CHALMERS @

PREPRINT 2000-005

Least-Squares Finite Element Methods
for Electromagnetic Applications

Rickard Bergstrom

Chalmers Finite Element Center
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg Sweden 2000






Preprint Chalmers Finite Element Center

Least-Squares Finite Element Methods
for Electromagnetic Applications

Rickard Bergstrom

CHALMERS

<>
o

Chalmers Finite Element Center
Chalmers University of Technology
SE-412 96 Goteborg, Sweden
Goteborg, May 2000



Least-Squares Finite Element Methods for Electromagnetic Applications
Rickard Bergstrom

NO 2000-005

ISSN 1404-4382

Chalmers Finite Element Center
Chalmers University of Technology
SE-412 96 Goéteborg

Sweden

Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Goteborg, Sweden 2000



Abstract

We investigate the application of LSFEM (least-squares finite element method)
to static and time harmonic Maxwell’s equations in three space dimensions in
cases of industrial significance. We find that with suitable residual weighting
and mesh adaptivity, LSFEM gives satisfactory results for problems with dis-
continuous magnetic permeabilities of largely different orders of magnitude,
but without strong corner singularities. We also discuss possible remedies

to the indicated basic short-coming resulting from the strong norm residual
control in LSFEM.
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Chapter 1

Introduction

Maxwell’s equations describe electromagnetic phenomena in the whole fre-
quency range, from high frequency microwaves used in, e.g., mobile com-
munication, to low frequencies occuring in power engineering. The equations
constitute a first order system of eight equations in two unknown vector fields
with altogether six components, and thus is an overdetermined system.

The system was stated in complete form by James Clerk Maxwell in
the end of the 19:th century. Maxwell was able to find particular wave-like
solutions and in this way predicted the possibility of electromagnetic wave
propagation before this phenomenon had been observed experimentally; a
spectacular success of mathematical science.

The purpose of this thesis is to study the applicability of least-squares fi-
nite element methods for the numerical solution of static and time harmonic
Maxwell’s equations. The work is part of a larger project in cooperation
with ABB, aiming at developing and implementing adaptive finite element
methods for the full time dependent Maxwell’s equations for industrial ap-
plications with realistic three dimensional geometry and material data.

The following basic largely open problems are adressed in this project:

e the overspecification in Maxwell’s equations,
e solution singularities at interfaces and corners,
e choice of variables (fields or potentials, or combinations thereof),

e choice of finite element discretization (Galerkin, Least-Squares, edge
elements, etc.),

e adaptive error control,

e high performance computing (algebraic solvers, parallelization).



1.1 Least-Squares Finite Element Methods for
Maxwell’s Equations

In a least-squares finite element method (LSFEM) a sum of suitable residual
norms is minimized over a piecewise polynomial space. The residuals may
contain differential equations, constitutive equations, interface and boundary
conditions.

LSFEM is a general method with the following features, see, e.g., Bochev
and Gunzberger [8], Jiang [18], and [1],

e applicability to general, possibly overspecified, first order systems,

e stability follows directly from well posedness of the continuous problem,
e essential boundary conditions may be imposed weakly, and

e the resulting discrete system of equations is symmetric positive definite.

In particular, LSFEM is applicable to Maxwell’s equations in first order
form. With the divergence equations included, LSFEM does not suffer from
the spurious solutions which may occur in certain Galerkin methods, see,
e.g., Jiang, Wu, and Povinelli [19] and the book by Jiang [18].

The strong norm residual minimization of LSFEM in its standard form,
makes computation of singular solutions difficult. Another difficulty con-
cerns the weighting of the different residuals. In this thesis, we adress these
problems, with focus on static and time harmonic problems.

1.2 Some Alternative Approaches

In low frequency electromagnetic problems, a standard approach is to for-
mulate the problem in potentials rather than in the primary field variables.
Depending on the problem, one has a range of formulations to use. In the
general case, the fields are expressed using one vector and one scalar poten-
tial. In order to reduce the number of unknowns and increase the efficiency in
the computation, one may in certain regions use only one of these potentials,
see, e.g., Touma Holmberg [28].

The potential formulations have the advantage that the sought solution
is continuous, in contrast to when seeking a solution in the field variables.
Furthermore, the singularities in the primary fields now arise in the deriva-
tives instead. This leads to a more regular solution and discontinuities in
material coefficients need no special treatment.
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However, the potentials are not necessarily uniquely determined. Then,
one has to introduce a suitable gauge condition, alternatively solve an indef-
inite matrix problem.

The Galerkin finite element method may be applied to the time depen-
dent or time harmonic Maxwell’s equations. Spurious solutions may occur
in certain situations. This may be overcome by special treatment of the di-
vergence equations as in Assous, Degound, Heintze, Raviart, and Segre [3],
or the use of special elements, such as edge elements.

1.3 Notation

We let © denote an open bounded domain in R?, with boundary I' = I'; U
['y. The standard notation and definition for the Sobolev spaces H*(2) and
H*(T'), for s > 0, is used together with the corresponding inner products

)s,0 and (-, -)s,r and norms || - ||s,o and || - ||s,r, where in general the index
will be left out. In the special case of L? the simpler notation (-,-) and
,)r will be used. For details on the definition of the corresponding dual
spaces, when s < 0, see, e.g., Evans [14]. We will also make use of the
semi-norms

Y

(.
Q
(.

1/2
ule = Y IDl® | (L.1)
la|=k
where
dlely,
D= ————— 1.2
Y 0z 0x5?0xg®’ (1.2)
lo| = a1 + ag + as. (1.3)

Weighted L? norms are defined by

2 2
w= [ v )
lv]|5 / wd)
Q

Since we are dealing with vector fields, we introduce the product spaces
H**(Q) x - -+ x H*»(2). When all the indices s; are the same, the product
space will be denoted by [H*(€2)]", with the same notation for inner products
and norms as above. Another space that occur in this context is

Hyi(Q) = {u e [L*(Q)]? : V-u € L*(Q)}, (1.4)
with norm defined by
0]l = [lvlI* + 11V - o] (1.5)






Chapter 2

Maxwell’s Equations

2.1 The Full Equations

Maxwell’s equations governing all macroscopic electromagnetic phenomena
take the form of the following first order system of partial differential equa-
tions:

0B

E=—-—— 2.1

V x 5 (2.1a)
0D

H= — 2.1
V x J+ 5 (2.1b)
V.-D =p, (2.1¢)
V-B=0, (2.1d)

in a domian Q in R®. E and H are the electric and magnetic field intensities
respectively, and D and B are the corresponding flux densities, J = J,.+0FE
is the total current density, J. is an imposed current density, o is the electric
conductivity, and p is the charge density.

The electric and magnetic fields are connected to the corresponding fluxes
through the following constitutive relations

B = uH, (2.2a)
D =¢E, (2.2b)

where y is the magnetic permeability and € is the electric permittivity. In
the general case of anisotropic media, these parameters are tensors and can
be functions of both space and time. They may also depend on the magnetic
and electric fields and fluxes, and in lossy media they are complex-valued. In
this work, we will only consider the simpler case of linear, homogeneous and
isotropic media, where € and p are piecewise constant real scalars. Often, one
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expresses these parameters as € = €, € and p = p, 19, where the index r refers
to a relative value and the index 0 is the value in free space, jo = 47 x 1077
H/m and ¢y = ﬁ F/m, where c is the speed of light.

Solutions to (2.1) satisfy the following continuity conditions at interfaces:

[E] x n =0, (2.3a)
[H] xn=0, (2.3b)
[D]-n =0, (2.3¢c)
[B]-n=0, (2.3d)

where [-] denotes the jump across the interface, and n is a unit normal to the
surface, stating that the tangential components of E and H are continuous
as well as the normal components of D and B. These conditions imply that
since B = pH, the normal component H - n will be discontinuous across an
interface of discontinuity of p. Corresponding relations hold for the other
fields. One further observation is that in corners and on edges, where the
normal vector abruptly changes direction, these conditions are not consistent,
leading to a singularity in the solution, see Costabel and Dauge [11] and
Assous, Ciarlet and Sonnendriicker [2].

In the special case of a perfect conductor or a perfect magnetic wall, which
cannot sustain fields, the interface conditions reduce to

E xn=0, (2.4a)
B-n=0, (2.4Db)
and
H xn=0, (2.5a
D-n=0, (2.5b)
respectively.

2.2 The Quasi-Static Approximation

In many low frequency application, including power engineering, we may set
€ = 0, and thus D = 0, which leads to the following, so called quasi-static
form of Maxwell’s equations:

0B
EF=—— 2.
V x 5 (2.6a)
V x H=, (2.6Db)
V-B=0, (2.6¢)
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where as before, J = Js. + 0F and B = pH. The interface conditions (2.3)
reduce to

[E] xn =0, (2.7a)
[H] X n=0, (2.7b)
[B] -n = 0. (2.7¢)

However, since by (2.6b) V-J = 0, we have the additional interface condition,

[J]-n=0. (2.8)

2.2.1 The Time Harmonic Equations

Assuming time dependence of the form e’“!, we obtain the following time
harmonic analog to (2.6):

V x E = —jwB, (2.9a)
V x H=1J (2.9b)
V-B=0. (2.9¢)

In this case, we work with complex-valued fields even in lossless media.

2.3 The Static Equations

In the static case, with no time variation, the equations decouple into an
electrostatic system

V x E=0, (2.10a)
V-D=p, (2.10b)
and a magnetostatic system
V x H=J, (2.11a)
V-B=0. (2.11b)

Of these two, we have only considered the magnetostatic problem, as this
serves as a special case of the quasi-static applications. It includes the com-
plication of magnetic materials, leading to discontinuities and singularities
in the field variables.
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2.4 The Div-Curl System

2.4.1 Basic Equations

In the case of constant constitutive material parameters, both the magne-
tostatic and electrostatic systems (2.11) and (2.10) take the form of the
following div-curl system: find u € [H'(Q2)]® such that

VXxu=w in{, (2.12a)
V-u=p inQQ, (2.12b)
n-u=0 only, (2.12¢)

nxu=0 only, (2.12d)

where w € [L*(Q)]® and p € L?(Q) are given data and ' = T'; U Ty is the
boundary of €2, where either I'y or I'y may be empty. This is a system of four
equations in three unknowns and solvability requires the satisfaction of the
following compatibility conditions

V-w=0 in, (2.13a)
/n ~wdl =0, (2.13b)
r
n-w=0 only, (2.13¢)
and, if 'y = 0,
/ pdQ = 0. (2.14)
Q

Uniqueness of a solution to the div-curl system follows directly from the
following result.

Theorem 2.4.1 Let QO C R3 be a bounded and simply connected domain
with a sufficiently smooth boundary T' =T UT,. If u € [HY(Q)]® satisfies

Vxu=0 in, (2.15a)
V-u=0 1n, (2.15b)
n-u=0 only, (2.15¢)
nxu=0 only, (2.15d)
then
u=0 inQ. (2.16)
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Proof. Since €2 is simply connected and V x v = 0, we can introduce a
potential ¢ such that u = V¢. Then ¢ satisfies

Ap=0 inQ, (2.17a)

n-V¢=0 only, (2.17b)

nxVe=0 on Iy, (2.17¢)

hence ¢ is constant and u = V¢ = 0. O

The existence of a solution is proved in Girault and Raviart [15]. Below
we will use the following estimate to prove a basic a priori error estimate for
the least-squares finite element method.

Lemma 2.4.2 (The Friedrichs First Div-Curl Inequality) Let{) C R?
be a bounded and simply connected domain with a sufficiently smooth bound-
ary ' =T1UTy. Then there is a constant C, which depends only on €2, such
that

lullp < (117 - ull? + 1V x ul?), (2.18)

for every u € [HY(Q)]? withn-u=0 on Ty and n x u =0 on Ts.

2.4.2 The Elliptic Extension

An alternative approach to the analysis of the div-curl system is to add

a “slack” variable and thus obtain a system with four equations in four un-

knowns which turns out to be elliptic and thus well posed. The slack variable

will be zero if the compatibility conditions (2.13) and (2.14) are satisfied.
We thus write the div-curl system (2.12) as

Vxu+Vé=w inQ, (2.19a)
V-u=p inQ, (2.19Db)
n-u=0 only, (2.19¢)

$=0 only, (2.19d)
nxu=0 only, (2.19e)

where ¢ is the slack variable.
To verify the ellipticity of this system, we write the differential operator
on the form

3
Oo
£a:§:&aa+Aw, (2.20)
=1
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where

(00 0 1) [0 010
a_|oo 1o}, fooo1]|
01 0 0 ~10 0 0
\10 0 0) \ 0 100
(0—100\ (0000
g |2 000}, foooo}
0 0 01 0000
\0 0 10) \ 0 00 0
and
Uy
_ | %2
o= s
¢

The characteristic polynomial associated with (2.20) is
det(A& + Ao+ A3l) = (2 + 2+ 2?2 >0, (2.21)

for all nonzero real triplets (£, 7, (), which proves ellipticity.

To see that ¢ is zero when the compatibility conditions are satisfied,
we make use of Theorem 2.4.1 to derive the following system equivalent to
(2.19a):

Vx(Vxu+Vé¢—w)=0 inf, (2.22a)
V- (Vxu+V¢—-—w)=0 inQ, (2.22Db)
nx (Vxu+Ve—w)=0 only, (2.22¢)
n-(Vxu+Ve—w)=0 onls. (2.22d)
Using Lemma 2.4.3 below, we conclude that ¢ must satisfy,
A¢p =0 1in €, (2.23a)
$=0 only, (2.23b)
n-V¢=0 only, (2.23¢)

which proves that ¢ = 0 in ().

Lemma 2.4.3 Ifu e [H'(Q)? withnxu=0o0nTy#0, thenn-Vxu=0
on I'y

14



Proof. We will prove this by contradiction. Assume that n-V xu > 0 at a
point P on I';. Then for some € > 0,

n-Vxu>e>0, (2.24)

in a neighborhood v C I'y of P with boundary dv. By Stokes theorem we
get a contradiction

Ozj[u-ds:/n-qudfy>0. (2.25)
oy

v
O
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Chapter 3

The Least-Squares Finite Element
Method

3.1 General Theory

In this chapter we present the least-squares finite element method for a gen-
eral first order system, prove basic error estimates assuming well posedness,
and give applications to scalar convection, the Poisson equation written as a
first order system, and to the main problem of interest: magnetostatics with
discontinuous material coefficients.

3.1.1 A General First Order Problem

Consider the following first order boundary value problem:
Lu=f inQ, (3.1a)
Bu=g onT, (3.1b)

where Q is a bounded domain in R?® with boundary I'. Here u is a vector of
m unknowns and L is a linear differential operator of the form

3
ou
u Zz_; 8331 + Aou ( )
and B is an algebraic boundary operator of the form

Bu = Bu, (3.3)

where A; and B are matrices with variable coefficients of type m x m and
n x m respectively, where n < m. These coefficient matrices are assumed to
be bounded.

Furthermore, we assume that problem (3.1) has a unique solution, w.
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3.1.2 The Least-Squares Formulation
Now, suppose f € [L?(2)]™ and let V = [H'(Q)]™ and define the subspaces

Vo={veV:Bv=gonTl}, (3.4)
and
Vo={veV:Bv=0onTl}. (3.5)

Introduce the residual function R(v) for problem (3.1), defined for any v € V,
by

R(v) = Lv — f. (3.6)
Note that we have R(v) = 0, if and only if v = u. Now form the functional
I(v) = |[R)|I* = [|Lv — f||* forv eV, (3.7)

and note that
0=1I(u) <I(v) forallvel,. (3.8)

Thus a solution u to problem (3.1) minimizes the functional 7, and the least-
squares method amounts to finding this minimizer, i.e., find u € V, such
that

I(u) = inf I(v). (3.9)

vEVy

A necessary condition for a function u € V, to satisfy equation (3.9), is

0
lim —1I(u + 1v) = 2(Lu — f, Lv) =0, (3.10)
T—0 67‘
for all v € V.
So, the minimization of the least-squares functional I leads to the varia-
tional problem: find u € V, such that

a(u,v) = l(v), (3.11)

for all v € V), where
a(u,v) = (Lu, Lv), (3.12a)
l(v) = (f, Lv). (3.12b)

18



3.1.3 Weak Enforcement of Boundary Conditions

Up to now, the boundary conditions Bu = g have been imposed strongly
by restricting the space in which we seek the solution. It is also possible
to impose them weakly by including equation (3.1b) in the definition of the
least-squares functional. We then redefine I(v) to be

I(w) = oy ||Lv — f||* + o ||Bv — g||f/27F forveV, (3.13)

Here, we need to introduce the norm || - ||;/o,r in order to get a consistent
functional. Also note that we have introduced the parameters oy, as > 0 to
indicate that we have a choice in how the different contributions are weighted
in the functional.

Seeking a minimizer to [ in V leads to the following variational problem:
find v € V such that

a(u,v) = l(v), (3.14)

for all v € V, where
a(u,v) = (Lu, Lv) + (Bu, Bv)jsr, (3.15a)
Z(U) = (fa LU) + (ga BU)1/2,F- (315b)

3.1.4 The Least-Squares Finite Element Method

Let 7, be a decomposition of the domain €2 into, e.g., tetrahedral, finite
elements K. The index h denotes the mesh function and is a measure of the
local size of the elements in the mesh, h|x = diam(K), and we also assume
a minimal angle condition on the triangulation, see Brenner and Scott [10].
We introduce a global mesh parameter b = maxger;, h(K). Define

Vi, = {up € [C°()]™ : up|x € Pr(K),for all K € T} with r > 1,

associated with this triangulation, where P, is the set of all vector polyno-
mials of degree less than or equal to r. Thus V}, is the set of all continuous
piecewise vector polynomial functions uy such that, in each element, u;, € P,.
For the error analysis following below, we need the following approxi-
mation property of Vj, see, e.g., [10] for a proof. Given a function u €
[H™T1(Q)]™ with r > 1, there exists a function vj, € V), such that

lu—wvplls < CA™ 7% ||u)lp1, s=0,1, (3.16)
where the constant C is independent of the global mesh size h.
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Assuming that g can be exactly represented by continuous piecewise poly-
nomials, and if not, replacing it by its L? projection Pg, we define the fi-
nite element subspace V4 of V, by V, , = V), NV, and similarly we define
Vh,() = Vh N VQ.

The least-squares finite element method (LSFEM) corresponding to (3.9)
can now be formulated by restricting the minimization problem: find u € V
such that

I(u) = inf I(v). (3.17)

vEVh g

Necessary conditions for a minimum in V, , lead to the variational prob-
lem: find uy € V4 such that

a(up,v) = 1(v), (3.18)

for all v € Vo, where a(-,-) and [(-) are defined as in equation (3.12).
For the solution u to (3.11), we also have

a(u,v) =1(v) for all v € Vy, (3.19)

since Vy, 0 C Vy. Subtracting equation (3.18) from equation (3.19), we obtain
the Galerkin orthogonality

a(u —up,v) =0 for all v € V. (3.20)

When LSFEM is formulated with weak enforcement of boundary condi-
tions, it takes the form: find w, € V), such that

a(up,v) = 1(v), (3.21)

for all v € Vj,,where now a(-,-) and I(-) are defined as in equation (3.15), and
we have the corresponding Galerkin orthogonality

a(u —up,v) =0 for all v € V. (3.22)
Furthermore, the inner product (-,-);/2r and corresponding norm || - ||1/2,r,
and can preferably be replaced by the more easily computed weighted mesh
dependent L? inner product (-, ) -1 and norm || - |[p -1, where h denotes

the local mesh function, see [17], [30].
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3.1.5 A Priori Error Estimates

Before we state the error estimate, we introduce the energy norm,
lv]||* = a(v,v) forv eV, (3.23)

Under our assumptions, this is a norm in }V,, which we now show.

Lemma 3.1.1 If there exists a unique solution to problem (38.1), then the
energy norm, as defined by (3.23), is a norm in V.

Proof. What needs to be proved is that
v[||=0 = wv=0 forve)l,. (3.24)

But from the assumptions we know that the homogeneous problem

Lyv=0 inQ, (3.25a)
Bv=0 onT, (3.25b)
has a unique solution v = 0. O

Remark 3.1.1. In the case of weak enforcement of boundary conditions,
i.e., a(-,-) is defined by (3.15), the energy norm is indeed a norm on the
whole space V. O

Now we are ready to state the following result:

Theorem 3.1.2 (A Priori Error Estimate for LSFEM) Let u € V =
[HY(Q)]™ be a solution to problem 8.1, where L is a linear first order differ-
ential operator. For an approximate solution u, € V} obtained by LSFEM,
as defined by equation (3.18) or (3.21), there is a constant C, independent
of u and h, such that

llw = unll| < O [uls1. (3.26)

Proof. Let v, be an arbitrary function in V), 4 and let e = u — uy, denote the
error. Then

[e]l]> = ale, u — up) (3-27)
=ale,u — vy + vy — up)
= ale,u — vy),
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where (3.20) (or (3.22)) was used in the last equality. Using the Cauchy-
Schwartz inequality and dividing by |||e||| we arrive at

llelll < llfw = vall]- (3.28)
Further,
([l = onll] < Cllu = valls, (3.29)

which follows from the form of L, as defined by equation (3.2), using the
assumptions on the coefficients. The interpolation error estimate (3.16) gives
the result. O

Remark 3.1.2. Note that, considering the case of strong enforcement of the
boundary conditions,

[lw = unll| = |£(w — up)|| = | f — Lup|| = || — R(uan)]|- (3.30)
Thus we also have
IR(un) |l < CH"[uys1. (3.31)

A corresponding estimate in the case of weakly imposed boundary conditions
also holds. O

3.1.6 A Priori Error Estimates for Elliptic Problems

Moreover, for elliptic problems, it is possible to derive an improved result.
We say that the problem is elliptic if the bilinear form af(-,-) is coercive
with respect to the H' norm, which coincides with the definition used in
section 2.4.2. In other words,

al|v]]? < a(v,v) (3.32)

for v € Vy when boundary conditions are imposed strongly, and for v € V
when they are imposed weakly.

Theorem 3.1.3 Letu € V = [HY(Q)]™ be a solution to problem (3.1), where
L is a continuous linear first order elliptic differential operator. For an ap-
prozimate solution up, € Vy, obtained by LSFEM, as defined by equation (3.18)
or (8.21), there are constants Cy and Cy independent of u and h such that

lu = uplly < CLAT [y, (3.33)
and
|u — un|| < Coh™ | ulpsr, (3.34)

where for (3.34) we also assume that the regularity estimate (3.39) below
holds.
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Proof. The estimate (3.33) follows directly from (3.32) and Theorem 3.1.2.
To prove (3.34) we adopt the Aubin-Nitsche trick, as in [23], and introduce
the dual problem: find ¢ € V), such that

a(¢,v) = (e, v), (3.35)

for all v € V. Chosing v = e, we get

el = (e, e,) (3.36)
= a(e, ¢)
= ale, ¢ — ¢n)
< llelll lll¢ = ¢nlll,

where we have introduced ¢y, € Vo, and made use of equations (3.35), (3.20)
(or (3.22)) and finally the Cauchy-Schwartz inequality.
From the energy norm estimate (3.26), we have

el < Ch |l [[|6 — éalll (3.37)
Furthermore,

16 — dulll < Clld — dnlly < Chldla, (3.38)

where the last step follows from the interpolation error estimate (3.16). Using
elliptic regularity for ¢,

[pla < C|le]|, (3.39)
we thus arrive at

||€||2 < Cilr+1|“|r+1‘¢‘2 (3-40)

= Ol ufrsalel],

which, after division with ||e||, gives the desired result. O

3.1.7 Residual Based A Posteriori Estimates
In Remark 3.1.2, we observed that
llu = uplll = [[R(un)|]- (3.41)

Here expressed for strongly imposed boundary conditions; in the case of weak
enforcement of boundary conditions, a corresponding boundary residual term
would appear on the right hand side.
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Hence, the energy norm of the error is a computable quantity. Further-
more, in the following sections we will state the coercivity for a(-, ) for some
examples, i.e.,

C|lv||? < a(v,v), (3.42)

where s depends on the problem and the least-squares formulation. It is then
possible to give an a posteriori error estimate in the norm in which we can
show the coercivity, since

lu = unlls < Calu —un,u—un) = [lJu = up* = || R(us)|*. (3.43)

3.2 A First Example: Pure Scalar Convection

As a simple example, we start by studying the following boundary value
problem:

B-Vu=f in €, (3.44a)

u=0 on Fz’nflow, (344b)

where 3 € R? is a flow vector, and Ty, flow 18 the part of the boundary where
B -n < 0 for the exterior unit normal n to the boundary I'. Here, typically,
u models the concentration of a substance in a fluid with the flow given by
5. An attempt to solve this problem directly by the standard Galerkin finite
element method, will lead to the well known problem of oscillatory solutions

due to the odd-even coupling of the unknown nodal values, see, e.g., [13].
Formulating LSFEM for (3.44) gives: find uy, € V0, such that

(ﬂ : V’U,h, ﬂ : VU) = (f7 ﬂ : V’U), (345)

for all v € Vo, where Vo is defined as in section 3.1.4.
Applying Theorem 3.1.2 for the presented formulation, gives the error
estimate

[l = unll| < CH |l (3.46)

By the Poincaré-Friedrichs inequality, see, e.g., [13] or [18] we can get the
following lower bounded for the energy norm,

lu = unl* + (18- V(u = un) || < CllJu — ual||*. (3.47)
We thus get the error estimate

lu = wnll + 118 - V (u = un)[|* < OB [uly 41 (3.48)
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Thus, the least-squares finite element method applied to this first order
problem leads to a stable symmetric positive definite discrete system and no
need for stabilizing or upwinding terms are necessary. Note however, that
the error estimate (3.48) is suboptimal.

3.3 Application to a Second Order Problem:
Poisson’s Equation

One of the most common equations used in mathematical modelling is the
Poisson equation,

—Au=f in Q, (3.49a)
u=0 onT. (3.49Db)

Here, v may model, e.g., heat conduction, diffusion of a chemical substance
or displacement in an elastic material.

Following the previous sections, we formulate this as a first order system.
This is also motivated, since one is often not primarily interested in the
solution by itself, but rather the gradient of it. In the examples mentioned
above it would be the fluxes or the strain.

Introducing 0 = —Vu, we rewrite (3.49) and get

V-o=f inQ, (3.50a)
o+ Vu=0 inQ, (3.50D)
u=0 onl. (3.50¢)

This first order system is not straight-forward to solve by the Galerkin
approach, but it is now in a form suitable for LSFEM.
We form the least-squares functional as

I(o,u) = ||V -0 — f]|*+ ||lo + Vul*. (3.51)

Seeking a minimizer to equation (3.51) leads to the variational problem: find
(o,u) € Vo = {(6,v) € Hgiy X H' : v =10 on I'} such that

(V-0,V-6)+ (6 +Vu,6+Va)=(f,V-5), (3.52)

for all (6,%) € Vy. LSFEM amounts to seeking a solution (o4, up) € Vi,
satisfying equation (3.52) for all (&,%) € V0.
Theorem 3.1.2 yields the following estimate for this formulation,

(o = on,u = un)|ll < CR” ([lollr+1 + llullrs). (3.53)
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Furthermore, we can obtain, see [18], [25], the bound

lo = onll s, + [l = unlly < Clll(o = on, u = un)]]- (3.54)
Combining (3.53) and (3.54) yields the estimate

lo = onllags, + llu = unlli < CR"(lollr1 + [fuullr+1), (3.55)

which is suboptimal since we only get a bound on the divergence of o, and
not the full H' bound.

It is however possible to achieve this H' boundedness by adding a con-
sistent constraint, or penalty term, on the curl of . Since V x Vv = 0 for
any sufficiently smooth function v, we know that

V xo=0.
These equations are easily added to our system, leading to the functional
I(o,u) = ||V -0~ fI* + llo + Vul]* + |V x o] %, (3.56)

and the variational problem becomes: find (o, u) € Vo = {(6,v) € [H'PxH" :
v =0 on I'} such that

(V-o,V-6)+ (60 +Vu,6+Vi)+ (Vxo,Vxa)=(f,V-5), (3.57)

for all (5,4@) € V,. Then H! coercivity can be established, see [23], [25],
resulting in the error estimate,

lo = onlly + llu = unlly < OB (lollrs1 + llullr+)- (3.58)

This example shows that, even if the least-squares method is straight-
forward, the most obvius approach may not lead to the best formulation.
Instead one may have to play a little with the set-up of the problem. However,
it also shows that these manipulations are easy to do; adding three equations
did not complicate matters.

Remark 3.3.1. In the analysis in section 3.1, we assumed that the differ-
ential operator £ was first order. This is not necessary for LSFEM, but the
methodology is not practicle for higher order problems.

Applying LSFEM directly to problem (3.49) yields: find u € Vy = {v €
H!:v =0 on T}, such that

(Au, Av) = (f, Av), (3.59)

for all v € V,. We would in this case have to use finite element functions
v € C'(Q), which for triangulations in two dimensions require polynomials
of degree five or higher, see, e.g., [10]. O

26



3.4 Application to a First Order System: Mag-
netostatics

The magnetostatic equations (2.11) can be written

B
Vx o=t i (3.602)
V.-B=0 in®, (3.60b)
n-B=0 onTl, (3.60c)

where we used the constitutive relation (2.2) to eliminate H.

This system is first-order, with four equations and three unknowns. The
complication of having one more equation than unknowns has lead to several
attempts of reformulating this system. The occurrence of spurious, non-
physical solutions in many of these attempts is probably due to disregarding
the importance of the divergence equation, see [18], [3].

In LSFEM, however, there is no problem in having more equations than
unknowns. So, to first put this in the div-curl framework, we assume constant
material parameters and form the following functional

I(B) = ||V x B — pJ|I* + ||V - BJ?, (3.61)

where we multiplied the first equation with p. The corresponding weak form
is

(VxB,VxB)+(V-B,V-B) = (uJ,V x B), (3.62)

and the least-squares finite element method is: find By, € V0 C Vp = {v €
[H'(Q)]® : n-v = 0 onI'}, such that equation (3.62) is satisfied for all
B € Vh,O-

From Lemma, 2.4.2, we know that this bilinear form is H' coercive. This,
combined with Theorem 3.1.3, gives the a priori error bound

|B — Bu|ly < CI"|Blr41. (3.63)

If we consider instead the more interesting case of piecewise constant con-
stitutive parameters, thus introducing magnetic materials in the problem, the
situation is slightly different. The interface conditions (2.3) is a complica-
tion that is quite specific to Maxwell’s equations formulated in the primary
field variables. It is handled by introducing discontinuous elements on the
interface surfaces and applying the algebraic conditions in either a weak or
a strong form.
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(a) Conforming triangulation (b) Non-conforming triangulation

Figure 3.1: Examples of conforming and non-conforming triangulations of
two subdomains. In the first case, we have the choice of both strong and weak
enforcement of interface conditions. For the non-conforming grid, however,
we must use weak enforcement.

In the case of strong enforcement of the interface conditions, we make a
coordinate transformation of the problem at the nodes lying on a surface;
instead of expressing the unknowns in cartesian coordinates, we calculate an
orthogonal coordinate system using the normal and tangent vectors for the
surface. For each node, we then explicitly eliminate the degrees of freedoms
on one side of the surface using the algebraic equations (2.3).

The weak implementation is less complex, and simply consists of com-
puting the surface integrals introduced in the variational formulation. Note
that in the case of strong enforcement, the meshes used must be conforming
on the interface, i.e., the surface nodes for the meshes must coincide and the
same interpolating functions must be used. This is not necessary when im-
posing the conditions weakly. We may then use both non-conforming grids
and different finite element functions, see Figure 3.1.

So, assume that Q = [JI; Q°, where each subdomain have the magnetic
permeability uloi = pb uo, let V' = [H'(Q2)]® and denote the interface be-
tween regions Q' and (¥ by 'Y, see Figure 3.2.

We now write the system as

B .
Vx==J inQ (3.64a)
il
V-B=0 in(, (3.64b)
n-B=0 onT, (3.64c)
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Figure 3.2: The notation used when a region is split into subregions.

together with the interface conditions

B y

[—]xn=0 onI", (3.65a)
i
[B]-n=0 onT%, (3.65b)

where [-] denotes the jump, and n is a unit normal to the surface.
Choosing to impose conditions (3.65) and the boundary condition (3.64c)
weakly, we form the least-squares functional

1B) = on (30 IV x 2 = Dlfe + 1V Bl (3.66)

- B
oo X (il x U ey + - Bl are)

1<i<j<n

+ - Bller ).

The parameter ji corresponds to the multiplication with g in the volume
integrals, but is an average value since pu is not defined on the interface.

We introduce the finite element subspaces Vi C V' where the degree of
the polynomial basis functions thus may be different in different subregions,
and define V), = JI, Vi.

Based on the functional (3.66), we can now formulate LSFEM for the
magnetostatic problem (3.60): find By, € V, such that

(041 G/Q(B}“B) =+ ao ar(Bh,B) :Otll(B), (367)

29



for all B € V,, where

. " B B .
ao(By, B) = (uV x Fh,/N X ;)m +(V-By,V-B)ai, (3.68a)
=1
~ 3 B, B
ar(Br, B)= > ((aln x =2, fln x Do (3.68b)
1<i<j<n H H

+ ([ Bal, [0+ Bl s ) + (In - Bl I - B,

UB) =S (J, V% %m- (3.68¢)

=1

Here we have used the weighted boundary inner products introduced in sec-
tion 3.1.4.
In each subdomain, Lemma 2.4.2 is valid, leading to the inequality

> 1B = Bull} o < [IIB — Bulll*. (3.69)

=1

Furthermore, in [16], Ivarsson constructs, as in [27], an interpolation operator
that preserves the interface conditions, thus, using the same technique as in
the proof of Theorem 3.1.3, we can show

" ) 1/2 .
(X UB=BilEg) " < CH[Bl.. (3.70)
i=1
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Chapter 4

Software

The software used in this work consists of three parts: a preprocessor to define
the geometry and generate an initial computational grid, a FEM solver, and
a postprocessor to visualize the results and to compute derived quantities.
The FEM solver that has been developed builds on the platform of Chalmers
Finite Element Center, while commercial software has been used for pre- and
postprocessing.

The solver by itself consists of several components. The first is the dis-
cretization of the continuous equations into a system of algebraic equations.
The second is a solver for this discrete problem. A third component, vi-
tal when adaptively refining the computational mesh, is a set of routines to
handle the hierarchy of meshes and the coupling to the geometry.

In the following sections, these components will be presented in some
detail.

4.1 Discretization of the Variational Formula-
tion

As one aim of this work was to numerically study several different formula-
tions, it has been important to develop a tool where the problem formulation
was easily accessible. The resulting discretizer consists of a set of C++ rou-
tines that assemble a matrix based on a given variational formulation.

The functionality and level of abstraction in C++ have made it possible
to make this process very similar to the analytical mathematical formulation.
As an example, take the Poisson equation,

—AU:f,
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with some boundary conditions, which we for simplicity ignore in this dis-
cussion. The variational formulation for this problem is: find u such that

(Vu, Vo) = (f,v),

for all v. The left hand side, expanded in cartesian coordinates, takes the
form

(Vu, Vo) = /(uzvz + uyvy + u,v,) dSd.
Q

In C++, the corresponding expression is coded

u. X()*v.x() + uy()*v.y() + u.z()*v.z().

The computer code is thus very close to the mathematical formulation,
making it easy to read and set up new problems.

It has also been easy to add new elements, e.g. higher order polynomials
and edge elements, or quadrature rules. The code is also independent of
space dimensionality and the routines have been parallelized. The drawback
of this very general approach is the difficulties with efficiency; it is possible
to do more optimization for a specific application than in the general case.
The choice of C++ is based on the combination of a high level of abstraction
and reasonable numerical efficiency.

Similar general approaches with finite element codes in C++ have been
reported by, e.g., Jiao [20] and Langtangen [21].

4.2 Solving the Discrete Problem

For this task, we utilize a free software package called PETSc, see [4], [5],
and [6]. This package provides a large range of iterative solvers and precon-
ditioners together with a storage format for sparse matrices. These tools are
designed for use on both single processor computers, as well as on parallel
ones. Altough some suboptimal implementations have been discovered, we
find that PETSc has been a powerful tool, well suited for our needs.

4.3 CAD, Geometry, and Meshes

Even if the geometry and initial mesh is constructed in the preprocessor
stage as mentioned above, it is for several reasons important to establish
a relation between the geometry and the mesh, and transfer this relation
into the equation solving step. Unfortunately, the mesh generator does often

32



not supply this relation and once the surface mesh is generated it disregards
the geometry description. Therefore, one has to make a new identification
between the mesh and the geometry.

The way this is done, is to import not only the computational grid, but
also the geometry description used to generate it. Nodes on and elements
adjacent to surfaces are identified by the following algorithm:

Compute, in an efficient manner, the distances between each triangulation
and each geometry. The pair with smallest distance is identified and thereby
the geometry connection is decided.

The most important use of this relation is for adaptive mesh refinement.
As the discrete problem tend to get very large in three space dimensions,
adaptive refinement of the computational grid is vital in order to get reason-
able accuracy. One starts with a coarse mesh generated from a description
of the geometry. Based on the computed solution, one splits elements only
where it has most effect.

In order to achieve improved accuracy when refining, it is important that
the nodes in the new elements are fitted to the original geometry. In general,
when an element is splitted in the refinement process, a new node is placed
on the midpoint of the edge in the old element. If this edge is part of a
curved surface, the new node has to be moved in order to lie on the surface.
This idea is illustrated in two dimensions in Figure 4.1. How this has worked
in practice is shown in Figure 4.2, where part of the mesh for the iron core
in Problem 1 is shown before and after adaptive refinement.

Another important usage in these electromagnetic applications is to com-
pute normal and tangent vectors, used in the boundary and interface con-
ditions. Nodal values for these vectors can now be computed using the ge-
ometry description instead of taking some average of the values for the faces
surrounding the node.

The geometry routines described above have been developed by Klas
Samuelsson at Chalmers Finite Element center within an ITM project. For
more details on their construction and usage, see the ITM Technical Re-
port [7].
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Figure 4.1: A schematic picture showing the projection of a new node on to
a curved boundary.

Figure 4.2: Example of an adaptive mesh refinement, using the geometry
description from the CAD model to project the new nodes on to the curved
surface.
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Chapter 5

Numerical Examples

5.1 General Considerations

5.1.1 Implementation of Boundary and Interface Con-
ditions

The discontinuity of the field variables have numerically been handled by
introducing discontinuous finite elements on the surfaces. The algebraic con-
ditions in equation (2.3) are enforced either strongly, by eliminating the extra
degrees of freedom, or weakly, by adding terms to the least-squares functional
as described in section 3.4.

The strong implementation consists of first identifying elements with an
element face lying in a surface, and for each node on this face, making the
coordinate transformation for the element stiffness matrix before adding it
to the global matrix. The degrees of freedom on one side of the surface
are then eliminated from the discrete linear system of equations. When the
solution has been computed, it needs to be transformed back into cartesian
coordinates and expanded to include the eliminated degrees of freedom.

The weak implementation is less complex, and simply consists of com-
puting the surface integrals introduced in the least-squares residual. The
identification of element faces lying in the surface is done also in this case,
but no change of coordinate system is needed. Instead, a face stiffness matrix
is computed and added to the global matrix.

Since we introduce extra degrees of freedoms in the weak implementation,
it leads to slightly larger matrix problems. However, the strong implemen-
tation is more costly to compute. In both case we make use of the normal
vectors computed from the CAD model as described in section 4.3.
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Figure 5.1: Comparison of convergence between strong and weak implemen-
tation of boundary conditions in Problem 1.

5.1.2 Strong or Weak Enforcement of Boundary and In-
terface Conditions

For all the numerical results presented in the following sections, we have used
weak enforcement of boundary and interface conditions with the extra resid-
ual terms weighted by the parameter a; = 10. Strong implementation of the
boundary /interface conditions have been tested, but seems to be more sen-
sitive to singularities, with considerably slower convergence compared with
weak implementation, see Figure 5.1. From the figure we can see that the
convergence order seem to be approximately the same for strong implemen-
tation with quadratic polynomials as in the case of weak enforcement of
interface conditions with linear polynomials, though the error is smaller in
the first case.

The explanation to this is probably that the conflict in the interface condi-
tions at a corner or edge, which is the cause of the singularities, is transferred
to the discrete problem when using strong enforcement of the algebraic con-
ditions. It should be mentioned though, that in the implementation, the
elementwise transformation leads to an averaging of the normal in the corner
and thus “softening” the conflicting conditions.

The values of a; have been chosen as large as possible without affecting
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the condition number of the matrix seriously. As « tends to infinity we
would, in theory, get the conditions strongly imposed.

5.1.3 Adaptive Mesh Refinement Criteria

The natural indicator to base the adaptivity on is the least-square residual.

But in the presence of corner singularities, the discrete residual actually

increases when refining the mesh, making it inapropriate as an indicator.
Instead we have for the static problems used the elementwise indicator

Ix =||hV - B[, (5-1)

where h indicates the local mesh function, as an indicator of where to refine.

In the time harmonic example, no magnetic materials where present and
no problem with increasing least-squares residual occurred. Consequently,
the element residual

Iic = (Y x E + jouH) % (5.2)
BV x H =08 — J)Il%
BV - (uH)[%,

where h indicates the local mesh function, could be used successfully.

From section 3.1.7, we know that the residual is equal to the energy norm
of the problem, making it an appropriate indicator by itself. However, the
weighting with A in these indicators was done to soften the criteria somewhat.

5.2 Problem 1: A Magnetostatic Problem

5.2.1 Description of the Problem

The geometry of this problem is described in Figure 5.2. The problem is
axisymmetric in order to make two dimensional computations possible for
reference solutions. A three dimensional view can be seen in Figure 5.3.
The model consists of an iron cylinder core inserted in a copper winding.
The configuration is enclosed in air and surrounded by a box with perfectly
conducting surfaces. The winding is modeled as a homogeneous copper coil.

Data for this problem are that the relative magnetic permeabilities are
P Fe = 10* and Hr,cu = Mrair = 1 and py = 4m X 1077 H/m and the current
density J is constant over the cross section of the coil and the total current
is1A.
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Figure 5.2: The geometry of the axisymmetric Problem 1. The dimensions
are given in meters.
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Reference computations in two dimensions done by ABB and reported
in [7], gave the values of the magnetic energies in the different materials as
listed in Table 5.1, where the magnetic energy is defined by

1
WQ:—/B-HdQ. (5.3)
2 Ja

5.2.2 The Equations

The equations solved are the magnetostatic equations:

V x H =, (5.4a)
V-B=0, (5.4b)

in each subdomain, where
B = ,U'TIU'OHv (55)

subject to the interface conditions

[B]-n =0, (5.6a)
[H] x n =0, (5.6b)

on all internal boundaries, where [-] denotes the jump across the surface and
n is a unit normal to the surface. The boundary condition

B-n=0, (5.7)

has been used on the outer boundary.

5.2.3 The Least-Squares Formulation

Using equation (5.5) to eliminate H, the least squares functional takes the
form

3
=> (v x ; — Il 2 + IV - B?) (5.8)
i=1

vor 30 (% Sl s + - Bl o )

1<i<j<3
+ agl|[n - B|IE -1,
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where the weighted norm is defined by

ol = [ %o
’ Q
The resulting variational formulation then becomes: find B, such that
aQ(B,B)+041a1(B,B)+042a2(B,B) :l(B), (59)
for all B, where
’ B

~ B ~
ao(B, B) =) (uV x ;,,N X ﬁ)”i +(V-B,V-B)g (5.10a)

i=1

. 7 B .. B .
w(BB)= 3 (ylnx Ll x  Des+ (h7' o Bl o Bl

= (5.10b)
ay(B,B) = (h"Y[n- B],[n- B))r, (5.10¢)
UB) =S4, 1V %)m. (5.10d)

i=1

If instead eliminating B, we would get: find H, such that
(VX HYV x H)+ (u'V - (uH),p~'V - (uH)) = (J,V x H), (5.11)

for all H. Here, we have for simplicity not included the boundary terms and
the splitting into subregions.

The weighting with p in the curl-term in the first case and with ="' in the
div-term in the second, has been introduced in order to get good numerical
properties. The similarity with the formulation with constant constitutive
parameters is also appealing.

In a similar manner, ji is a suitable average that has been chosen, since
i is not defined on the interface surface. Furthermore, in the surface terms,
the weight A~!, where h denotes the local mesh size, has been used in order
to get correct scaling of the boundary terms, see section 3.1.3.

As mentioned above, a; = ay = 10 was chosen by numerical experiments.

It proved to be necessary to use the formulation (5.9), expressing the
unknown as the flux density B, to achieve the correct solution. In the for-
mulation (5.11), the field strength in the iron core became much to high,
although converging slowly when refining the mesh. One possible cause of
this problem is that the large difference in magnitude between the H field
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| | Linear | Quadratic | Reference

No of elements 505 710 247 800 -
No of nodes 91 510 339 936 -
No of nonzero 12 406 356 88 995 024 -
matrix entries
Wair (J) 8.967 x 10=7 | 9.081 x 107 | 9.089 x 107
Wey (J) 3.333x 107% | 3.581 x 1078 | 3.614 x 1078
Wige (J) 4.885 x 10719 | 4.802 x 10710 | 4.731 x 10~10

Table 5.1: The computed magnetic energies for Problem 1 compared with
reference values using LSFEM and piecewise quadratic polynomial elements.
The reference values are from two dimensional computations done at ABB,
see |7].

in the iron and in the air results in that certain terms in the least-squares
functional dominates while other will be neglected. The B field, however, is
more homogeneous and thus seems to lead to a better formulation.

It may also be that the singularities have less influence on LSFEM in
the B field formulation, due to the same reason as above. However, the
rapid increase in the least-squares residual that was noted in Problem 2,
and believed to indicate the stronger singularities, has not been seen in the
formulation in H; the behaviour of the residual is similar in the H and B
formulation. We have also tried to eliminate the singularities by rounding of
the end sections of the iron cylinder, but the problem persisted.

5.2.4 Computational Results

This problem was solved successfully to good accuracy, see Table 5.1. A
field line plot is shown in Figure 5.3. In Figure 5.4 we plot the relative error
in the magnetic energy as a function of the total number of elements, NV,
for quadratic polynomial basis functions. Note that the convergence in the
air seems to be faster than in the other two regions. This might be due
to unbalance between the terms in the least-squares functional in different
regions.

Continuous linear polynomials have also been tested. The convergence is
slower but, on the other hand, the memory requirements are less severe. The
results for linear elements are plotted in Figure 5.5.

The adaptivity for these calculations was based on

1AV - Bl[%, (5.12)
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Figure 5.3: The magnetic field lines in a slice through the three dimensional
solution of the axisymmetric Problem 1.
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Figure 5.4: Convergence of the magnetic energy for Problem 1 using LSFEM
with quadratic basis functions.
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Figure 5.6: The change in the least-squares residual during grid refinement
in Problem 1.

where h indicates the local mesh function as mentioned above. As can be
seen from Figure 5.6 the least-squares residual increases when the mesh is
refined, and is thus not suitable as refinement indicator.

5.3 Problem 2: Another Magnetostatic Prob-
lem

5.3.1 Description of the Problem

The second problem is also an axisymmetric magnetostatic problem, but
the geometry is slightly more complicated than in Problem 1. It is given
in Figure 5.7. The copper winding is the same, but the iron part has been
extended and almost encloses the coil. The data for this problem are the
same as in Problem 1.

Even if this problem seems very similar to the first one, the near closure
of the iron core has profound influence on the solution. Almost all of the
magnetic flux will be concentrated inside the iron, while the flux density
in the air is very low. This makes the singularities considerably stronger in
some corners, and the larger variations in the field intensity lead to unbalance
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Figure 5.8: The change in the least-squares residual during grid refinement
in Problem 2.

in the least-squares functional, as discussed in the previous section. In this
case we do not only have the problem of differences between the materials,
but also large variations between the air region enclosed by the iron and the
region outside.

5.3.2 Results

This problem has not been successfully solved with LSFEM. The solution
achieved with (5.9) have erroneous field strength inside the iron core, just as
in the case when using (5.11) for Problem 1.

We can also see that the increase in the least-squares residual when re-
fining the meshis much more dramatic in this problem than in the first one,
see Figure 5.8. Since we are trying to minimize this residual, this is a strong
indication of the problems in the formulation.

For a discussion on possible remedies, see Chapter 6.
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5.4 Problem 3: A Time Harmonic Problem

5.4.1 Description of the Problem

As a third problem the “Asymmetrical Conductor with a Hole problem” [29],
as illustrated in Figure 5.9, has been used. It consists of an aluminium
plate with a hole, placed under a copper winding, modeled as a homogenous
coil. There are no symmetries in this problem. The aluminium plate has
a conductivity of o = 3.526 x 107 Sm~! and the magnetic permeability is
tr,ar = 1, as in the air and in the copper. Since no magnetic material is
present there are no singularities as in the previuos two problems. Instead,
we will get induced eddy currents in the conducting aluminium plate.

The coil is carrying a sinusoidal total current of 2742 A. The frequency
is 50 Hz and the current density is constant over the cross section.

5.4.2 The Equations

Since the current is sinusoidal and the frequency is low, we use the quasi-
static time harmonic equations

VxE=—jwB, (5.13a)
VxH=J (5.13b)
V-B=0, (5.13¢)
where
B = uH, (5.14a)
J=J,+0oFE. (5.14b)

Note that Equation (5.13b) implies that V - J = 0. The interface conditions
for this problem then becomes

[E] x n =0, (5.15a)
[H] xn =0, (5.15b)
[J]-n=0, (5.15¢)
[B] -n =0, (5.15d)

where 7 is a unit normal to the interface and [-] denotes the jump across the
surface. Since y, = 1 in the whole region, the magnetic field is continuous
over surfaces. The same is true for the tangential component of the electric
field, By, while (5.15c) implies that EJ, - n = 0, where E}, denotes the field
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inside the aluminium plate, since J = 0 in the air. No further restrictions
apply on the electric field.

The boundary conditions applied are

Exn=0, (5.16a)
B-n=0. (5.16b)

The placement of the outer boundary is not specified in the test case. We
have enclosed the coil and the aluminium plate in a cube of approximately
three times the size of a side in the plate.

5.4.3 The Least-Squares Formulation

Even though the magnetic field is continuous in the whole region, we still
have to introduce the discontinuous elements along the surfaces, due to the
jump in the normal component of E. Setting up the least-squares functional
for this system of equations then leads to the following expression,

3
I(E,H) =Y (IV x E+ jwuH| (5.17)
=1
IV x H=0E = J [ + IV - (uH) %)

var( Xl x Bl + - BV, )
1<i<j<3

taz S (e x Hl o + lln - (nH)]|[Z 1)

1<i<j<3
+az(llln x BN -1 + [0 (H)]|IF 1)

where the second of the interface terms signify that the normal component
of the FE field inside the aluminium should be zero on the interface.

The conditions for a minimum of I(E, H) gives the following variational
formulation for U = (E, H): find U such that

a(U,U) + a1 a, (U, U) + az as (U, U) + a3 a3(U, U) = 1(U), (5.18)
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for all U, where
3
aa(U,U) =Y (VX E+ juwH,V x E + jupH)g: (5.19a)
=1

+(VxH—0E,V x H-0E))g
+ (V- (uH),V - (uH)))ai,

a (U, U) = Z (h n x E], [n x E])rs (5.19b)
7+ (?fln - E+, n- E+)FA17

ax(U,U) = Z (h~'[n x H], [n x H))pi (5.19¢)
(- (uED), [ )]s,

as(U,U) = (h~'[n x E], [n x E])r (5.19d)

+ (A - (uH)], [ - (H))r),
3
(U) =) (Jse, V x H—0E)g;. (5.19¢)
i=1
Note that in these expressions we are dealing with complex vector fields.
In practise, one separates the real and imaginary parts and thus has to work
with 12 unknown variables.

5.4.4 Computational Results

As expected, in the absence of singularities, this problem could be solved
successfully with LSFEM. Comparison with experimental data is shown in
Figure 5.10. The currents induced in the aluminium plate are shown in
Figure 5.11. However, due to the size of the problem, we have only been
able to compute using linear polynomial basis functions and not reaching the
desired accuracy. The convergence though is good as shown in Figure 5.12,
since the L? norm of the residual is equivalent to the energy norm.

In this example we do not have an increasing residual, see Figure 5.12,
which caused problems in the previous examples. Hence, it has also been
possible to use the least-squares residual as refinement criterion:

Ix = |W(V x E + jwuH)|% (5.20)
+[A(V x H— 0B — Joo)|i
+ WV - (uH)|[,

where h indicates the local mesh function, see also section 5.1.3.
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Figure 5.11: Vector plot of the induced current in the aluminium plate of
Problem 3.
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Figure 5.12: The change in the least-squares residual during grid refinement
in Problem 3.

5.5 Numerical Dispersion Analysis

As mentioned previously, the focus of this thesis is quasi-stationary problems.
In this section, we make a small exception intended to broaden the view.
When dealing with wave problems, one of the important properties for a
numerical method is that the dispersion error is small, i.e., the waves are
travelling with the correct speed.

We have made a dispersion analysis of the Galerkin Least-Squares (GLS)
finite element method, a combination of the traditional Galerkin finite ele-
ment method and LSFEM, applied to the full Maxwell’s equations, i.e., the
low frequency approximation is not introduced. The GLS is simply formed
by taking a linear combination between the standard Galerkin method and
the least-squares finite element method.

One motivation for introducing the GLS method is to improve the numer-
ical dispersion relation. The phase error in the standard Galerkin method
always has the same sign, independent of the propagation direction of the
wave, see for instance Monk and Parrot [24]. Here we extend the dispersion
analysis to the GLS method, and as a special case, the least-squares method.
We find that in the least-squares method the phase error also has the same
sign independent of the direction, but with opposite sign compared with the
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standard Galerkin method. Further we show that by choosing the parame-
ter in the interpolation between the standard Galerkin and the least-squares
method we may improve the dispersion relation. In particular, the phase
error may have different sign depending on the direction of the wave. This
property is believed to be desirable for computations on unstructured grids
where cancellations of phase errors with different signs may occur, see the
discussion in Wu and Lee [31].

5.5.1 The Galerkin Least-Squares Method

For the dispersion analysis we consider the time harmonic Maxwell’s equa-
tions in R?2: find the electric and magnetic fields, E and H, such that

—jwE -V x H=0, (5.21a)
—jwH+V x E =0, (5.21b)
V.E=0, (5.21c)
V. H =0, (5.21d)

where w is the angular frequency.

To discretize this system of equations we introduce a subdivision of R?
into triangles and the corresponding finite element space V) of piecewise
linear continuous vector polynomials. The Galerkin least-squares (GLS)
method is obtained by interpolation between the standard Galerkin method
and the least-squares method and takes the form: find U = [E, H| € V,
such that

(1 - CU)AG(U, ﬁ) + aALs(U, [7) =0 (522)

for all U € V,, where o € [0,1] is a parameter. Further Ag(-, ) is the bilinear
form associated with the standard Galerkin method

Ag(U,U) = —(jwE,E) — (V x H,E) — (jwH,H) + (V x E, H), (5.23)
and Ars(-,-), is the form associated with the least-squares method
Aps(U,U) = (JwE 4+ V x H, jwE + V x H) (5.24)
+ (jwH —V X E,jwH —V x E)
+(V-E,V-E)+(V-H V- H).

Note that for & = 0 we obtain the standard Galerkin method and for a =1
the least-squares method. For all o € [0, 1] we obtain a scheme with optimal
order of convergence. The dispersion relation may however be improved by
choosing the proper a. We now turn to this topic.
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(a) Part of an equilateral triangula- (b) Part of a right angled triangula-
tion tion

Figure 5.13: The two triangulations used for the dispersion analysis.

5.5.2 The Dispersion Analysis

To compute the numerical dispersion, we consider a uniform triangulation of
R? and assume a plane wave solution propagating in the & direction (|k| = 1),
of the form

E(z) = Eee™*  and  H(z) = Hyel**® (5.25)

where E, and H, are constant vectors and k is the wave number. For the
continuous equations, this assumption yields the following dispersion relation
between w and k:

w = |kl w=—|k|, w =0, (5.26)

independent of the direction k.

If we instead insert (5.25) into the GLS finite element formulation (5.22),
we get an eigenvalue problem for each node in the triangulation, which de-
termines the numerical frequency @ in terms of k and k. Solving these eigen-
value problems for a range of £ and k gives the numerical dispersion relation
w(k, k).

Here we consider two different triangulations, one with equilateral trian-
gles and one with right angled, see Figure 5.13. For each triangulation, we
use symmetry to conclude that the eigenvalue problems associated with the
nodes are identical. Thus, we obtain only one (small) eigenvalue problem for
each triangulation.
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5.5.3 Computational Results

In Figures 5.14 and 5.15 the numerical dispersion relation is plotted for the
standard Galerkin and the least-squares methods respectively. The contour
lines are 0.02 apart, and the quantity plotted is |@/k|, which should, of course,
be 1. Thus the plots give an easy visual way to study the dependence of the
error in the phase speed on the wavenumber k£ and propagation direction k.

We can see that for the least-squares method, the phase speed will become
larger than the exact value for increasing &, while for the standard Galerkin
method we instead get a smaller phase speed. We can also see the dependency
of l%, which is slightly favourable for the least-squares method, at least on the
equilateral triangulation.

The different behaviours of the standard Galerkin and least-squares method
suggest that a properly chosen « in the GLS method (5.22) should produce
a method with an improved dispersion relation. In Figure 5.16 we show the
dispersion relation for the GLS method with o = 0.4. This particular value
of « is somewhat arbitrarily chosen and we plan on studying the choice of «
in a future work.

We can see that the region |@/k| ~ 1 is larger for both triangulations
compared with the other two methods. In particular, in Figure 5.17 we
compare the regions for the standard Galerkin and least-squares methods
where the phase speed error is less than 4%. In addition, for the GLS method
we also obtain a phase speed that is larger than the exact value in some
regions and smaller in other. This property is considered important when
using unstructured triangulations, since in that case, the phase error may
cancel as the wave propagates from element to element. See Wu and Lee [31]
for further discussions of this topic.
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(a) Equilateral triangulation (b) Right angled triangulation

Figure 5.14: Contour maps of the phase speed error as a function of £ = khk
for the standard Galerkin method, where h is the length of the side of a
triangle in the triangulation.
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(a) Equilateral triangulation (b) Right angled triangulation

Figure 5.15: Contour maps of the phase speed error as a function of £ = khk
for the least-squares method, where h is the length of the side of a triangle
in the triangulation.
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(a) Equilateral triangulation (b) Right angled triangulation

Figure 5.16: Contour maps of the phase speed error as a function of £ = khk
for the GLS method with o = 0.4, where h is the length of the side of a
triangle in the triangulation.
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(a) Galerkin least-squares method (b) Standard Galerkin method

Figure 5.17: The coloured zone indicates the region where the phase speed
error is less than 4%, for an equilateral triangulation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The least-squares finite element method has several features that make the
method suitable for electromagnetic applications. The main advantage is the
natural way to include the divergence equations into the formulation and to
handle the interface discontinuities. It also leads to discrete problems with
good numerical properties. The possibility to formulate the problem in the
primary field variables is attractive since it avoids numerical differentiation
and thus leads to better accuracy and continuous fields.

In applications with realistic material parameters, we might however run
into trouble with LSFEM. In three space dimensions, the grid size cannot
be too small and we are not able to resolve all features in the solution. The
least-squares functional might then be unbalanced, leading to unacceptably
low accuracy. Some weighting of the different terms in the functional seems
to be needed.

The formulation in primary variables naturally also have problems when
the field is singular. Weak enforcement of boundary conditions reduces the
effect of the singularity somewhat, but also here it seems to help to introduce
weighted norms.

6.2 The Problem with Correct Weights

In these applications, the large material parameters seem to cause unbalance
in the least-squares problem. The way to handle this unbalance has been to
use weighted norms with carefully chosen weights. In Problem 1, we solved
for the B field with the curl term multiplied by u. For the third problem, we
instead formulated the functional in the H field without weights.
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However, as could be seen in Problem 2, these weights might not be
easy to establish, thus making the problem difficult to solve. One approach
to automatically compute appropriate weights could be to introduce a dual
problem. It is possible to tailor an a posteriori error indicator to a specific
quantity in a problem using the dual problem, see Rannacher [26]. This
leads to an indicator expressed as a weighted sum of the residuals, where
the solution to the dual problem gives the weights. In a similar fashion,
a weighted least-squares functional could possibly be formed based on the
solution of a dual problem.

6.3 How to Deal with Singularities

In regions where the solution is smooth, the least-squares approach works
very well. But, as can be seen from Theorem 3.1.3, it requires more regularity
than standard Galerkin. In fact, the solution must belong to H™*! where
r > 0, in order to have guaranteed convergence. This is often not the case,
e.g. when the domain have corners or edges. It has also been observed that
mesh refinement alone cannot resolve the suboptimal convergence [22].

This problem has attracted some attention in the case of the div-grad
problem [12]. The remedy proposed was to use a weighted L? norm, || - ||,s,
where r is the distance to the singularity and 8 depends on the strength of
the singularity.

In practical computations, this kind of weighting function is very cumber-
some, if even possible, to compute. First, one has to locate the singularity,
and then compute the correct weight S. This should preferably be done
without prior knowledge of the geometry or the solution.

6.4 The H! Approach

An idea in LSFEM is to use weaker norms, such as the H ! norms, when
forming the least-squares functional, rather than the more practical L? norms.
The concept of using a weaker norm was already discussed in the previuos
section when introducing a weight to eliminate the singularities, and also, the
way to use the H~! norm is similar to using the dual problem to calculate
the weights as desribed in section 6.2.

The space H~! is the dual space to the Sobolev space H', and the norm
is defined by

loll?, = sup¢EH3%. (6.1)
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This norm, and the corresponding inner product, can be computed as
[0][2y = (Tv,v), (6.2)

where 1" is the solution operator to a Poisson type problem, see Bramble,
Lazarov, and Pasciak [9]. Furthermore, it is possible to replace T by a
computable operator 7}, constructed via a preconditioner to the defining
Poisson type problem, leading to the discrete equivalent H~! norm,

[Vl = (Thv, v). (63)

The H~! least-squares approach allows for less smooth data and solu-
tions, compared with using L? norms. It may however be more sensitive
to unbalanced terms in the least-squares functional, but a correctly formed
operator T}, taking the underlying equations into account, should be able to
circumvent this problem.
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