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Abstract

In this paper we study a subgrid model based on extrapolation of a
modeling residual, in the case of a linear convection-diffusion-reaction
problem Lu = f in two dimensions. The solution u to the exact
problem satisfies an equation Lpu = [f]® + Fy(u), where Ly is the
operator used in the computation on the finest computational scale h,
[f]? is the approximation of f on the scale h, and Fj,(u) is a modeling
residual, which needs to be modeled. The subgrid modeling problem
is to compute approximations of Fj,(u) without using finer scales than
h. In this study we model Fj,(u) by extrapolation from coarser scales
than h, where Fj(u) is directly computed with the finest scale h as
reference. We show in experiments that a solution with subgrid model
on a scale h in most cases corresponds to a solution without subgrid
model on a mesh of size less than h/4.
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1 Introduction

A fundamental problem in science and engineering concerns the mathematical
modeling of phenomena involving small scales. This problem arises in molecular
dynamics, turbulent flow and flow in heterogeneous porous media, for example.
Basic models for such phenomena, such as the Schrédinger equation or the Navier-
Stokes equations, may be very accurate models of the real phenomena but may be
so computationally intensive, because of the large number of degrees of freedom
needed to represent the small scales, that even computers with power way beyond
that presently available may be insufficient for accurate numerical solutions of the
given equations. The traditional approach to get around this difficulty is to seek
to find simplified models with computationally resolvable scales, whose solutions
are sufficiently close to the solutions of the original full equations. Such simplified
models, without the too small scales, build on mathematical modeling of the com-
putationally unresolved scales of the full equations, which is referred to as subgrid
modeling. To find suitable simplified models including subgrid modeling, is the
central activity in modeling of turbulence, molecular dynamics and heterogeneous
media.

The problem of subgrid modeling may naturally be approached by seeking to
find the simplified model by suitably averaging the full equations over the resolvable
scales. This was the approach in turbulence modeling taken by Reynolds a century
ago, and leads to a simplified set of equations, the Reynolds-averaged Navier-Stokes
(RANS) equations, involving the so called Reynolds stresses. The mean velocity
field may be defined by ensemble, time, or spatial averaging, and the classical
problem in turbulence modeling is to find an expression for the Reynolds stresses
in terms of the resolvable scales, which is also referred to as the problem of closure.
A large number of attempts to find solutions to the closure problem by analytical
mathematical techniques have been made over the years since the time of Reynolds,
but satisfactory solutions have been evasive so far. Typically in RANS models,
a turbulent length scale and a turbulent time scale need to be determined. This
can be done either in an ad hoc fashion, or by introducing additional equations
determining the unknown quantities.

In a Large Eddy Simulation (LES) the idea is to simulate the larger scales of
motion of the turbulent Navier-Stokes equations while approximating the smaller
ones (for an overview see [15],[7]). By suitably averaging the Navier-Stokes equa-
tions over a certain spatial scale one obtains a simplified set of equations involving
additional stresses 7;; = W;u; — U;u; representing the subgrid model (where @;
represents a local average of u; and u = (u;) is the velocity), called the subgrid
scale Reynolds stresses (SGSRS). In a LES the average is in general taken over a
finer spatial scale than in RANS modeling, and since there is no averaging in time



a solution to a LES is evolving with time. In a corresponding RANS simulation,
the solution is smoother and in general constant in time.

The simplest subgrid scale model of turbulence is the Smagorinsky model [19],
where the SGSRS are modeled as viscous stresses 7;; = ve;;(u), related to a certain
turbulent viscosity (eddy viscosity) v of the form v = Ch*|e(u)|, where C = C(z)
and p = p(x) are positive numbers in general depending on the spatial coordinate
x, h = h(z) represents the smallest resolvable scale at z, and e(u) = (;;(u))
is the strain of the velocity u. The subgrid modeling problem in this case is to
find the functions C'(z) and p(z). Attempts have been made to determine these
functions analytically, or experimentally by finding best fit to given measured
data. In both cases serious difficulties arise and the obtained simplified models do
not seem to be useful over a range of problems with different data. Of course, the
difficulties may stem from both the fact that the assumed form of the subgrid scale
Reynolds stresses is not a reasonable one, and from the fact that the coefficients
C(z) and p(z) depend on the particular problem being solved, and thus fitting the
coefficients to one set of data may be of no value for other data.

In recent years, new approaches to the subgrid modeling problem have been
taken based on dynamic computational subgrid modeling, an idea first introduced
by Germano et al. [8]. The basic assumption here is that a particular model
applies on different scales with the same value on the model parameters. Using this
assumption, one seeks to find a subgrid model, for each set of data, by computing
approximations of the subgrid model on coarser scales using a fine scale computed
solution without subgrid model as reference, and then finally extrapolating the so
obtained model to the finest computational scale, with the hope of being able to
extrapolate from the finest resolvable scales to unresolvable scales. In the simplest
case, this may come down to seeking to determine, for a given set of data, the
coefficients C'(z) and u(z) in the Smagorinsky model by best fit. In this approach,
at least the dependence of the coefficients on the data may be taken into account,
but still the Ansatz with a turbulent viscosity is kept. More generally, it is natural
to seek to extend this approach to different forms of the Ansatz. In order for such
a dynamic modeling process based on extrapolation to work, it is necessary that
the underlying problem has some “scale regularity”, so that the experience gained
by fitting the model on a coarse scale with a fine scale solution as reference, may
be extrapolated to the finer scale. It is conceivable that many problems involving
a range of scales from large to small, such as fluid flow at larger Reynolds numbers,
in fact does have such a regularity, once the larger scales related to the geometry
of the particular problem have been resolved. The purpose of this note is to
study the feasibility of the indicated dynamic computational subgrid modeling in
the context of some simple model problems related to linear convection-diffusion-
reaction with irregular or non-smooth coefficients with features on many scales.



The scale regularity in this case appears to be close to assuming that the coefficients
have a “fractal nature” and that the solution inherits this structure to some degree.

The problem of computational mathematical modeling has two basic aspects:
numerical computation and modeling. The basic idea in dynamic computational
subgrid modeling is to seek to extrapolate into unresolvable scales by comparing
averaged fine scale computed solutions of the original model (without subgrid
modeling) on different coarser scales. To make the extrapolation possible at all,
the numerical errors in the computations underlying the extrapolation have to
be small enough. If the numerical errors in the fine scale computation without
subgrid model are not sufficiently small, then the whole extrapolation procedure
from coarser scales may be meaningless. Thus, it will be of central importance to
accurately balance the errors from numerical computation and subgrid modeling.
In recent years the techniques for adaptive error control based on a posteriori error
estimates have been considerably advanced (see e.g. Johnson[12]). Thus, today
we have techniques available that allow the desired balance of computational and
modeling errors.

This is the second paper in this series. In the first paper [10], the feasibility
of the dynamic computational subgrid model was investigated for some very sim-
ple one dimensional model problems related to convection-diffusion-reaction with
certain non smooth “scale regular” coefficients. The subgrid model was based on
extrapolation of a modeling residual, and the modeling error was studied sepa-
rately by making the numerical errors neglible by computing on a very fine mesh.
A priori and a posteriori error estimates for the modeling errors were also pre-
sented.

The first part of is paper is again focused on modeling only. We then introduce
numerical errors, and the relation between the numerical and the modeling errors
is studied. The theoretical results of [10] are extended to two dimensions, and
a posteriori error estimates in terms of one modeling residual and one numerical
residual are presented. In a continuation of this study the adaptive algorithm
presented in this paper will be implemented, and the results will also be extended
to 3 dimensional problems on unstructured meshes.

An outline of this note is as follows: In Section 2 we introduce the linear
convection-diffusion-reaction model problem. We discuss different approaches to
the subgrid modeling problem, and we recall the basic results of [10]. In particu-
lar, the idea of a subgrid model based on extrapolation of a modeling residual is
presented. In Section 3 we recall basic features of Multiresolution Analysis (MRA)
using the two dimensional Haar basis, which we use to motivate an Ansatz on
the form of the modeling residual, which we then base the extrapolation upon.
In Section 4 we present error estimates, and in Section 5 we test the method in
the context of some numerical experiments in two dimensions with non smooth



“scale regular” coefficients. We first consider the modeling errors separately by
computing on a very fine mesh that makes the numerical errors neglible compared
to the modeling errors. We then introduce numerical errors by computing on a
mesh corresponding to the finest resolvable scale in the modeling problem. We
conclude with some remarks in Section 6.

2 Formulation of the problem

As a model problem we consider the scalar convection-diffusion-reaction problem
of the form.

Lu(z) = =V - (e(z)Vu(z)) + B(z) - Vu(z) + a(z)u(z) = f(z), (1)

for £ € Q C IR", together with boundary conditions for the inflow and outflow
boundaries 0_ = {z € 9Q : B(z) -n(z) <0} and 00y = {z € 0N : B(z) -n(z) >
0}, where n is an unit outward normal from Q. €(z), f(z), and a(z) are given
coefficients depending on z, f(z) is a given force, and u(x) is the solution. We
assume that the coefficients ¢, #, and « are piecewise continuous, and we seek a
weak solution u that satisfies the corresponding variational formulation of (1), and
the boundary conditions in the sense of traces.

We assume that the coefficients €, # and «, and the given function f vary on a
range of scales from very fine to coarse scales, and we expect the exact solution u
in general to vary on a related range of scales. We denote by h the finest possible
scale we allow us to use, which may be the finest possible scale in a computation of
a solution, and we denote the corresponding approximate solution u;. We assume
for now that up is the weak solution of the following simplified problem

Lyup = =V - (["Vup) + [8]" - Vup + [ up = [f]", z€Q, (2)

together with boundary conditions, where [¢]*, [8]", []?, and [f]* are approxi-
mations of the corresponding functions on the scale h, with the finer scales left
out. We may think of u, as an approximation of the exact solution w obtained
by simplifying the model by simplifying the coefficients in the model removing
scales finer than h. Typically, the coefficient [5]" is some local average of 3 on the
scale h, etc. The difference u — uy, thus represents a modeling error resulting from
averaging the coefficients on the scale h.

2.1 Subgrid modeling

We now consider a situation where wy is not a sufficiently good approximation of
u, and we would like to improve the quality of uy without computing using finer



scales than h. The equation Lu = f satisfied by the exact solution can be written
in the form

Lyu = [f1" + Fa(w), (3)
where

Fy(u) = f = [fI* = (L — Lp)u (4)

acts as a modeling residual. The subgrid modeling problem is to model Fj,(u) on
the scale h. There is a variety of possibilities to approach this problem. We may
use Fj,(u) as a correction on the force and replace the model Lyuj, = [f]* by the
model

Ly, = [fI" + Fy,

with solution @y, where F}, is supposed to approximate F), (u). Alternatively, we
may seek to model L — L, as a correction Lp of the operator L, and solve a
modified problem of the form

(Ln + Ln)an = f, (5)

where thus the correction Ly, acts as a model of L — Lj. In the first approach the
subgrid model takes the form of a corrective force F, independent of @y, and in
the second approach the subgrid model also contains a correction Ly, depending
on Up,.

To find the corrected (or effective) operator is a classical problem in homog-
enization theory (see e.g. Bensoussan et.al. [2]). Analytical homogenization
tegniques based on asymptotics have been used to derive effective operators, but
these teqniques rely on the essential assumptions of periodicity of the coefficients,
well separated scales, and an a priori knowledge of the number of scales, which may
be serious restrictions. Another approach to this problem was proposed by Nielsen
and Tveito [18] who studied Poisson’s equation with an irregular permeability on
a fine scale, where the effective (or upscaled) permeability was defined as the so-
lution to an optimization problem, where the difference between the fine scale and
the coarse scale velocity fields were minimized. Brewster and Beylkin [3] used a
numerical homogenization strategy based on MRA, where the homogenized (or
reduced) operator was constructed by recursively taking the equation at one scale
and construct the effective equation on the next coarser scale. These ideas were
then further developed by Dorobantu et.al. [5]. For this approach to be practical,
two problems have to be solved. First, the transition between two scales has to be
computationally efficient. Secondly, the form of the equations must be preserved
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for a recursive use of the reduction step to be possible, which is not the case in
general. A great advantage when using MRA is that it does not require separation
of the scales, a continuous range of scales can be handled. Hughes et.al. [11] used
a similar idea based on a hierarchical FEM basis, where they let the linear basis
functions on each element represent the coarse scales, and the bubble, edge (and
face) basis functions represent the fine scales. The fine scales were then eliminated
by introducing certain Green’s functions related to the dual operator, which in
turn had to be determined by solving a local problem on each element. In a LES,
the widely used turbulent viscosity assumption is another example of a modified
operator that needs to be modeled. On the other hand, in the scale similarity
model, introduced by Bardina et.al. [1], and the modified scale similarity model,
by Goutorbe et.al. [9] and Liu et.al. [13], all subgrid scale (SGS) influence on the
large scales is modeled as a correction on the force.

The SGS may of course influence the larger scales in different ways. In our
simple linear model problem, the SGS may typically influence each part of the
operator (the convection, diffusion or reaction) or the force. One might suspect
that only using a correction on the force to model the SGS may be better or
worse depending on how the SGS influence the larger scales. For example, if the
SGS influence only manifests itself as a modification of the viscosity, a corrective
force would typically be oscillating around zero, to either increase or decrease the
oscillations in the solution. In this case, modeling of the corrective force on the
scale h should probably be difficult. On the other hand, using the assumption that
all SGS influence should be modeled as a viscosity does not seem optimal either. In
a LES the so called mized models, where a scale similarity model is used together
with an eddy viscosity model, have been shown to improve the stand alone scale
similarity model. But this approach needs also to be applied with care since one
have to make sure that the two models work together in the right way, so that
each model does not try to model the SGS on its own and thereby compensate
twice for the SGS effects.

2.2 Dynamic models

Germano et.al. [8] first introduced the concept of a dynamic model. The dynamic
model is not a model in itself, but rather a procedure taking a subgrid model as its
basis. The basic assumption is that a particular model applies on all filters used,
with the same value of the parameters. One way to explain the concept is the
following. Suppose a LES is done on a relatively fine grid. One could think of it as
a direct numerical simulation (DNS), meaning a simulation of the Navier-Stokes
equations on such a fine scale that all small scale phenomena are resolved without
any subgrid model. One could then use the velocity field from this computation



as the basis for an a priori estimate of the subgrid model parameters. This can be
done at every spatial point and time step. It is then assumed that the behaviour
of the smallest resolved scales of the LES is very similar to that of the subgrid
scales, so that parameters so obtained can be applied in the subgrid model on the
LES itself.

Hoffman et.al. [10] proposed a method for computing an approximation of the
modeling residual Fj(u) in (3) using the idea of a dynamic model, in the case
of a linear convection-diffusion-reaction problem. It was shown that the filtered
(local average of) Fj(u) on the scale h is equal to a sum of covariances of the
form [vw])® — [v]*[w]"?. Based on a Haar MRA, an Ansatz of the form [vw]® —
[v]"[w]* ~ Ch* was proposed. The two functions C(z) and p(z) were determined
by extrapolation from computing approximations Fy (uy) of the modeling residual
Fy(u) on two coarser scales H, where the solution to the simplified problem wuy,
was used as a substitute for the solution u to the exact problem. A priori and a
posteriori modeling error estimates for the one dimensional case were presented.
Numerical experiments in one dimension were also presented, indicating that the
modeling error in a corrected solution #p on the scale h is less than the modeling
error in a non corrected solution on the scale h/4. In [10] only modeling errors
were considered, and the numerical errors were made neglible by computing on a
very fine computational mesh.

3 Extrapolation of Fj(u) using MRA

The notion of Multiresolution Analysis (MRA) was introduced in the early 90’s
by Meyer [17] and Mallat [16] as a general framework for construction of wavelet
bases. In [10] a Haar basis MRA in L9([0,1]) was used to motivate an Ansatz on
the form of the modeling residual Fj,(u), and Fj,(u) was then approximated using
extrapolation. In this section we extend the results in [10] to two dimensions,
using the Haar basis in Ly([0, 1]?). Based on these results we formulate an Ansatz
on Fj,(u), which we use to extrapolate an approximation Fj, to Fj,(u).

3.1 MRA

An orthonormal MRA of Ly([0,1]) is a decomposition of Ly([0,1]) into a chain of
closed subspaces

Wwcwvic..cV;c..



such that

Uv; = La((0, 1))

720

Each Vj is spanned by the dilates and integer translates of one scale function
¢ € Vo

V; = span{p; i (z) = 27/2p(2z — k)},

and the functions ¢ form an Ls-orthonormal basis in V;. We denote the orthog-
onal complement of V; in V; 1 by W), which is generated by another orthonormal
basis (the wavelets) 1; (z) = 27/?4(27x — k), where ) € Wy is called the mother
wavelet. The space Ly([0,1]) can now be represented as a direct sum

For a more detailed presentation of the MRA concept we refer to Daubechies [4]
or Louis et.al. [14].

3.2 The Haar MRA in Ly(|0, 1]2)

In the case of the two dimensional Haar basis in Ly ([0, 1]?), the space V; is spanned
by the scale function

(z,y) = p(z)p(y),

and V; = span{®, (z,y) = 2/®(2/z — k;, 2’y — ky) }. The orthogonal complement
of Vjin Vi 1 is W; = WjH &) WjV &) WjD , where WJ-H , W]V and WJD are spanned by
the wavelets

qjﬁk(xay) = 2J\I}H(2Zx - kw, 2iy - ky)a

respectively, where j € Z, k = (ky, k,) € Z? and

U (z,y) = (@) (y),
lI;V( ) =¢($)<P("J)a
TP (z,y) = p(z)p(y)

10



Here 9 and ¢ are the one dimensional Haar mother wavelet and scale function
respectively, defined by

1 0<z<1/2
P(z) = -1 1/2<z<1
0 otherwise,
(z) = 1 0<z<1
wviE) = 0 otherwise.
-1 -1 +1 -1 -1 +1
+1 +1 +1 -1 +1 -1
v (z,y) Y (z,y) TP (z,y)

Each f € L(]0,1]?) has a unique decomposition

f=ro®+ Y (FHRUE + 550 + FRO5) = fo + D+ £+ P),
i,k g

where fZ-H , fz-V and fz-D represent the contribution on the different scales 2% cor-
responding to dyadic subdivisions S; of € with mesh points z;; = kz27% and
Yir = ky27° where kg, ky, = 0,1,...,2", and subdomains s;; = {k;27" < z <
(ky +1)274, k27 <y < (ky +1)27%}. The coefficients fiy (v = H,V,.D) are
given as the Ly inner product of the function f and the corresponding Haar basis
function:

Y= /Q f (@) ¥ () dady,

11



and fe = [ f(z,y) dzdy.

3.3 The Ansatz

In this section we are going to formulate an Ansatz on the modeling residual F, (u),
using the theory of MRA presented in the previous sections. For f € Lo(2), where
Q = [0,1]%, we define [f]" to be the piecewise constant function on S;, given by

1 =fo+ > (K + 1+ 17),

j<i

where we let A = 27% in the rest of this paper. Further, we recall the definition of
the running average f" of a function f € Ly(Q2) on the scale h as

z+h/2 y+h/2
(z,y) = 2% / / ) dsdt,
z—h/2 h/2

where (z,7) €  and we extend f smoothly outside . We denote by f” the piece-
wise constant function on the scale h which coincides with f* at the midpoints of
the subdomains s; . Clearly f" is independent of the extension of f outside €.
We shall use the following lemma:

Lemma 1: f € Ly(Q) = [f]* = f.

Proof: We have

_ _ h
fo= fo+d P+ +D) = =F+) A+ +1P)
J J

_ - —h
= fo+ Y (FF+TV+FP) =fa+ >+ 1]+ 1) =11"

Jj<i j<i

We recall that V; is the space of piecewise constant functions on S;, and the linear
mapping Ly 3 f — [f]* € V; can be identified with the Lo-projection of f onto
V;. Assuming for the moment that e is constant, so that [¢]* = ¢, the modeling
residual is given by

Fu(u) = f = [f" = (8- Vu + au — [A]" - Vu — [o]"u).

12



From the definition we have that [[f]¥g]" = [f]¥[g]® whenever H > h (H = 277,
h = 27% with j < i). This gives that

[Fn(u)]" = [8)" - [Vu]" — 8- Vil + [o]"[u]" — [eeu].
We denote the projection [F (u)]? of Fy(u) onto V; by Fj,(u). We shall now seek

to extrapolate Fj(u), and we are thus led to study in particular quantities of the
form

Ep(v,w) = [ow]" — [v]"[w]", (6)

for given functions v and w, which has the form of a covariance. Using the Haar
basis, the covariance Ej(v,w) takes a simple form:

Lemma 2: v,w € Ly = For given (z,y) € Q,

Ep(v,w)(z,y) = Z 22 (vfwf + v;-/w;-/ + ijij).

j2i
T € 3851

l: i,

Proof: For v,w € Ly we have
v :v¢+Z(vfl+v}/+ij), w :w¢—l—2(w,€[+w,¥ +wP),
J k
and thus

vw = vewe + Uq,Z(w,f—l—w,‘c/—I—w,?)—l—wq,Z(UJH—FU;/—FUjD)
k J

+ > f +of +oP)(wf +wyf +wp).
Jik

Similarly

[ = vo + 3 (off + 0} +0P), [l = we + > (wfl +wf +wp),
j<t k<i

and thus

)" w]* =vews + wveY (wi +wy +wp)+we Y (vj +v] +v))

k<i j<i
+ Z(v]H —I—’uy —I—UjD)(w,? +w,‘c/+ka).
7,k<i

13



Using Lemma 1, we obtain

h
[vw]" = 70" = Tewe" + U@Z(wf +wy +wy)
k
h

b3S o +00) + S ol oD+ )

J Jik
:U¢w¢+v¢2(w1€{+wl‘c/+ka)+w¢Z(U;{+U}/+UJD)

k<i j<i

h

h
—I—Z(Uf—l—fuy—l—vf)(wf—l—w,‘;—l—w,?) —i—Z(’UJH —f—’U;-/ —I—U]D)(w]H —i-w;/—l-ij)
Gk <i Jj>i
= [v]"[w]" + Z('UJHwJH + U;-/w;/ + v]Dwf).
Jj>i
Finally we have for (z,y) € s;; that
viiwf +of w) +vPw? = vl (z,y) wi(z,y) + 0} (2, y) w]; Y (2,y)

DD D gD 2% (H H , V.V , D D
+v;, Vi, y) wii V(. y) =27 (viwsy + v ws + v wi).

Lemma 2 asserts that Ej(v,w) only depends on the scales finer than h, and that
there are no mixing between the scales. An interesting situation is when both v
and w are “scale regular” in the sense that v¥ = 0,27 9(+%) and wY = 8,2 11+w)
(v = H,V,D), where «,,,,6, and -y, are functions of (z,y), which corresponds
to v and w having a simple fractal structure (vy,(z,y) = Z_JV(E’y)v;(m,y) and
wy 4 (z,y) = 2_7"(5”’?/)11)]’((3:, y)). In that particular situation we find that Ej (v, w)
has a certain form:

Corollary: If v,w € Ly([0,1]?) with vY, = a,2790+0) gnd wy, = 6,27 11+w)
(v=H,V,D), where av,,(,,6, and ~y, are functions of (z,y), then for (z,y) € Q

Ep (v, w)(z,y) = Cu(w,y) R @Y + Oy (z,y) v @Y 4 Cp(z, y) @),

where C, = 1_;‘{% and py = oy + Y-

14



Proof: By Lemma 2 we have

Ep (Ua w)(‘Ta y) = Z 2% (U]H,leH,l + U;flw}{l + vflw]?l)
j2i
l:z € Sl

= Z 22.7(aHQ_j(1+5H)16H2_j(1+’YH)_|_._.+aD2—j(1+5D)IBD2—j(1+7D))

i
— Z (aHﬁH2—j(5H+’YH) 4.+ aDIBDQ_j(5D+’YD))
j2i

= apPyh®trm Y~ 9 Gm00mtm) 4 appphfete Ny gm0 tn)
j2i j2i

— aHﬂHhJH-F’YH Z 9—3(0u+vu) 4o+ aDIBDhJD-I-’YD Z 9—i(0p+7p)
i=0 i=0

= —1 — ;fl(’ff+7H) . h6H+’YH + .+ - 3—D(I5BDD+’)’D) .hJD-HD

Assuming that the coefficients in (1) are “scale regular” in the sense of the Corol-
lary, and that the solution inherits this local fractal structure to some degree, we
have determined the form of the covariance Ej,(v,w), and thereby the form of the
modeling residual Fj,(u), and by performing a wavelet transform (see [4],[14]) we
can determine the wavelet coefficients of v and w in Ej, (v, w). In this paper we are
not going to use the full expression for Ej, (v, w), instead we formulate the following
Ansatz: For given (z,y) € Q,

Ey(v,w)(z,y) ~ C(z,y) ), (7)

where C(z,y) and pu(z,y) are functions independent of the cut-off h. The Corollary
shows that this is, for example, the situation when the coefficients in one of the
directions v = H,V, D locally dominates. If Ej,(v,w) has this form, then extrapo-
lation of Ej,(v,w) will be possible from knowledge of Er (v, w) and E (v, w) with
h < H < H, from which the coefficients C(z,y) and p(z,y) may be determined.
Typically, we will assume that the coefficients have a local fractal structure. We
then expect the solution u to inherit this structure to some degree, and we expect
that extrapolation of the modeling residual F},(u) will be possible. This seems to
be a reasonable assumption in, for example, the inertial range of a turbulent flow.
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3.4 Summary of the proposed subgrid model

We are going to use the assumption that the Ansatz (7) is valid for the scales close
to the computational scale h (in particular for the two coarser scales H, H), as
well as for the subgrid scales. The proposed method can then be summarized as
follows:

e Exact problem: Lu = f.

Simplified problem: Lyu; = [f]".

The exact solution u satisfies Lyu = [f]? + Fj, (u).

Fh(u) = ZEh(’Uk,’wk), Eh(’l)k,’wk) = [Uk]h[’u}k]h—[vk’wk]h, for some Vg, Wk-
k

Ansatz: Ep(vg, wy)(z) = Cj(z)hH* @),

Extrapolation from H > H > h = Fj, = ZCkh“’“
k

(using (Fp(u), Fyg(u)) = (Fr(un), Fg(un)))
e Simplified problem with subgrid model: Ly, = [f]* + F.

In the next two sections we are going to evaluate this method, first in the context
of error estimates, and then in the context of numerical experiments.

4 Error analysis

We first fix some notation for this section. We denote by Ly () the Hilbert space
of all real-valued Lebesgue measurable functions defined on 2, with norm

full = ([ 1o do) 1/2

(v, w) = /Q o(z)wl(z) da.

and inner product

We will also use a p-weighted inner product and norm, defined by

(v, w), Z/Qp(w)v(:v)w(w) dz, |lwll, =1/ (w,w),,
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for v,w € Ly(R2), where the weight p : @ — IR, is locally integrable on Q. We
define Lj ,(€2) to be the Hilbert space of functions with the || - || ,-norm finite. We
further define H'(f2) to be the Hilbert space consisting of all real-valued Lebesgue
measurable functions defined on 2, with norm

ol = /Q (V@) + u?(z)) de

and inner product
(v, w) g1 = /Q (Vo(z) - Vuo(z) + v(z)w(z)) de.

The problem Lu = f, with homogeneous boundary conditions v|gq_ = g—;’b lo, =
0, takes the following variational formulation: Findu € V = {v € H'(Q) : v|pa_ =
0} such that

a(u,v) =f(v) Vv eV, (8)
where the bilinear form a(u,v) is defined by
a(u,v) = (eVu, Vo) + (8- Vu,v) + (au,v),

and f(v) = (f,v). The corresponding simplified problem on the scale h consists of
finding up, € V such that

ap(up,v) = fr(v) Yo eV, 9)
where

an(un,v) = ([€]"Vuy, Vo) + ([B]" - Vug,v) + ([o]"u,v),

and fy,(v) = ([f]*,v). In this section, we will not restrict us to the case when [-]*
means the truncated Haar expansion of a function. Instead we will think of [-]* as
being any local approximation operator on the scale h. This means in particular
that [f]" might be a continuous function. The solution u to the exact problem (8)

satisfies
ap(u,v) = Fp(v) Vv eV, (10)
with

Fn(v) = (IF1* + Fa(u),v) + (Fy (u), Vo),
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where

Fr(u) = f—[f]"—(B-Vu+au—[F]"Vu—[a]"u), (11)
FY(u) = ["Vu—eVau, (12)

are modeling residuals. The local averages of Fj,(u) and F)Y (u) on the scale h are
defined by

Fh(u) (61" - [Vu]" = 8- Vu]" + [ [u]* — [eu]",
Fy(u) = ["[Vu]" — [eVu]®.

Above we constructed approximations (F, FY) of (Fj(u), FY (u)) by extrapola-
tion, and we constructed a corresponding corrected solution @, by solving the
problem

an (i, v) = Frlv) Yo eV, (13)

where

Fn(v) = (IF1* + Fn,0) + (B, Vo).

4.1 A priori estimates of modeling errors

In the following theorems, which are extensions of the a priori modeling error
estimates in [10] to two dimensions, we will for simplicity assume that [8]" is dif-
ferentiable and satisfies V - []® = 0. For the case when [3]" is the truncated
Haar expansion of 3, we can think of [3]" as being the piecewise linear function
we get by linearly connecting the midpoint values of the subdomains on the scale h.

Theorem 1: Assume that [§)" is differentiable with V - [B]* = 0, and that
0 < c<a]’. Ifu and uy are the solutions to (8) and (9) respectively, then

IV (w = un) |G + llu = un||* < C (IIJF'%(U)II2 + IIF;Y(U)IIZ’lJ ,

[e]

IV (u— @)%y + lu — @l < © (th(u) — RlP + 1Y () - BY ||1) ,

[e1®

where C' = max(1, 1).
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Proof: We subtract (9) from (10) and write e, = u — up. Choosing v = ey,
we obtain

an(en, en) = ap(u —up, en) = ap(u,ep) — ap(un, en) = Frlen) — fulen)
= (Fn(u), en) + (Fy (u), Vey).

= ([]"Ven, Ver) + (18" - Ven, en) + ([ en, en) = (Fu(w),en) + (Fy (u), Vep).

We note that

(8" Ven,en) = ~5 (9 [ en,en) =,

since ep|pn_ = %ﬂamr =0and V- [8]" =0, and conclude that
IVenllige + lenlljap = (Falu),en) + (Fy (w), Ven).

Using Cauchy-Schwartz inequality, and the inequality 2ab < a? +b* (a,b € IR), we
get

(1Fn ()12

L
[o]?

+ llenll? ).

N | =

(Fi(u),en) < ||Fh(u)||ﬁ”eh”[a]h <

Estimating (F) (u), Vey,) similarly, we get

IVenlign + llenllfap < IIFh(U)II% + IIF;Y(U)II%,
from which the desired estimate follows. For the error v — ), we subtract (13)
from (10) and write €, = u — 4y,. Choosing v = ép,, we obtain

an(€n, €n) = ap(u — p, €p) = ap(u, €n) — an(@n, €n) = Fr(€n) — Fr(én)
= (Fu(u) — Fn, &) + (Fy (u) — Fy , V&y).

from which the desired estimate follows.

Theorem 1 indicates, for example, that if Fj,(u) and FyY (u) are large, then the
modeling error u — uy, is large and subgrid modeling is needed. On the other hand,
if Fj,(u) and F}Y (u) are both small, then the modeling error u—uy, is also small and
subgrid modeling is not needed. The quality of the corrected solution depends on
how well we can approximate (Fj(u), F}Y (u)) by (Fh, F'hv ). We also find that the
relative modeling error in uj, and 4y, is given by the relative size of (F(u), FyY (u))
and the difference (F},(u), FY (u)) — (Fp, FhV)
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4.2 A posteriori error estimates

For the dynamic computational subgrid modeling teqnique to work, it is vital to
control the numerical errors. First, if the numerical errors dominate, reduction
of the modeling errors will not significally reduce the total error. Secondly, the
quality of the approximation Fp(u) = Fg(up), and thus the whole extrapolation
procedure, is affected by the numerical errors in the computation of u;. Denoting
a computed solution to the simplified problem (9) by Uy, we have

e=u—U,=(u—up)+ (up, — Uy) = e, + Ep, (14)

where ey, represents a modeling error and Ej a numerical error. Similarly, denoting
the computed approximation of the corrected problem (13) by Uy, we have

é:u—ﬁh:(u—ﬂh)+(ﬂh—ﬁh):éh+Eh. (15)

If |len]| > || Enl|, then subgrid modeling may be attempted with the goal of
computing a corrected solution Uy, with ||&,]| << ||es|- We now present a pos-
teriori error estimates allowing us to estimate ||e|| and || E}||, and thereby ey, and
similarly ||é|| and ||Ep||, and hence ||é].

Theorem 2: Assume that [5]" is differentiable such that V - [B]" = 0, and that
0<c<[al. If By, =up — Uy and Ej, = uy, — Uy, then

9By + 18017 < © (IROIP + 1B @Iy, )

[e1®

IV EnlR + 1P < © (IRATH)I? + IR OR)IPy, )

where C = max(1, 1), Ry(w) = [f]" — [A]" - Vw — [o]"w, and RY (w) = —[e]"Vw.

Proof: We prove the theorem for the error Ej, the proof for the error Ej is
similar. We have that

an(En, Ep) = ap(up, — Uy, Ep) = ap(up, Ep) — ap(Un, Ep) = f5(Er) — ap(Up, Ep),

that is

([)"VEy, VE) + (8" - VEy, Ey) + ()" En, Ep)
= (~[€]"VUn, VEb) + ([f]" = [8]" - VU, — [)"Up, En).
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As in the proof of Theorem 1 we use

(18" - By, By) = —5(V - 6" By, ) =0,

assuming elgo_ = g—z|ag+ =0 and V- [8]" = 0. That gives that

IV Enlli + 1 Bnllar = (BY (Un), VEn) + (Ra(Us), En),

from which the desired estimate follows by following the proof of Theorem 1.
a

Similarly, we can derive a posteriori error estimates for the total errors u — U,
and u — Uy, in terms of a computable residual including both numerical and mod-
eling features.

Theorem 3: If § is differentiable such that V-8 =0, and 0 < ¢ < a, then

IV (= U +llu = Unl1? < € (IRWWIE + I1RY O)I3)

2
1
9= O+l = Tal1? < © (LRI + IRV U)I2)

where C' = max(1, 1), R(w) = f — B-Vw — aw, and RY (w) = —eVuw.

c

Proof: We indicate the proof for the error e = u — Uy, the proof for the er-
ror u — Uy, is similar. We have that

ale,e) = a(u — Uy, e) = a(u,e) — a(Uy, e) = f(e) — a(Up, e),

from which the desired estimate follows by following the proof of Theorem 2.
O

We can rewrite the residuals R(w) and RV (w) as

R(w) = Ry(w) + Fp(w),
RY(w) = Ry (w) + Fy (w),

where Rp,(w) and R)Y (w) are the numerical residuals from Theorem 2, whereas
Fj(w) and F}Y (w) are the modeling residuals.
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4.3 The adaptive algorithm

We can now, based on Theorem 5, formulate an adaptive algorithm. Given a
tolerance T'OL, a local meshsize h, and a norm | - ||, the adaptive algorithm reads:

e Compute Uy, from the discretized version of (9).

e Use Theorem 3 to compute a bound for ||u — Uy||.

o If |u—Up|| <TOL then STOP.

e Else, compute the residuals Ry, (Up), RY (Uy) and Fy(Uy), FyY (Up).

o If F},(Up), FY (Uy) are small compared to Rp,(Uy), RY (Uy), then refine h.
e Else, extrapolate F},, and compute U, from the discretized version of (13).
e Use Theorem 3 to compute a bound for ||u — Up|.

o If ||u — Up|| < TOL then STOP, else refine h.

5 Numerical experiments

In this section we study the performance of the proposed subgrid model in some
numerical experiments. We use coefficients that are tensor products of the one
dimensional fractal functions of the form

77'7,5(3;) =1+ Z Y 2_j(1/2+5)¢j,l(w)’ rel= [07 1]7 (16)
izo0
liz €l
which are scale regular in the sense of the Corollary.

First we will use a very fine mesh (uniform quadratic with 512 x 512 elements)
for all computations, and we will assume the numerical errors to be neglible com-
pared to the modeling errors. We will denote by u the solution to the problem
with the finest possible resolved coefficients on this mesh, and we will use u as
an approximation of the exact solution to the problem in the computation of the
error. To measure the relative error in uy and #y, projected on the scale h, we
define a “gain-factor” GF, defined by
[fs — un]"|

I[w — @n]||

(17)
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Figure 1: n, () for v = 0.05 and § = 0.5.

We can also relate the reduction of the modeling error we get from using the
extrapolated modeling residual to the reduction of the error we get by refining the
mesh, by introducing a “mesh-factor” MF,, defined by

i = un )"l

MF, = ————.
Pl — an)

(18)

For example, M F, measures the relative improvement in 4 compared to the im-
provement we get from refining the mesh uniformly once, that is, the improvement
we get by using four times as many elements. In all the tests we are going to use
the cut-off scale h = 275,

5.1 Elliptic Equations
As a model for an elliptic problem we consider Poisson’s equation

-V - (eVu) = f, (19)

with the boundary conditions u|sq_ = g—g|ag+ = 0, where 0Q_ = {(z,y) : z =
Oory =0}, 02+ = {(z,y) : x = lory = 1} and n is an unit outward normal
from 2, and we formulate the corresponding variational problem: Find u € V =
{v € HY(Q) : v|pn_ = 0} such that

(eVu,Vv) = (f,v), YveV.
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The solution to the simplified equation u;, then satisfies
([e]"Vup, Vo) = ([f",0), Vv eV,
and the exact solution u to (19) satisfies
([€]"Vu, Vo) = ([f]",v) + (FY (u), Vo), Yov €V,
where
FY (u) = [("Vu — eVu
is a modeling residual, and the projection of Fhv (u) onto V; is defined by
Fy (u) = ["[Vu]" — V)",

which is of the form (6). Here we assume that ¢ has a simple fractal structure and
assuming that the solution w inherits this structure to some degree, we use the
Ansatz (7) on FY (u): For given (z,y) € ©,

Fy (u)(z,y) = Oz, y) ™),

where C,p : © — IR? are independent of the cut-off h. By approximating
FY(u) = Fy(up) for coarser scales ‘H we can determine approximative C' and
p. The extrapolated approximation F}Y of F)Y (u) is then defined by

Fy (z,y) = Cla,y) ),
and we first define %y, to be the solution to the corrected problem
([e"Vin, Vo) = ([f]*0) + (Fy, Vv), VoeV.

We define the diffusion coefficient € to be the tensor product of 0, 4: €(z,y) =
7y,6(2)1y,5(y), with v = 6 = 0.1. For the computations we use a standard Finite
Element Method (FEM) with bilinear elements. When we compute up, and 4, for
f(z) = 1, and extrapolate from H = 2h and H = 4h, we find that GF = 1.1,
which is not very impressive. We have M F> = 0.73, so the improvement we get
by uniformly refining the mesh once is here greater than the improvement we get
by correcting the equation with the extrapolated modeling residual.

From Theorem 2 we know that the modeling error in ), depends on Fj, (u) —F).
But the error Fj, (u) — F}, consists of two components: Fj,(u)— Fj,(u) and F (u)— Fj,
where the first component is the error we get from projecting Fj(u) onto V; and
the second is an extrapolation error. To compare the relative importance of the
two errors we can eliminate the extrapolation error by using u instead of uy, in the
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Figure 2: The fractal coefficient ¢(z, y).

above experiment. We then get GF = 9.9 and M F, = 7.8, so the extrapolation
error is large, and we conclude that if we can reduce the extrapolation error the
total modeling error will be significally reduced. By increasing H and H , we
hope to reduce the extrapolation error since we anticipate that the approximations
Fy(u) = Fy(uy) and Fy(u) = Fg(up) should be more accurate on coarser scales
H and H. We find that for (H, H) = (4h,8h) we get GF = 1.5 and M Fy = 0.99, so
now the modeling error in @y, is the same as for one uniform mesh refinement. By
increasing H and H even more we find that the modeling error is further reduced.
We summarize these results in Table 1.

(H H) |GF | MF,
(2h,4h) | 1.1 | 0.73
(2h,8h) | 1.2 | 0.77
(4h,8h) | 1.5 | 0.99
(4h,16h) | 1.8 | 1.2
(8h,16h) | 1.8 | 1.2

Table 1: Extrapolation level dependence, modeling errors.

Now we introduce numerical errors into the problem by computing on a uniform
quadratic mesh with 32 32 elements, corresponding to the modeling scale h = 275.
Using the same € as above and (H, H) = (4h, 8h), we get GF = 1.7 and M F, = 1.1.
We give the results for different (H, H) in Table 2.
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(H H) |GF [ MF,

(2h,4h) | 1.2 | 0.78
(2h,8h) | 1.3 | 0.84
(4h,8h) | 1.7 | 1.1

(4h,16R) | 2.1 | 1.3
(8h,16h) | 2.1 | 1.3

Table 2: Extrapolation level dependence, including numerical errors.

We thus find that the subgrid model based on a corrective force works for
Poisson’s equation with a fractal e, but to get a significant improvement in Lo-
norm we have to extrapolate from coarser scales than (H, H) = (2h,4h). This we
also noted for the one dimensional case in [10], and one might view this result as an
indication that it is hard to model a corrected diffusion operator by a correction on
the force. We may therefore also try to use the extrapolated modeling residual ﬁ’hv
to model a correction on the operator. For example, we can use the assumption
that

corr . nAY%
€n ~ _Fh /VUh,

where €°™" is a correction on the diffusion coefficient [€]?, used in the simplified
problem. That is, we now let %, be the solution to the problem

(([e]h + e )Vup, Vo) = ([f]h,v), Yo eV.

When we test this approach we find that we get approximately the same result as
when we let the modeling residual act as a correction on the force.

5.2 Hyperbolic Equations

Now we consider the problem (1) when ¢ << 3, for which the problem has a
hyperbolic character. We use a Streamline Diffusion (SD) method (see Eriksson
[6]) to solve the problem

—eAu+B-Vu+au = f, (20)

with boundary conditions u|gq_ = %|QQ+ = 0, where 0Q_ = {z € 9Q : [(z) -
n(z) <0}, 00y = {z € 9N : f(z)n(r) > 0} and n is an unit outward normal from
Q. € is constant such that ¢ << ||3]|, and we have the corresponding simplified
problem

—eAup + [B]" - Vup + [o]"up, = [f]",
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with the same boundary conditions as for (20). The exact solution u to the problem
(20) satisfies

—eAu+ 8" - Vu + [a]Pu = [f]* + Fy(u),

where the modeling residual Fj(u) projected onto V; is given by

B = (T =[5 Gl + P !
= PG — Bl + B G~ B+ o]l o
= Fiw) + R () + F(w). (1)

Now we let /6 = (181’/62)’ where /Bl(xay) = /62($ay) = 7775,6[;(55)777[;,65(?/); and
a(2,Y) = Nya,b0 (@) 60 (y). We set v = 0.2, g = 0.25, 7, = 0.3, d, = 0.08,
and € = 1073. Following the discussion in the previous sections, the simple fractal
structure of the coefficients « and 3, together with the assumption that the solution
inherits this structure to some degree, motivates an Ansatz on Fj(u): For given

(z,y) € Q,
FF(u)(z,y) ~ Cy(z,y) @Y k=1,2,3,

where Cy, ur : € — IR are independent of the cut-off h. By computing approxima-
tions FE(u) ~ F%(up,) on coarser scales H and H we can independently determine
(Ck, p) without using more scales than if we just had to determine one set of pa-
rameters (C,p). We denote the extrapolated approximations ﬁ’,’f, and we denote
the sum F),. We define the corrected solution iy, to be the solution to the problem

—eAdly, + [ﬂ]h -Vay, + [Ot]hﬂh = [f]h + Fh.

First we consider only modeling errors, making the numerical errors neglible com-
pared to the modeling errors by computing on the fine mesh. We use the cut-off
h = 27° ~ /¢, and when extrapolating from (H, H) = (2h,4h) we get GF = 1.9
and M F, = 1.7. This means that the modeling error in the corrected solution iy,
is less than the modeling error in a non corrected solution on a uniformly refined
mesh, so @y corresponds to an “extrapolation of uy beyond the unresolved scale

h)2.
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We decompose Fj,(u) — F, into (Fj,(u) — Fy(u)) + (Fy(u) — Fy,), where the first
component is the error we get from projecting Fp(u) onto V; and the second is
an extrapolation error. By eliminating the extrapolation error, by using Fj(u)

instead of Fj(uy,), we find that also for this hyperbolic problem the extrapolation
error is significant.

III!I!!”I”

va"‘,!m,, I

Figure 3: F}I(uh), Fl(up) and F}.

By comparing the error Fl(u) — F}! and FZ(u) — F? to the error Fj(u) — F2,
we find that the errors in the corrective forces that are based on Vu are a lot more
significant than the error in the corrective force that is based on u. This was also
observed for the one dimensional problem in [10], and we note that in LES the
SGSRS 75 = u;u; — u;u; is expressed in the computed variables %;, which should
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be an advantage for modeling purposes. In Figure 3 we have plotted F}{(Uh),

F};(up) and ﬁ’,%, and in Figure 4 the extrapolated modeling residual F}, is plotted,
where we have extrapolated from scales 2h and 4h.

0 o

Figure 4: The extrapolated modeling residual F,.

In [10], two ways to reduce the extrapolation error were suggested. One is to
extrapolate from coarser scales than H = 2k and H = 4h. In this case we assume
that the loss of accuracy we get from using coarser scales is dominated by the gain
we get from the fact that Vuy, better resembles Vu on the coarser scales, and we
further assume that the scale regularity of the problem is similar on the scale H.
By extrapolating from H = 4h and H = 8h we get GF = 7.5 and MF; = 2.3, so
now iy, corresponds to an “extrapolation of uj beyond the unresolved scale h/4”.

For the special cases when § = (81,0) or 8 = (0,32) we can avoid to base
the computation of the corrective force on Vu at all. In the problem (20), with
B = (b1,0), we can eliminate Vu from (21) by using (20) and neglecting the terms
including e,

Falw) = (B9 1B o + ol fu]* — foru®
= (B — auc+ bl — [ —aut el + o] u]" — o]

= [BIMS/B" = 1" + [e] [u)" — [B1]*[(ew)/ Br])"

But this method is, as we remarked, only applicable when 8 = (31,0) or 8 =
(0, 82), and € has to be small enough, so that the approximation of neglecting the
terms involving € is justified.
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We then introduce numerical errors by computing on a quadratic mesh with
32 x 32 elements, corresponding to the cut-off scale h = 27° (h ~ /e). By
extrapolating from H = 2h and H = 4h we get GF = 1.6 and M Fy = 0.91, so the
modeling error in the corrected solution approximately corresponds the modeling
error in a non corrected solution on the scale h/2. We find that by extrapolating
from greater H and H. up to a certain level, we further reduce the error in iy,
(this is summarized in Table 3).

error (H,H) |GF | MF, | MF,
modeling (2h,4h) | 2.1 | 1.2 | 0.65
(2h,8h) | 2.4 | 1.4 | 0.75
(4h,8h) | 7.5 | 45 | 2.3
(4h,16R) | 7.2 | 4.3 | 22
(8h,16h) | 1.1 | 0.63 | 0.33
modeling + | (2h,4h) | 1.6 | 0.91 | 0.47
numerical | (2h,8h) | 1.8 | 1.0 | 0.52
(4h,8h) | 3.9 | 2.2 | 1.1
(4h,16R) | 5.5 | 3.1 | 1.6
(8h,16h) | 1.4 | 0.79 | 0.40

Table 3: Extrapolation level dependence, with and without numerical errors.

6 Conclusions

In this paper we have investigated the feasibility of extrapolating a modeling resid-
ual to model the subgrid scales, in the case of a convection-diffusion-reaction prob-
lem with features on a range of scales in two dimensions. We assumed some “scale
regularity” in the coefficients, and for this case we motivated an Ansatz on the
modeling residual by using a Haar MRA. We then showed that it was possible to
compute the modeling residual on coarse scales with a fine scale computed solution
without subgrid model as a reference, and then extrapolate the modeling residual
to the computational scale. We presented a priori and a posteriori error estimates
for the corrected and the non corrected solutions, both for the numerical and the
modeling errors. We showed in numerical experiments for the hyperbolic model
problem that by extrapolating from 2h and 4h, where h is the computational scale,
the sum of the numerical and modeling errors in the corrected solution typically
corresponded to a non corrected solution on the scale h/2, and by extrapolating
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from 4h and 8h the corrected solution corresponded to a non corrected solution
on the scale h/4. For the elliptic problem, extrapolating from 4h and 8h typically
corresponded to a non corrected solution on the scale h/2.

It was further noted that the extrapolation procedure was more efficient when
the corrective force was based on the computed solution, and not on the gradient
of the computed solution. This is e.g. the case for the SGSRS in LES, and in a
continuation of this work we will test these ideas in a LES setting.
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