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Abstract

In this paper we propose and study a subgrid model for linear
convection-diffusion-reaction problems with fractal rough coefficients.
The subgrid model is based on extrapolation of a modeling residual
from coarser scales using a computed solution on a finest scale as
reference. We show in experiments that a solution with subgrid model
on a scale h in most cases corresponds to a solution without subgrid
model on a scale less than h/4.
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1 Introduction

A fundamental problem in science and engineering concerns the mathematical
modeling of phenomena involving small scales. This problem arises in molecular
dynamics, turbulent flow and flow in heterogeneous porous media, for example.
Basic models for such phenomena, such as the Schrédinger equation or the Navier-
Stokes equations, may be very accurate models of the real phenomena but may be
so computationally intensive, because of the large number of degrees of freedom
needed to represent the small scales, that even computers with power way beyond
that presently available may be insufficient for accurate numerical solutions of the
given equations. The traditional approach to get around this difficulty is to seek
to find simplified models with computationally resolvable scales, whose solutions
are sufficiently close to the solutions of the original full equations. Such simplified
models, without the too small scales, build on mathematical modeling of the com-
putationally unresolved scales of the full equations, which is referred to as subgrid
modeling. To find suitable simplified models including subgrid modeling, is the
central activity in modeling of turbulence, molecular dynamics and heterogeneous
media.

The problem of subgrid modeling may naturally be approached by seeking to
find the simplified model by suitably averaging the full equations over the resolvable
scales. This was the approach in turbulence modeling taken by Reynolds a century
ago, and leads to a simplified set of equations, the Reynolds-averaged Navier-Stokes
(RANS) equations, involving the so called Reynolds stresses. The mean velocity
field may be defined by ensemble, time, or spatial averaging, and the classical
problem in turbulence modeling is to find an expression for the Reynolds stresses
in terms of the resolvable scales, which is also referred to as the problem of closure.
A large number of attempts to find solutions to the closure problem by analytical
mathematical techniques have been made over the years since the time of Reynolds,
but satisfactory solutions have been evasive so far. Typically in RANS models,
a turbulent length scale and a turbulent time scale need to be determined. This
can be done either in an ad hoc fashion, or by introducing additional equations
determining the unknown quantities.

In a Large Eddy Simulation (LES) the idea is to simulate the larger scales of
motion of the turbulent Navier-Stokes equations while approximating the smaller
ones (for an overview see [15],[7]). By suitably averaging the Navier-Stokes equa-
tions over a certain spatial scale one obtains a simplified set of equations involving
additional stresses 7;; = W;u; — U;u; representing the subgrid model (where @;
represents a local average of u; and u = (u;) is the velocity), called the subgrid
scale Reynolds stresses (SGSRS). In a LES the average is in general taken over a
finer spatial scale than in RANS modeling, and since there is no averaging in time



a solution to a LES is evolving with time. In a corresponding RANS simulation,
the solution is smoother and in general constant in time.

The simplest subgrid scale model of turbulence is the Smagorinsky model [19],
where the SGSRS are modeled as viscous stresses 7;; = ve;;(u), related to a certain
turbulent viscosity (eddy viscosity) v of the form v = Ch*|e(u)|, where C = C(z)
and p = p(x) are positive numbers in general depending on the spatial coordinate
z, h = h(z) represents the smallest resolvable scale at z, and e(u) = (€;(u))
is the strain of the velocity u. The subgrid modeling problem in this case is to
find the functions C(z) and p(z). Attempts have been made to determine these
functions analytically, or experimentally by finding best fit to given measured
data. In both cases serious difficulties arise and the obtained simplified models do
not seem to be useful over a range of problems with different data. Of course, the
difficulties may stem from both the fact that the assumed form of the subgrid scale
Reynolds stresses is not a reasonable one, and from the fact that the coefficients
C(z) and p(z) depend on the particular problem being solved, and thus fitting the
coefficients to one set of data may be of no value for other data.

In recent years, new approaches to the subgrid modeling problem have been
taken based on dynamic computational subgrid modeling, an idea first introduced
by Germano et al. [8]. The basic assumption here is that a particular model
applies on different scales with the same value on the model parameters. Using this
assumption, one seeks to find a subgrid model, for each set of data, by computing
approximations of the subgrid model on coarser scales using a fine scale computed
solution without subgrid model as reference, and then finally extrapolating the so
obtained model to the finest computational scale, with the hope of being able to
extrapolate from the finest resolvable scales to unresolvable scales. In the simplest
case, this may come down to seeking to determine, for a given set of data, the
coefficients C'(z) and u(z) in the Smagorinsky model by best fit. In this approach,
at least the dependence of the coefficients on the data may be taken into account,
but still the Ansatz with a turbulent viscosity is kept. More generally, it is natural
to seek to extend this approach to different forms of the Ansatz. In order for such
a dynamic modeling process based on extrapolation to work, it is necessary that
the underlying problem has some “scale regularity”, so that the experience gained
by fitting the model on a coarse scale with a fine scale solution as reference, may
be extrapolated to the finer scale. It is conceivable that many problems involving
a range of scales from large to small, such as fluid flow at larger Reynolds numbers,
in fact does have such a regularity, once the larger scales related to the geometry
of the particular problem have been resolved. The purpose of this note is to
study the feasibility of the indicated dynamic computational subgrid modeling in
the context of some simple model problems related to linear convection-diffusion-
reaction with irregular or non-smooth coefficients with features on many scales.



The scale regularity in this case appears to be close to assuming that the coefficients
have a “fractal nature” and that the solution inherits this structure to some degree.

The problem of computational mathematical modeling has two basic aspects:
numerical computation and modeling. The basic idea in dynamic computational
subgrid modeling is to seek to extrapolate into unresolvable scales by comparing
averaged fine scale computed solutions of the original model (without subgrid
modeling) on different coarser scales. To make the extrapolation possible at all,
the numerical errors in the computations underlying the extrapolation have to
be small enough. If the numerical errors in the fine scale computation without
subgrid model are not sufficiently small, then the whole extrapolation procedure
from coarser scales may be meaningless. Thus, it will be of central importance to
accurately balance the errors from numerical computation and subgrid modeling.
In recent years the techniques for adaptive error control based on a posteriori error
estimates have been considerably advanced (see e.g. Johnson[12]). Thus, today
we have techniques available that allow the desired balance of computational and
modeling errors.

This is the first paper in this series, and it is focused on modeling only, assuming
the computational errors can be made neglible compared to the modeling errors
by computing on a very fine computational mesh. In a continuation of this study
[10] the model problem in two dimensions is considered, the balancing of numerical
errors and modeling errors is discussed, and an adaptive algorithm is presented.

An outline of this paper is as follows: In Section 2 the linear convection-
diffusion-reaction model problem is introduced and different approaches to the
subgrid modeling problem is discussed. In Section 3 the basic features of Multires-
olution Analysis (MRA) using the Haar basis is recalled, which is used to motivate
an Ansatz on the form of the subgrid model, which is then used to extrapolate an
approximation to the subgrid model. In Sections 6-8 simplified forms of the model
problem with zero diffusion are studied, and it is shown that in these cases the
solution inherits the fractal structure of the coefficients, and thus extrapolation is
possible. In Section 9 the extension to non-zero diffusion is studied, and in Sec-
tion 10 error estimates for the modeling errors are presented. The results of some
numerical experiments with subgrid modeling are presented along the lines.

2 Problem formulation

As a model we consider a scalar linear convection-diffusion-reaction problem of the
form

Lu(z) = —D(e(z)Du(x)) + B(z)Du(z) + a(z)u(z) = f(z), ze€Il=(0,1), (1)



together with suitable boundary conditions, where €(z), §(z) and a(z) are given
coefficients depending on z, f(z) is a given source, D = %, and u(z) is the
solution. We assume that the coefficients ¢, 8 and « are piecewise continuous, and
we seek a solution u(z) which is continuous on I with eDu continuous, and which
satisfies (1) for all z € I which are not points of discontinuity of the coefficients.
In the case € = 0, assuming that 5 does not vanish on I and u(0) = 0, the solution
u(z) is given by the formula

_ [ f()
u(w) = [ exp(AW) — A@) LD dy, forzel, @)
0 Bly)
where A(z) is a primitive function of a/f (satisfying DA = «/fB, A(0) = 0). If
also 8 = 0, then the solution is simply
u(z) = M, Ve €1,
()
assuming now that o does not vanish on I.

We assume that the coefficients €, § and «, and the given function f vary on a
range of scales from very fine to coarse scales, and we expect the exact solution u
in general to vary on a related range of scales. We denote by h the finest possible
scale in a computation of a solution, and we denote the corresponding approximate
solution by up. We denote by up the solution to the following simplified problem

Lyun(z) = —D([e)"(z) Dup(z)) + [A]" (z) Dun(2) + [o]* (z)un(2) = [f]"(z) = G(I ,)
3

together with boundary conditions where [¢]”, [8]", [a]", and [f]" are approxima-
tions of the corresponding functions on the scale h, with finer scales left out. The
corresponding solution formula for up, in the case € = 0, reads

/1" ()
161" (y)

where Ay, is a primitive function of [a]?/[]" satisfying A, (0) = 0, and u;(0) = 0.
We may think of up as an approximation of the exact solution u obtained by
simplifying the model by simplifying the coeflicients removing scales finer than h.
Typically, the coefficient [3]" is some local average of 3 on the scale h, etc. The
difference u — up, thus represents a modeling error resulting from averaging the
coefficients on the scale h.

un(z) = / “exp(An(y) - An@) Wy grzer, (4)



2.1 Subgrid modeling

We now consider a situation where uy, is not a sufficiently good approximation of
u, and we would like to improve the quality of uy without computing using finer
scales than h. The equation Lu = f satisfied by the exact solution can be written
in the form

Lyu = [f1" + Fa(w), (5)
where

Fy(u) = f = [fI" = (L — Lp)u (6)

acts as a modeling residual. The subgrid modeling problem is to model F}(u) on
the scale h. There is a variety of possibilities to approach this problem. We may
use Fj,(u) as a correction on the force and replace the model Lyu, = [f]* by the
model

Ly, = [f]" + Fp,

with solution @y, where Fj, is supposed to approximate Fj,(u). Alternatively, we
may seek to model L — Ly as a correction Lp of the operator L, and solve a
modified problem of the form

(L + Lp)ay, = f, (7)

where thus the correction Ly, acts as a model of L — Lj. In the first approach the
subgrid model takes the form of a corrective force F, independent of @y, and in
the second approach the subgrid model also contains a correction Ly depending
on up.

To find the corrected (or effective) operator is a classical problem in homog-
enization theory (see e.g. Bensoussan ef.al. [2]). Analytical homogenization
tegniques based on asymptotics have been used to derive effective operators, but
these teqniques rely on the essential assumptions of periodicity of the coefficients,
well separated scales, and an a priori knowledge of the number of scales, which may
be serious restrictions. Another approach to this problem was proposed by Nielsen
and Tveito [18] who studied Poisson’s equation with an irregular permeability on
a fine scale, where the effective (or upscaled) permeability was defined as the so-
lution to an optimization problem, where the difference between the fine scale and
the coarse scale velocity fields were minimized. Brewster and Beylkin [3] used a
numerical homogenization strategy based on MRA, where the homogenized (or
reduced) operator was constructed by recursively taking the equation at one scale



and construct the effective equation on the next coarser scale. These ideas were
then further developed by Dorobantu et.al. [5]. For this approach to be practical,
two problems have to be solved. First, the transition between two scales has to be
computationally efficient. Secondly, the form of the equations must be preserved
for a recursive use of the reduction step to be possible, which is not the case in
general. A great advantage when using MRA is that it does not require separation
of the scales, a continuous range of scales can be handled. Hughes et.al. [11] used
a similar idea based on a hierarchical FEM basis, where they let the linear basis
functions on each element represent the coarse scales, and the bubble, edge (and
face) basis functions represent the fine scales. The fine scales were then eliminated
by introducing certain Green’s functions related to the dual operator, which in
turn had to be determined by solving a local problem on each element. In a LES,
the widely used turbulent viscosity assumption is another example of a modified
operator that needs to be modeled. On the other hand, in the scale similarity
model, introduced by Bardina et.al. [1], and the modified scale similarity model,
by Goutorbe et.al. [9] and Liu et.al. [13], all subgrid scale (SGS) influence on the
large scales is modeled as a correction on the force.

The SGS may of course influence the larger scales in different ways. In our
simple linear model problem, the SGS may typically influence each part of the
operator (the convection, diffusion or reaction) or the force. One might suspect
that only using a correction on the force to model the SGS may be better or
worse depending on how the SGS influence the larger scales. For example, if the
SGS influence only manifests itself as a modification of the viscosity, a corrective
force would typically be oscillating around zero, to either increase or decrease the
oscillations in the solution. In this case, modeling of the corrective force on the
scale h should probably be difficult. On the other hand, using the assumption that
all SGS influence should be modeled as a viscosity does not seem optimal either. In
a LES the so called mized models, where a scale similarity model is used together
with an eddy viscosity model, have been shown to improve the stand alone scale
similarity model. But this approach needs also to be applied with care since one
have to make sure that the two models work together in the right way, so that
each model does not try to model the SGS on its own and thereby compensate
twice for the SGS effects.

2.2 Dynamic models

Germano et.al. [8] first introduced the concept of a dynamic model. The dynamic
model is not a model in itself, but rather a procedure taking a subgrid model as its
basis. The basic assumption is that a particular model applies on all filters used,
with the same value of the parameters. One way to explain the concept is the



following. Suppose a LES is done on a relatively fine grid. One could think of it as
a direct numerical simulation (DNS), meaning a simulation of the Navier-Stokes
equations on such a fine scale that all small scale phenomena are resolved without
any subgrid model. One could then use the velocity field from this computation
as the basis for an a priori estimate of the subgrid model parameters. This can be
done at every spatial point and time step. It is then assumed that the behaviour
of the smallest resolved scales of the LES is very similar to that of the subgrid
scales, so that parameters so obtained can be applied in the subgrid model on the
LES itself.

In this paper we propose methods for computing approximations of the mod-
eling residual Fj(u) using the idea of a dynamic model, in the case of the model
problem (1). We show that the filtered (local average of) Fj(u) on the scale h is
equal to a sum of covariances of the form [vw]” — [v]*[w]". Based on a Haar MRA,
an Ansatz of the form [vw]® — [v]*[w]® ~ Ch* is proposed. The two functions
C(z) and p(z) are then estimated by extrapolation from computing approxima-
tions Fiy (up) = Fy(u) on two coarser scales H, where the solution to the simplified
problem wuy, is used as a substitute for the solution u to the exact problem.

3 Motivation of the Ansatz using MRA

The notion of Multiresolution Analysis (MRA) was introduced in the early 90’s
by Meyer [17] and Mallat [16] as a general framework for construction of wavelet
bases. An orthonormal MRA of Ly([0,1]) is a decomposition of Ly([0,1]) into a
chain of closed subspaces

WwcWhc...cV;cC..
such that
Vi = L2(0,1)).
Jj=0
Each Vj is spanned by the dilates and integer translates of one scale function
p eV
V; = span{psu(e) = 2202z - k),

and the functions ¢; form an Ls-orthonormal basis in V;. We denote the orthog-
onal complement of V; in V; 1 by W), which is generated by another orthonormal
basis (the wavelets) 1; (z) = 27/?¢(27x — k), where ) € Wy is called the mother
wavelet. The space Ly([0,1]) can now be represented as a direct sum

Ly([0,1)) = VoW @ ..o W, @ ...



For a more detailed presentation of the MRA concept we refer to Daubechies [4]
or Louis et.al. [14].

3.1 The Haar MRA

In the case of the Haar basis in Ly([), with I = [0, 1], the space V} is spanned by
the scale function

1 ze€l
and V; = span{p; x(z) = 2//2p(2/z — k)}. The orthogonal complement of V; in
Vjy1 is Wj, spanned by the wavelets
ik =212z — k), fork=0,1,2,... <2/,5=0,1,2,..,
where the mother wavelet 1 is defined by

1 0<z<1/2
P(z) = -1 1/2<z<1
0 otherwise.

15

051

Figure 1: The “mother wavelet” ().

Each f € Ly(I) has a unique decomposition

f="Too+ Y firtir=Fo+ > Fi

ik i

10



where the f; represent the contributions on the different scales 27 corresponding to
subdivisions S; of I with mesh points z; ; = k27% k =0,1,...,2*, and subintervals
I = (k27%, (k +1)27%). The coefficients f; j are given as the Lo-inner product of
the function f and the corresponding Haar basis function:

1
ik = i dz,
fik AfmwM)w

and f, = fol f(z) dz.

3.2 The Ansatz

For f € Ly(I), where I = [0, 1], we define [f]" to be the piecewise constant function
on S;, given by

1" = Fo+ > 1)

j<i

where we let h = 27" in the rest of this paper. Further, we recall the definition of
the running average f" of a function f € Lo(I) on the scale h as

. rz+h/2
M) = 21/ fy) dy,

—h/2

where z € I and we extend f smoothly outside I. We denote by f" the piecewise
constant function on the scale h which coincides with f* at the midpoints of the
subintervals, and by this definition f” is independent of the extension of f outside
I. We shall use the following lemma:

Lemma 1: f € Ly(I) = [f]* = f.
Proof: We have

F=to+> fi= =T+ =+ _=fo+> fi=11"
J J

j<i j<i

We recall that V; is the space of piecewise constant functions on S;, and the
linear mapping Ly 3 f — [f]® € V; can then be identified with the Ly-projection

11



of f onto V;. Assuming for the moment that € is constant, so that [e]h = ¢, the
modeling residual Fj,(u) is given by

Fuw) =f = [fI" = (L= Lp)u= f = [fI" = (BDu+ au — [B]" Du — [o]"u).

From the definition we have that [[f]Zg]"* = [f]¥[g]" whenever H > h (H = 277,
h = 27" with j < i). This gives that

[Fn()]" = [Lau]" — [Lu]* = [A]*[Du]" — [8Du]" + [a]"[u]" — [au]".

We denote the projection [Fj,(u)]® of Fj(u) onto V; by Fj(u). In the simplest
situation above with 8 = 0, the full model is au = f, the approximate model is
[@]?uy, = [f]", and the corresponding solutions are

u=fla, up=I[f1"/l".
The modeling residual Fj,(u) is given by

Fu(u) = f = [f]" — (cu — [o)"u),

and we have

Fy(u) = [of*[u]" — [ow]" = [e]"[f /o] — [f]".
We shall now seek to extrapolate Fj,(u), and we are thus led to study in particular
quantities of the form

Ep(v,w) = [vw]" — [v]"[w]", (8)

for given functions v and w, which has the form of a covariance. Using the Haar
basis, the covariance Ej(v,w) takes a simple form:

Lemma 2: v,w € Lo(I) = For a given z

Ey(v,w)(@) = Y 27 vy

Proof: U,wELg(I)iv:Zvj, w:Zwk = vszvjwk,
J k gk

[v]" = Zvj, [w]" = Zwk = []"w]" = Z VW

j<i k<i 7,k<t
h h h
Lemma 1 = [vw]" =vw"'= Zvjwk
Jk
h h
= Z vjwy, + qu]-wj = [v]"[w]" + Zvjwj.
J,k<1 Jj>t j>t

12



Finally we have for z € I;; that v;(z)w;(z) = vj3;(z) wjji(z) = 27 vjw;.
O

Lemma 2 asserts that Fj (v, w) only depends on the scales finer than h, and that
there are no mixing between the scales. An interesting situation is when both v
and w are “scale regular” in the sense that

Vg =« 9—3(1/2+9) 414 wjg = f 2-1(1/247), (9)
where «, 3,6, are functions of z, which corresponds to v and w having a simple

fractal structure (v;;1(z) = 27%@v;(z) and w;;1(z) = 277@w;(z)). In that par-
ticular situation we find that Ej(v,w) has a certain form:

Corollary: If v,w € Lo(I) with vj = a 279/249) and w,, = g 2770/2+7),
where a, 3,0,7 are functions of z, then for x € I

By (v, w)(x) = C(a)h"),
where C' = #'gﬂ) and =0 + 7.

Proof: By Lemma 2 we have for € I that

Eh('l),w)(z') = Z 2“7 Uj,le,l = Z 2-7 o 2_J(1/2+6)l8 2_j(1/2+7)
j2 ji>i

l:z €l
= Z af 9—i(0+7) — aB hoHY Z 9—(—1)(0+7)

jzi i>i
_ b7 i) OB sy
= afh ZO 2 =15 "

j=
Od

The asymptotic behaviour of the wavelet coefficients determine the micro scale
structure of a function. Assuming that the coefficients in (1) are “scale regular” in
the sense of the Corollary, and that the solution inherits this local fractal structure
to some degree, we formulate the following Ansatz: For given z € I,

By (v,w)(z) = C(2)h®), (10)

where C(z) and p(z) are functions independent of the cut-off h. If Ep, (v, w) has this
form, then extrapolation of Ep (v, w) will be possible from knowledge of Ep (v, w)

13



and Ey(v,w) with h < H < H, from which the coefficients C(z) and pu(z) may
be determined. Typically, we will assume that the coefficients have a local fractal
structure. We then expect the solution u to inherit this structure to some degree,
and we expect that extrapolation of the modeling residual F},(u) will be possible.
This type of “scale regularity” seems to be found in, for example, the so called
inertial range of a turbulent flow.

4 Numerics & fractal coefficients

In the next sections we are going to investigate the indicated extrapolation pro-
cedure in the context of some numerical experiments. We use a Runge-Kutta
method for the initial value problems in Section 8. For the boundary value prob-
lems in Section 9 we use a standard Finite Element Method (FEM) for the diffusion
dominated problems, and a Streamline Diffusion (SD) method for the convection
dominated problems (see Eriksson et. al. [6]). In all the experiments we are going
to use a cut-off scale h = 275, and we compute on a subdivision of I corresponding
to a scale h/64. We use coefficients of the type

afz) =1+ Z v 277'(1/24'5)1#]-,1(:3) =1+d, zel, (11)

which is on the form (9) with a;; =~ 277(/24%) and @, = 1.

1.25

0.95

0.9

0.85

0.8 L L L L L L L L L
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: «a(z) for v = 0.05 and § = 0.5.
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5 Gain-factors & mesh-factors

To measure the improvement of the corrected solution % we introduce a “gain-
factor” GF defined by

h
[I[w — un]"|l

GF = T = aR
[[w — @n]"|

(12)
where the errors are projected onto the space V;. We also introduce a “mesh-
factor” MF),, which measures the relative improvement in the corrected solution
up, compared to a the improvement we get by decreasing h, defined by

h
M = ungp]l

MF, = ——F——.
Pl — aa]

(13)

The exact solution u is here approximated by a solution on the fine mesh corre-
sponding to the scale h/64. We also define corresponding gain-factors and mesh-
factors for the derivatives by

_ lDu — Duy)t|
|Dw — Dianl|

I[Dw — Dupyp)"|

GFP - .
[[Du — D)

D _
MFy =

(14)

6 The case ¢(x) =f(x) =0

We first consider the problem au = f. We assume to start with that f = 1 and
we consider the quantity

Fy = [a]"[1/0]" -1,

where « is a fractal function of the type (11). Using Lemma 2 and the fact that

é = 1+1a’ ~1— o if o is small, that is if v is small, we find that
Fi(w) ~ Z 2 O‘?,l = ~? Z 920 420720 _ 2,20 (15)
i i
l;mejj,l l:mEIJ-,,

which shows that F},(z) is of the form C(z)h*(*) with C(z) =% and pu(z) = 20.
We now report the result of some numerical experiments using different values
for v and ¢ in (11) with v small. We compare Fj, which we here can compute
directly from the data, to Fj, which is an extrapolated approximation of Fj.
In our first example we let v = 0.05 and § = 0.5, and we set H = 2h and
H = 4h. In Figure 3 we plot Fj, F‘IA{, F), and F), for this particular case.
We see that F), approximates F}, quite well. We have that the relative error

15
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Figure 3: Fy, Fﬁ, F), and Fh

v | 6 | IFn— Full/lIFall
0.06 | 0.3 7.3.10 2
0.5 3.9:1072
0.08 | 0.3 1.0-1071
0.5 5.3-1072
0.1 /0.3 1.3-1071
0.5 6.9-1072

Table 1: ||F}, — E4||/|| Fu|| for different v and 4.
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|F — Full/||Fnll = 3.2-1072. In Table 1 we report the relative error for some
different values of v and §. We notice that the extrapolation works better as -y
decreases, which seems natural since then the approximation (15) is more accurate.
It also works better for ¢ large, which seems natural since then the small scale
features are less significant. We also try to extrapolate F}, in the case f # 1. By
a similar calculation as in (15) for f being a function of the form (11), we get

Fa(z) ~ Y. 2(af,—fuaz) = D Y270 N qypami0H0)

j2i j2i j2i
l:z €l

~ 4297201 _ Mg=ile=8yy — 25201 _ sy, (16)
p” v

where ¢ and 6 are the corresponding coefficients for f. Depending on § and dy,
we might again use the Ansatz that Fj,(z) ~ C(z)h*®). In Figure 4 we plot the
modeling residual for some different functions f. We see that the extrapolation
works well for all source terms tested, except that in the middle plot, for f(z) =
z(1 — z), there is something strange close to where F}, change sign. We note that
the fact that Fy and Fﬁ live on different scales can cause problems near where Fﬁ
and Fg change signs, because Fg can be on the “wrong side” of F;. This makes
the extrapolation go in the wrong direction, and it might ruin the quality of the
extrapolation. To avoid this problem we could for example simply let F, be equal
to Fg whenever Fy is on the “wrong side” of FH' We employ this correction and
plot for f(xz) = z(1 — z) in Figure 5. By solving

(] i = [f]" + Fh,

we get an improved solution 4y, (Figure 6), where the error u—y, is proportional to
the difference Fj, — F),, as u — @y, = (Fp — Fh) /[a]. The error in the non corrected
solution uy, is proportional to Fy, since u — uj, = Fy/[a]?. But here, remembering
that we can use F}, = F), (since F}, is directly computable from the data), the
simple calculation

an = (1" + Fn)/le]" = (11" + [ [u)" — [F1") /1" = [u]",

shows that here in fact @, = [u]?, so iy, is the best solution we can obtain on the

scale h. Next we are going to investigate the the simplest differential equation.

7 The case ¢(x) = a(x) =0
Now we consider the problem of finding a continuous function u such that

BDu=f inlI, u(0)=0,
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Figure 4: f(z) = 22, f(z) = z(1 — z) and f(z) = sin(27z).

18



Figure 5: f(z) =z(1 — x)

1.25

12 B

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6: The corrected solution y,.
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where Du = %. The solution is given by the formula

_ [T
u(m)_/o By) ay.

In this case the simplified problem takes the form

[B"Dup = [fI* inI, wup(0)=0,

_ / "),
o [B"(y)
The modeling residual is given by

Fy(u) = f* — [fI* — (8Du — [6]" D),

with solution

and

Fy(u) = [6]"[Du]* — [8BDu)" = [B]"f /)" — [F1".

Again, F}, is computable from data. Assuming now f and 3 to be a fractal,
extrapolation should be possible by the same reasoning as in the previous section.
We then compute a corrected solution 4y by solving

[8)" Dy, = [f]" + Fy,

where F}, is an extrapolated approximation of F,. Since we can compute Fj,
directly from data, and thereby let F), = Fj, again a simple calculation shows
that D@, = [Du]®, but we are also interested in how good the solution @ is
(Diip, = [Du]® # @y, = [u]*). In Table 2 we present the result of some numerical
experiments for f(z) = 1. We extrapolate from H = 2h and H = 4h. We see in
Table 2 that the corrected solution on A is better than a non corrected solution on
h/4.

There is a difference in structure between the error in the solution and the error
in the derivative. The error u — uy, is here integrated, whereas the error Du — Duy,
has the same structure as in the previous section:

(0 — w)(z / Fa()/181" (v) dy,
(Du — Duy)() = Fr(x)/18)"(2).
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v | 6 |GF | MF, | MF,
0.06|0.1| 11 | 85 | 65
03|26 | 1.9 | 1.2
00801 13 | 10 | 7.6
03|35 23 | 15
01 (01| 15 | 12 | 94
03|43 29 | 19

Table 2: GF and mesh-factors for different v and §.

The error in the corrected solution depends on the difference Fj, — Fy:

(=)o) = [ “(Fuly) — Fu())/16) ) d,

(Du — Diiy)(z) = (Fu(z) — Fy(x))/[6]" ().

The error in the solution at z is equal to the integrated error from 0 to z, whereas
the error in the derivative at x only depends on the value of the relevant functions
at z. This means that that the effect of adding the modeling residual in the Lo-
norm might be “averaged out” if 7 is not great enough. The same is true for
¢ being too great, since then again the small scale features are not sufficiently
significant (F}, is too small). This we can see i Table 2 where GF for the corrected
solution %y, is better for « large and § small.

In Table 3 we also present numerical experiments for the case when f # 1
(v = 0.08). Here, “fractal” denotes a fractal function according to (11), with
v = 0.04 and § = 0.4. Also for f # 1 the corrected solutions on A are more

f(zx) 6 |GF | MFE, | MF,
z(1—2)|01] 16 12 94
03|45 | 2.8 1.7
fractal | 0.1 | 14 12 8.8
03] 3.7 2.6 1.7

Table 3: GF and mesh-factors for different ¢ (y = 0.08).

accurate than a non corrected solution on h/4.
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8 Initial value problems
Now we focus on the initial value problem

BDu+ au = fon I, u(0) =0.
In this case we have

Fy(u) = [A"[Du]" — [BDu]* + [a]"[u]" — [eu]",
= [8"(f/81" = [/I" + [of*[u)" — []*[ow/AI",

where now the solution u appears, and thus F},(u) is not directly computable from
data. Of course, using the solution formula (2) above, we can eliminate u, but at
any rate global effects enter.

8.1 The case a(z) = f(z) =

1
First we consider the case when a(z) = f(xz) = 1. Then we have

Fu(w) = (181"[1/8" = 1) + (1ul" — [81"w/B1") = Fi + FE(w).

Here we cannot compute Fj(u) directly from data, since F},(u) is a function of w.
Instead we use uj as a substitute for the exact solution u. Clearly we should be
able to extrapolate F,% by the discussion in Section 6, and Ff(u) is also a quantity
of the form (8). We are thus led to an Ansatz of the form

Fl(z) ~ C1(z)h@®) | F2(u)(z) ~ Co(z)hH*@),

where the coefficients C;(z) and p;(z) are computed as follows: We can extrapolate
1?’,% and Fﬁ(u) separately by computing the corresponding qua_ntiti_es F}I, 1_7;1 and
FZ(up), Ffl(uh) We start by computing uy,, then we compute Fy, FI; and FZ (up),
Ffl(uh) from which we compute the coefficients Ci(z), Ca(x), p1(z) and pa(z).

This gives F}, by which we can compute i, from the equation [3]" Dy, + [o]"y, =
[/ + Fp.

In this section Dy # [Du]", and we are interested in the quality of Dii.
In Table 4, we present the result of some numerical experiments. Again, we find
that a corrected derivative D1y, on the scale h is a better solution than a non
corrected derivative Duy, on the scale h/4. In Table 5 we present the result of
similar numerical experiments for the corrected solution #,. Here we see that
a corrected solution 4, on the scale h corresponds a non corrected solution on
finer scale than h/4 when § is small, and a scale hy such that h/4 < hy < h/2
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v | 6 |[GFP | MFP | MFP
006 01| 31 | 22 | 16
03| 36 | 21 | 12
00801 24 | 1.7 | 1.2
03| 45 | 26 | 15
01 01| 1.9 | 15 | 1.0
03| 43 | 25 | 14

Table 4: GFP and mesh-factors for the derivative D,

~ | 6 |GF| MF, | MF,
0.06 | 0.1] 22| 1.7 | 1.2
0322 1.2 | 0.63
0.08 01|31 22 | 1.6
03]29| 1.6 | 091
01 |01]36] 28 | 1.9
03]20| 1.1 | 0.56

Table 5: GF and mesh-factors for y,.

when 4 is larger. The dependence on v and § seems natural, since the equation
in this section is very similar to the one considered in Section 7 (basicly it is the
same equation apart from the forcing term being changed from f(z) = 1 to the
non linear f(z) = 1 — u(z)), and the discussion on how the effect of adding the
modeling residual in the Lo-norm might be averaged out in some cases applies also
here.

8.2 The case f(z) = f(z) =1

We now consider the problem
Du+ ou=1on I, u(0) =0.
In this case we have
Fy(u) = [of*[u]" — o],

so by the previous discussion the extrapolation of Fj(u) should be possible if «
and u have a “fractal” structure. However, the result of adding the extrapolated
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modeling residual is not that significant in this case, there is in fact no improvement
in the corrected solution #y, and the improvement in the corrected derivative Dy,
is not as great as in the previous cases. The lack of improvement of uy could be
explained by the connection between o and u through the solution formula (2),
where the primitive function of « is integrated to get u. In Table 6 we present
the result of some numerical experiments for the derivative (H = 2h, H = 4h).
We see that in this problem the quality of the corrected derivative on the scale h

~ | 6 [GFP [ MFP | MFP
03[01] 50 | 22 | 085
03] 32 | 1.2 | 045
05]01| 50 | 22 | 085
03] 32 | 1.2 | 044

Table 6: GFP and mesh-factors for Diiy.

corresponds to the quality of a non corrected derivative on a scale hy such that
h/4 < hy < h/2.

8.3 The case f(z)=1

Now we consider the case when both « and (8 are fractal test functions (not nec-
essary the same), and f(z) = 1. We have

Fu(w) = (181"11/81" = 1) + (o] [u]" - [8]"[o/ )" ) = Fi + (),

where Fj,(u) is split into the two parts F}} and F?(u). The first term F}! is of the
type described in Section 6, and by (15) we have that extrapolation is possible.
The second term F,f(u) should be possible to extrapolate if a, § and u have a
“fractal” structure. So again we are led to an Ansatz of the form

Fl(z) ~ C(z)h"@) | F2(u)(z) ~ Cy(z) @),

We present the result of some numerical experiments (H = 2h, H = 4h) in Table
7, where we find that a corrected solution %, on the scale h corresponds a non
corrected solution on a finer scale than h/4 when ¢ is small, and a scale hy such
that h/4 < hy < h/2 when § is larger. The quality of a corrected derivative on the
scale h is better than a non corrected derivative on the scale h/4. In Figure 7 we
plot Frr(up), Fy(up), Fi(u) and Fj,, where we see that the extrapolation works
fine.
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Yol 0a | 75 | 05 | GF | MF, | MF, | GFP | MFP | MFP
05]03[008][01|22 | 1.6 | 1.1 | 25 | 1.8 | 0.93
03|28 18 | 097 | 53 | 29 | 17

01 |01[28 | 20 | 1.4 | 27 | 19 | 14
03[30] 19 | 1.0 | 44 | 26 | 15
05[008[01]30] 21 | 1.4 | 28 | 20 | 13
0319 1.1 | 048 | 68 | 36 | 19

01 01|28 20 | 15 | 27 | 19 | 14
0322 1.3 | 061 | 58 [ 32 | 18

Table 7: Gain-factors and mesh-factors for #, and D1y,.
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Figure 7: Fy(up), Fy(us), Fy(u) and Fj,
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8.4 Different force terms

We conclude this section by presenting the result of some numerical experiments
when f # 1. In Table 8 we present numerical results for v, = 0.5, 6o = 0.3,
v = 0.1, 3 = 0.1, and H = 2h, H = 4h. We find that both the quality of
the corrected solution and the corrected derivative on the scale h is better than
the quality of their non corrected counterparts on the scale h/4. Here, “fractal”
denotes a fractal test function according to (11), with v = 0.04 and 6 = 0.4

f(z) |GF | MF, | MF, | GF? | MFP | MEP
a2 20| 15 | 1.1 | 1.9 | 15 | 1.0
z(l—2z) 30| 21 | 1.5 | 22 | 16 | 11
sin(2rz) | 2.8 | 20 | 1.4 | 27 | 21 | 14
fractal | 26 | 1.9 | 1.2 | 20 | 14 | 1.1

Table 8: Gain-factors and mesh-factors for different source terms.

9 Convection-Diffusion-Reaction problems

We now consider the boundary value problem
—D(eDu) + fDu+au=f, z€l, (17)

with a Dirichlet boundary condition u(0) = 0 at inflow, and a Neuman boundary
condition Du(l) = 0 at outflow (assuming S > 0). Now we have an even more
complex connection between data and solution. The simplified problem is now to
find up, such that

—D([e"Duy) + [B" Dup, + [o)up = [f]", =z €L (18)
The solution to the exact problem w satisfies
—D([e]"Du) + []"Du + [&)"u = [f]" + Fy(u), z€l, (19)
where
Fu(u) = f — [f)" — (= D(eDu) + BDu + au + D([" Du) — [4" Du — [a]"u),
which gives
Fu(w) = ([D(eDw)]" = (" Dw)]") + ([8"[Du]" - [BDu]")

+ ([od"[ul" — [eu]") = Fi (u) + FE(u) + Fi(u).
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As in the previous sections we make a separate Ansatz for F_’,} (u), F’}?(u), and
F;:’ (u). Using the Ansatz, we can extrapolate to obtain F}, an approximation of
F},(u), which we use to compute the corrected solution @ from the equation

~D({d"Diy) + [ Ditn + [of"in = [f)* + Fr, w €. (20)

In this section we are also going to investigate the possibility to extrapolate a
correction on the operator, and not only on the force.

9.1 The elliptic case with a =03=0

We now consider the case when 8 = a = 0, that is the problem
—D(eDu) = f, ze€l,

with boundary conditions u(0) = Du(1) = 0. Now wy, is defined to be the solution
to the simplified problem

~D([e]"Dup) = [}, z €, (21)
and the solution to the exact problem u satisfies
—D([¢)" Du) = [f]" + Fa(u), s €1,
with the modeling residual
Fy(u) = f = [f]" = (=D(eDu) — D([e]" Du)),

and

Fiy(u) = [D(eDu)]" — [D([e]" Du)]*.

In this case F(u) does not appear to be on the form (8), and consequently we
cannot motivate the Ansatz on F},(u) which we have used in the previous sections.
We therefore turn to the following variational formulation of (9.1): Find u € V =
{v:v,Dv € Ly(I),v(0) = 0} such that

1 1
/ eDuDv dy = / fody, YveV. (22)
0 0

We have that u;, as defined in (21) satisfies

1 1
/ [€]* DupDv dy = / [ dy, YweV,
0 0
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and the solution to the exact problem u satisfies

1 1 1
/0 [€]* DuDv dy :A (£ dy —I—/0 FY (u)Dv dy, Yv €V,

where we have introduced a new modeling residual FhV (u), defined by
FY (u) = [e]"Du — eDu,
and
Fy'(u) = [€]"[Du]" — [eDu]",
which is of the form (8). We can therefore again use the Ansatz
FY (u)(w) ~ C (o)),

and we expect extrapolation of F}Y (u) to be possible if € and Du have a “fractal”
structure. We denote the extrapolated approximation of Fhv (u) by Fhv and we
denote the corresponding corrected solution 4, where 4y is the solution to the
problem

1 1 1
/O [€]" D@, Do dy :/0 [£]v dy+/0 FYDvdy, YveV.

In the case of Poisson’s equation with an irregular diffusion coefficient and a smooth
force, we might suspect that it is hard to model a correction of the diffusion
operator by adding a corrective force, and we are therefore, in addition, going to
model the SGS by an extrapolated correction on the operator. This we can do, for
example, by defining the correction of the diffusion coefficient by
ef:lorr = _FhV/Duh’

and we denote the corresponding solution @, where ;" is the solution to the
problem

1 1
/ ([d" + €, ) DuP Dv dy = / () dy Vv eV.
0 0

For the periodic version of this problem, with a smooth force, it is well known that
the homogenized operator is obtained by using the harmonic average [e]ZaTm =
1/[1/€]" of €, instead of the arithmetic average. We denote the corresponding
solution ﬂg‘"‘m. In Table 9 we present some numerical experiments for f = 1,

where we compare different choices of H and H. What we can see is that the
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(HH) |GF | MF, | GFP | MF,
@, | (2h,4h) | 1.1 ] 079 | 1.1 | 0.73
(4h,8n) | 1.7 | 1.2 | 1.6 | 1.1
(8h,16h) | 3.1 | 2.2 | 2.0 | 1.3
@ | (2hdh) | 1.1 [ 079 | 1.1 | 0.73
(4h,8h) | 1.7 | 1.2 | 1.6 | 1.1
(8h,16h) | 3.1 | 2.2 | 2.0 | 1.3
aperm 28 | 2.0 | 41 | 2.8

Table 9: f =1 (7. = 0.1, . = 0.3).

quality of the corrected solution %, and the corrected derivative Dy, improves by
extrapolating further away from h, and for larger H and H the corrected solution
on the scale h corresponds to a better solution than a non corrected solution on
the scale h/2. We note that even though we loose information regarding the small
scale structure of F’hv (u) when we are using large H and H, we still get the best
results for these cases. We may conclude that this depends on the fact that F}Y (u)
is based on the derivative, and Duj does not approximate Du well enough, and it
is therefore hard to extrapolate F}Y (u) using scales close to h. On coarser scales
Duy, should look more like Du, and we find that we have to use quite large H and
H to get results as good as when we use the harmonic average. For the derivative
we do not get as good results, even when we use very large H and H. But we do
not see any significant difference in these tests between extrapolating a correction
on the force, or using the extrapolated modeling residual to model a correction on
the operator.

When we study the same problems for an irregular force we find that using
the harmonic average of € is no longer optimal, and we further find that the
extrapolated corrections give better results for an irregular force. In Table 10 we
present results for an irregular force of the type (11) with v = 0.1 and § = 0.2.

9.2 Constant diffusion coefficient e

If the diffusion coefficient € in the problem (17) is constant, then
Fu(w) = ([B[(Du]* — [8Du]") + (o] [u]* ~ [ou]") (23)

Fj,(u) consists of two parts, each of the type (8), which can be extrapolated if
B, Du, and «, u respectively have a “fractal” structure. By choosing fractal test
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(H,H) | GF | MF, | GFP | MF,
@, | (2h,4h) | 1.1 [ 0.96 | 1.2 | 0.86
(4h,8h) | 3.2 | 2.8 | 25 | 1.8
(8h,16h) | 3.2 | 2.8 | 2.6 | 1.9
a? | (2hdh) | 1.1 | 096 | 1.2 | 0.86
(4h,8h) | 3.2 | 2.8 | 25 | 1.8
(8h,16h) | 3.2 | 2.8 | 2.6 | 1.9
aperm 086 | 0.74 | 1.2 | 0.89

Table 10: “Fractal” force (y = 0.1,§ = 0.2) and (7. = 0.1, 6. = 0.3).

functions a and 8 we expect extrapolation to work when ¢ is small, since then we
have a convection dominated problem as in Section 8.

In Figure 8 we plot the two parts of Fj,(u), and their extrapolated approxima-
tions for € = 10~® (H = 2h and H = 4h). We find that the extrapolation of the
second part of F(u), based on the solution u, works fine. But in the case of the
first part of Fj,(u), which is based on the derivative Du, the extrapolation is not
as good. This is the same problem as we met in the previous section, that is, Duy,
does not approximate Du well enough. We can then either extrapolate from scales
further from h, or we can avoid to base the extrapolation on the derivative at all
by eliminating Du from (23) by using (17):

Fy(u) = [B"[(f — au+eD*u)/B]" — [f — au+ eD?*u]" + [a][u]" — [o]”

[B1"1f /81" — 11" + [a]*[ul" — [8]"[(cw)/B)" + [8)[eD*u/B)" — [eD*u)"
= F} + FX(u)+ F2(u).

Here we recognise F} and F?(u) as being the same corrective forces as in Section
8, and they should be possible to extrapolate by the discussion there. This seems
natural, since then if the diffusion is small the corrective force is close to the case
when the diffusion is zero. Now in the case of € being small, we approximate
Fy(u) = F} + F?(u). In Table 11 we present the result of numerical experiments
for € = 1076 (H = 2h and H = 4h). We find that the quality of the corrected
solution %y on the scale h is better than the quality of a non corrected solution on
the scale h/4, and the same is true for the corrected derivative Diy,.

By using the extrapolated approximation of the modeling residual to correct
the operator, we get similar results as when we used the modeling residual as a
correction on the force, although the results are slightly worse when we correct the
operator using the approximation F’,‘?(u) =~ 0.
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Figure 8: Fy(us), F(up), Fu(u) and Fy, for H = 2h and H = 4h.

31



Yol 0a | 75 | 05 | GF | MF, | MF, | GFP | MFP | MFP
05]03[008[01|75]| 58 | 42 | 42 | 32 | 23
03]34] 23 | 14 | 63 | 37 | 23
010165 50 | 38 | 32 | 25 | 1.9
03|38 25 | 16 | 55 | 43 | 20
05]008[01]62| 48 | 34 | 41 | 32 | 23
03[31] 19 | 12 | 69 | 38 | 22
010159 45 | 35 | 31 | 24 | 18
03[35] 22 | 13 | 57 | 34 | 19

Table 11: Gain-factors and mesh-factors for e = 1076,

9.3 The full problem

We consider the problem (17) where we now all coefficients ¢,  and ( are frac-
tal. Following the discussion in Section 9.1 we consider the following variational
formulation of (17): Find u € V = {v : v, Dv € L?(I),v(0) = 0} such that

1 1 1 1
/ eDuDv dy —I—/ BDuv dy/ auv dy = / fvdy, YvelV. (24)
0 0 0 0

The solution uy to the simplified problem (18) satisfies

1 1 1 1
/ [€]* Duy Do dy —I—/ [8]" Duyv dy/ ()" upv dy = / [f]*v dy, Vv eV,
0 0 0 0

and the exact solution u satisfies
1 1 1
/ [€]* DuDv dy+/ (8] Duv dy/ []"uv dy
0 0 0

1 1 1
— / [f]hv dy -I—/ Fy(u)v dy +/ Fhv(u)Dv dy, Yvev,
0 0 0

where the two modeling residuals F,(u) and F}Y (u) are given by

FY(u) = [€"Du— eDu, (25)
Fp(u) = [B"Du— BDu+ [a]"u—au+ f—[f]", (26)
and thus
FY(w) = ["[Du)*— [eDul,
Fyw) = ((8"Du]" — [8Du)") + ([0 [uw]" — [ou]") = Fj (u) + FR(u).
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We see that F)Y (u), Fil(u) and F2(u) are of the form (8) and we expect extrapo-
lation to be possible by using an Ansatz of the form

F(u)(2) = Co(2)n D, Fj(u)(z) = Co(z)nD,  FY (u)(z) = C3(a)h#>*).

We obtain the improved solution @, € V from the variational problem
1 1 1
/ [e]* D@y, Dv dy+/ [B]" Dy dy/ [ v dy
0 0 0

1 1 1
= / [f]"v dy-l-/ Fyv dy+/ EYDvdy, YveV. (27)
0 0 0

The relative importance of F)Y (u) compared to Fj(u) depends on the size of . If
€ is small, then the problem is convection dominated and the results are similar to
the results in Section 9.2 (by using (24) and neglecting the diffusion term). On the
other hand, if the problem is diffusion dominated (e large) the modeling residual
FY (u) based on e is the dominant one.

In Table 12 we present the result of numerical experiments for e, = 1073, where
both Fj(u) and F)Y (u) contributes to the correction of @,. As in Section 9.1 we
cannot avoid using the derivative as a base for the extrapolation. To compensate
for the lack of accuracy of Duy as an approximation for Du, again we extrapolate
further away from h. We use H = 4h, H = 8h and we let f(z) = 1.

5. | 0a | 65 | GF | MF; | GFP | MFP
03]01[01]26| 1.4 | 1.6 | 0.90
03] 11 | 58 | 1.6 | 0.93
030121 1.3 | 1.6 | 087
03|51 28 | 1.8 | 0.94

Table 12: Gain-factors and mesh-factors (7. = 0.1, 7, = 0.3, 73 = 0.1).

In this case a corrected solution 4y, on the scale A is better than a non corrected
solution on a scale h/2. For the derivative the improvement is not that great. We
also investigate the case when we use the modeling residuals to correct the operator
instead of the force, by solving the problem

1 1
/ ([e]* + ™Y D Do dy + / (Bn + B ) Dty’v dy
0 0

1 1
+/ ([e]" + ) aPv dy = / () dy, Vv eV.
0 0
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By using the assumptions
o = —FY [Dup 7 = —F/Duy  o§ = —F Jup,

we find that the results are more or less the same as when we let the modeling
residuals act as corrective forces. Finally, in Table 13 we present the numerical
results for a fractal force f, with v = 0.05 and § = 0.5, using the extrapolated
modeling residual as a correction on the force.

5. | 6o | 05 | GF | MF, | GFP | MFP
03[01]01]25| 1.4 | 1.6 | 0.90
03] 11 | 58 | 1.6 | 0.92
03[01] 21| 1.3 | 1.6 | 0.88
03] 48| 27 | 1.8 | 0.94

Table 13: Fractal force, with v = 0.1, 7, = 0.3, and 73 = 0.1.

10 Error analysis

We now turn to the issue of developing adaptive algorithms, including quantita-
tive error control based on a posteriori error estimates, using the extrapolation
technique described above. We recall that we formally have

u—up = L, ' Fi(u), (28)
w—dp, = L (Fy(u) — Fy), (29)

which shows the connection between Fj, (1) and u—uy,, and Fj,(u) — F, and u— iy,
via the inverse L;l of L. In order for u — @ to be smaller than u — wuy, that
is, for @y, to be an improvement of uy, we anticipate that Fj,(u) — F}, should be
smaller than Fj,(u). This means that if Fj(u) is small so that uy, already is a good
approximation of u, then improvement should be difficult to achieve.

In the next sections we derive explicit estimates corresponding to the abstract
relations (28)-(29), and we are first going to fix some notation for this section. The
space C(I), consisting of continuous functions on I, is equipped with the uniform
norm || - ||, defined by

l[ulloc = sup [u(z)].
€l
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The space Lo(I), consisting of Lebesgue square integrable functions, is a Hilbert
space with inner product and norm defined by

(0,) = /1 v(@yw(z) dz, [w] = /w,w).

We are also going to use the p-weighted inner product (-,-), and norm, defined by

(v, w)p = /Ip(w)v(w)w(w) dz, |Jwll, =1/ (w,w),,

for v,w € Lo(I), p: I = IRy, and p is locally integrable in I. We define L , to
be the Hilbert space where the norm || - ||, is finite.

10.1 A priori error estimates for initial value problem

For the problem without diffusion, we give two error estimates in terms of the
modeling residuals, corresponding to (28)-(29).

Theorem 1: Assume that 0 < [a]" < ¢y, 0 < ¢; < [B]*, and e = 0, then
[ — plloo < ClIFp(u)lco;

where C = é exp(co/c1).

Proof: We know, by the discussion above, that

Lp(u—up) = Fp(u),

and using the solution formula (4), we get

Y . AR DI
(u— up) () = /0 p(4nly) — An(o) T S,

where Ap(z) is a primitive function of [a]?/[8]" (satisfying DA, = [a]*/[8]",
Ap(0) = 0). We take absolute values of both sides, then we estimate the right
hand side:

1
= un|(2) < —[1Fo () loe / |exp(An(y) — An())|dy.
C1 0

By the mean value theorem for z,y € 1

ah
[Anla) = An)] < x| DAK(D Iy ~ o] = max S by al,
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from which the desired result follows.

Theorem 2: Assume that 0 < [a]" < ¢y, 0 < c; < [B]", and € =0, then

lu = Gnlloo < Cl|Fa(w) = Fhlloo,
where C' = % exp(co/c1).
Proof: We recall that

Li(u— @p) = Fy(u) — Fp,

and as in the proof of Theorem 1, we have

(w — in) (z) = /0 explid(y) — An(a) Py,

from which the desired estimate follows.

Remark: The errors in Theorem 1-2 are also bounded in the Lo-norm, since
||w] = (fo1 w?(y) dy)'/? < (fo1 lwl, dy)'/? = |w||leo- We can also obtain esti-
mates in terms of Lo-norms by using Cauchy-Schwarz inequality.

10.2 A priori error estimates for convection-diffusion-
reaction problem

For the problem with non zero diffusion, we do not have an explicit solution for-
mula as we had for the problem in the previous section. Instead we are going to
use an energy argument to obtain error estimates. In this section, Theorem 3 and
4 corresponds to (28)-(29) when € # 0.

Theorem 3: Assume that 0 < cg < [B]" < Cy and 0 < ¢1 < [a]”, then

1D — Dulyp + llu — unl® + (u — u)*(1) < © (||Fh<u>||2 +IEY (u)n%h) ,

[e]
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where C = - L ) exp(f—g)-

comin(ep,1) min(1, Co

Proof: First we subtract (18) from (19), where we set e = u — up. Then we
multiply both sides with e and integrate from 0 to z;x. By using partial integra-
tion and rewriting eDe as %DeQ, we get:

Ti ke Ti & Ti,k
2/ [€]*(De)? dy —l—/ (8" De? dy + 2/ []"e? dy
° Zik ° Tik °
= 2/ Fp(u)e dy + 2/ FY (u)De dy,
0 0

where FY (u) and F},(u) are defined by (25) and (26). Since [8)" is constant on
each interval I;; we have

k-1

| e dy—Z/ BIDE dy = [ () (@) — S ()|

0 =1

where [[8]*]; = [ﬂ]h(:c;rl) — [ﬂ]h(w;,l) is the jump in [8]" at z;;. This gives
2 [ De dyrz [ lalte? ay+ (1 e o)

Ti k ‘Ti,k k-1
=2/ Fa(u)e dy+2/ wDe dy+ 3 ()16l
0 0 =1

Now we can split the first integral in the right hand side by using Cauchy-Schwarz
inequality, and the inequality 2ab < a? + b (a,b € IR):

Ti,k e Tik Ff(u) 1/2 Tk alhe? 1/2
2/0 F(u) dySQ(/O o] dy) (/0 [a]e” dy)

Tik F2(y Tik
S/ h(h) dy‘l‘/ [a]heQ dy
0 [a] 0

Then we move the second of these new integrals to the left hand side. By the same
operations on the second integral we get:

/0 " De)? dy + / " lge? dy + 1B (o) i)

R {0 Y S U R
_/0 - d-l—/ g el
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We divide the equation by [B]h(a:;k) and use that 0 < ¢y < [8]*. By then using
Gronwall’s lemma we get

# ik e (De)2 # Ti k 2 2
[5]h($i_k)/0 []*(De)” dy + 81z )/0 []"e” dy + e*(w; k)

1, (% F2(u) Tk (FY)?(u) 1
< A d+/ h[Tdyexp< ZI )

0

This is true for all z;, € I, in particular it is true for x; ; = r; 9 = 1. If we then
use the given bounds on [a]? and [8]" we get

1 1
60/0 [e]*(De dy+—/ cie? dy + €*(1)

1, (" Fw) (FY () 1S
< ( /O o dy + /0 AR dy) exp - ;:1 B1*:

But now we observe that

2t—1

> B = 181"(1),
=1

from which the desired estimate follows.

Theorem 4: Assume that 0 < cg < [8]" < Cy and 0 < c1 < [a]", then

1Dw — D12 + Il — anll” + (w — in) (1)

c (||Fh<u) _RP 4 IFY () — BY ||%) ,

C
where C' = . L ) exp(g2)-

comin(cy,1) mln(l,c—o o

Proof: If we subtract (20) from (18) and set e = u — 4y, then multiply both
sides by e and integrate from 0 to z;;, we get

Tik Tk Tik
2 [ ay+ [ irne a2 [Tale ay
0 Tik - 0 Tik ‘ -
2 [ (B - Bedy+2 [ (B () - FY)De dy
0 0
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Then by following the proof of Theorem 3, the desired estimate follows.

10.3 A posteriori error estimates

To derive a posteriori error estimates we consider the following dual problem for
¢ related to the problem (17):

L*¢=—D(eDp) — D(Bp) +ap =", z€l, (30)

with (1) = Dp(0) = 0. We obtain strong stability estimates for ¢ in terms of ¥
by first multiplying (30) by ¢ and integrate from 0 to z;, and then use partial
integration to get

2/ e(Dyp)? dy +/ BD? dy + 2/ ap? dy = 2/ T dy.
0 0 0 0

Then we mimic the proof of Theorem 3, to obtain the following estimate for the
solution to the dual problem (30):

lell” + 1 Dll? +¢*(1) < CIE|P,

where C' is the same constant as in Theorem 3. By taking the Lo-inner product of
e and ¥, where we let e denote either the error © — uy, or the error u — uy, we get

(e,¥) = (e, L") = (Le, o) = (R, ),

where R denotes the residual R = R(uy) = f — Luy, or the residual R = R(dp,) =
f — Ly, respectively. But we have that

R(up) = f—Lun = f— (Lpun + Lup — Lpup) = f — ([f1* + Lup — Lypup)
= f—=[f1" = (L — L)up = Fy(up),
R(@p) = f— Liy = f — (Lpiin + Liip — Lpii) = f — ([f1* + Fp + Liip — Lyii)
f=f1" = (L = L)y, — Fy = Fy(iip) — Fy,

which shows a natural connection between the modeling residual and the total
residual, since we have neglected the numerical errors in this paper.

Now if we let U = x(,_p/2,4+h/2] (Where x; denotes the characteristic function
for the interval T) we get a local error representation for e” at z. And if we want to
get a bound on ||[e]"||, we choose ¥ = [e]” and remember that [e]” can be identified
with the Lo-projection of e onto V;, and therefore (e, [e]?) = ([e]?, [e]?) = ||[e]"?||?.
So we get that

le"l” = (R, o),

39



where ¢ solves the problem (30) with U = [e]*. We sum up the above discussion
in a final theorem:

Theorem 5: We have the following a posteriori error estimates:

[t — up]®|* = (Fi(un), 90)1
[ = @n)" (1> = (Fu(@n) — Fr, ),

where ¢ is the solution to the problem (30) with ¥ = [u]® — [up])? and ¥ = [u]* —
[@4]" respectively. We have also the following local error representations:

(u — up)(z) = (Fn(un), 0),
(u — 1ip)"(x) = (Fu(iin) — Fr, ),

where ¢ now is the solution to the problem (30) with ¥ = X(g_p/2,24h/2-

11 Conclusions

In this paper we have investigated the performance of a subgrid model based on
extrapolation of a modeling residual, in the case of a one dimensional convection-
diffusion-reaction problem with rough coefficients with features on a range of scales.
Assuming a certain “scale regularity” of the coefficients, and by using a Haar
Multiresolution Analysis, we motivated an Ansatz on the modeling residual of the
form Ch*, where h is the mesh size and C = C(z) and p = p(z) coefficients to
be determined. We then showed that it was possible to determine the subgrid
model on coarse scales with a fine scale computed solution without subgrid model
as a reference, and then extrapolate the subgrid model to the computational scale.
We presented a priori and a posteriori modeling error estimates for the corrected
and the non corrected solutions. We showed in numerical experiments that by
extrapolating from 2h and 4h, where h is the computational scale, the modeling
errors in the corrected solution were typically less than in a non corrected solution
on the scale h/4. For Poisson’s equation, extrapolating from 4h and 8h typically
was better than a non corrected solution on the scale h/2. We did not note any
difference in the results when we used the modeling residual as a correction on the
force, or when we used it as a correction on the operator. It was further noted
that the extrapolation procedure was more effective when the extrapolation was
based on the computed solution uy, itself, and not on the derivative Duy,.
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