the resulting dual problems can be solved
efficiently and simultaneously by the use of matrix exponentials. At the
same time, we also get the stability factors as function of time, resulting in
maximum norm control in time of the error.

Furthermore, we have shown how the computation of the stability fac-
tors can be done forward in time, simultaneously with the solution of the
primal, resulting in one-sweep computation, provided we do a good job
extrapolating the stability factors. (Otherwise the result is we have to do
one more solution of the primal.)

What remains is to improve the error control and the adaptivity for the
computation of the stability factors, and to refine the method of extrapola-
tion.
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