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DISCONTINUOUS GALERKIN METHODS FOR INCOMPRESSIBLE
AND NEARLY INCOMPRESSIBLE ELASTICITY BY NITSCHE’S
METHOD

PETER HANSBO AND MATS G. LARSON

ABSTRACT. We propose and analyze a discontinuous finite element method for nearly
incompressible linear elasticity, on triangular or tetrahedral meshes. We show optimal
error estimates that are uniform with respect to Poisson’s ratio. The method is thus
locking free. We also introduce an equivalent mixed formulation, allowing for completely
incompressible elasticity problems. Numerical results are presented.

1. INTRODUCTION

Nearly incompressible elasticity displays severe locking problems when low order standard
nodal-based displacement methods are used. In engineering practice, this problem is usually cir-
cumvented by use of special numerical integration schemes with under-integration of the diver-
gence terms. It is well known that this is equivalent with certain mixed finite element methods
using lower order approximation of the Lagrange multiplier (which corresponds to the diver-
gence), see Malkus and Hughes [12]. Another approach is to use non-conforming finite element
methods, for instance a linear approximation with relaxed continuity requirements, cf. Brenner
and Sung [6] and Kouhia and Stenberg [11].

In this paper, we instead propose the use of a classical discontinuous Galerkin method of
Nitsche [13], further developed and analyzed, in the case of scalar elliptic and parabolic prob-
lems, by Baker [2], Wheeler [16], and Arnold [1] in the late seventies. Similar approaches have
recently been explored, again for scalar elliptic problems, by Freund [10], Oden, Babuska, and
Baumann [14], and, for domain decomposition purposes, by Becker and Hansbo [4].

The Nitsche approach allows for independent approximations on different elements, and the
continuity of the solution across interelement boundaries, as well as the boundary conditions, are
enforced weakly, in such a way that the resulting discrete scheme is consistent with the original
partial differential equation. Furthermore, the direct approximation of the elasticity operator
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2 PETER HANSBO AND MATS G. LARSON

results in a symmetric positve definite system of equations with the same condition number as a
standard finite element method of O(h~2), where A is the meshsize.

We analyze the Nitsche method and show that the extra flexibility obtained by using discon-
tinuous approximation together with properly chosen stabilization terms result in a locking free
method with optimal order convergence.

Next, we formulate a mixed version of the Nitsche method, which is useful in the incompress-
ible limit (Stokes’ problem). We establish the stability of the method and state optimal a priori
error estimates. Furthermore, for certain parameter values the mixed scheme is equivalent to the
single field scheme, and thus we obtain a new proof of our earlier a priori error estimates.

The paper is organized as follows: in Section 2 we state the equations of linear elasticity
and discuss the problem of locking and possible remedies; in Sections 3 and 4, we formulate
and anlyze the single field and mixed Nitsche method, respectively; we also present illustrative
numerical examples. Finally, in Section 5, we give some concluding remarks.

2. THE EQUATIONS OF LINEAR ELASTICITY AND LOCKING

We consider the equations of linear elasticity in two dimensions: Find the displacement u =
[ui];_, and the symmetric stress tensor o = [o;;]; ._, such that

oc=AV . -ul +2ue(u) inQ,
—V-o=Ff inQ,

u=g 0nolp,

o-n=h onodfly.

(2.1)

Here Q is a closed subset of R?, \ and u are positive constants called the Lamé constants,
satisfying 0 < 1y < 1 < pe and 0 < A < oo, and e (u) = [g4(u)]7,_, is the strain tensor

ij=1
with components
1 au, an
8”(“) N 5 <8$J + 8:51) )

2

Furthermore, V - o = [Z?Zl 6aij/axj]z fi=1
i # 4, f and h are given loads, g is a given boundary displacement, and n is the outward unit
normal to 0S2. In terms of the modulus of elasticity, F, and Poisson’s ratio, v, we have, in the
case of plane strain, that A = Ev/((1 + v)(1 — 2v)) and u = E/(2(1 4+ v)).

Incompressible behavior is obtained as the parameter A — oo, i.e.,, as v — 1/2. In such
cases the performance of standard conforming methods will deteriorate, a phenomenon known

as locking. To alleviate locking, several approaches exist; some well-known examples are:

e Mixed finite element approximations with additional unknowns representing the divergence
of the displacement. The problem with this approach is that as the material tends to the
incompressible limit, the selection of the discrete spaces cannot be selected independently
of each other. This problem is discussed, e.g., in the textbook by Brezzi and Fortin [7].

e Under-integration of the divergence term. This idea is related to the mixed approach, cf.
[12], and will not work unless the under-integration is sufficiently severe.
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e Non-conforming methods with reduced continuity requirements on the displacements. This
approach requires that the resulting scheme fulfills a discrete version of Korn’s inequality
to ensure coercivity of the discrete operator. For an example of such a method, see [11].

e Stabilized finite element methods, e.g., of Galerkin/least-squares type. This approach is
similar to a mesh dependent relaxation of the incompressibility condition, as suggested by
Brezzi and Pitkéranta [9].

In this paper we propose a new possibility: a consistent relaxation of the continuity requirements
using a version of a method originally proposed by Nitsche [13]. Using this approach, we do
not need to use under-integration, we do not need to introduce additional variables, and we do
not need to prove a discrete Korn’s inequality. The main, and serious, drawback of our approach
lies in the increased number of degrees of unknowns as compared with a continuous method
of the same order of convergence. We emphasize that this work should be viewed as a first step
towards investigating the possibilities inherent in the framework of discontinuous approximations
for higher-order differential operators.

3. A DISCONTINUOUS (GALERKIN METHOD

3.1. Formulation of the discontinuous Galerkin method. Consider a subdivision of
Q) into a geometrically conforming simplicial finite element partitioning 7" = {T'} of Q. Let

P*(T) = {v: each component of v is a polynomial of degree < k on T'},

W' = {v € [LXQ) : vlr € PHT)VT € T,

let 0T;y denote the sides of the element 7" neighboring to other elements, 07T the sides neighbor-
ing to 09y, and 07p the sides neighboring to 992p. Further, let n, denote the outward pointing
normal to AT, and, for z € OT, let [U] = UT — U~ and (U) = (U" + U™)/2, where
U* =lim o, U(x F eng).

We seek a function U € W" such that

(3.1) an(U,v) = Ly(v) forallv € W,
The bilinear form ay (-, -) and linear functional Ly (-) are sums of element contributions a, (U, v) =
> rar(U,v)and Ly(v) = Y, Ly(v) defined by

(32)  ar(U,v) = /T o(U) : e(v) da

~5 | (o) nr) b+ (o) -nr) - U]) ds
+g/m”—,;[v]-[v1 ds+§/m%[v-nﬂ v-ny] ds

_/aT (e(U) nr-v+o) -nr-U)ds

+u/ ﬁU-'uds+)\/ kU-nT'v-ans,
aTDh 6TDh



4 PETER HANSBO AND MATS G. LARSON

where we have used the notation o : € = >, >~ 0y;€;5, and the linear functional is given by

(3.3) Ly(v) = /f-'vdx—i-/ h-'vds—/ o(v)-nr-gds
T TN 9Tp
-I-,u/ ﬁg-'uds—i-)\/ Eg-’rl,T'u-ans.
dTp h’ 9Tp h
Here, on each edge E, the mesh parameter A is defined by
length(E)  length(E)\ ™ _
for £ T+ T
(3.4) hlg = (area(T+) area(7-) orE Cortnor,

area(7’)/length(E) for B C 0T N of.

Remark. This definition of the mesh parameter 4 on each edge makes it possible to calculate,
explicitly, suitable values for the parameters ~y,, and v, in (3.2) that are independent of the size
and shape of the triangles. However, assuming a quasi-uniform mesh, one may use some other
equivalent choice of mesh parameter, for instance, the length of the edge.

By use of Green’s formula, we readily establish the following proposition.
Proposition 3.1. The method (3.1) is consistent in the sense that
ap(u —U,v) =0
for all v € W" and for u sufficiently reqular-.

3.2. A priori error estimates. For the purpose of error analysis, we introduce the following
mesh dependent energy norm

(3-5) ol = > llwliz,

TeTh
where the element contributions |||v||| are defined by

1
3.6) lolly = 2u(le@)lam + 5 2720 s m + 17720 220

1
+)\(||V : 'U||i2(T) T3 Hh‘l/Q[v ' ”]Hiz( y T Hh_l/% : "HiZ(

8TD)) g

OTint

where, for tensors,
”6('0)”%2@) = e(v) : e(v) dz.
T

The mesh dependent norm ||| - ||| can be used to bound the broken H*(€2) norm on W", which
we show in the following proposition.

Proposition 3.2. There is a constant C', independent of h, p, and \ such that
(3.7) S ol < CllolE for all v € W

TeTh
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Proof. Assume that the right-hand side of (3.7) is zero. It then follows that
le (@)l 20z = 0.
and therefore v|y € RM(T), where
(3.8) RM(T) = {v € P*(T) : v(z) = ar +br (—x9,71), ar € R?, by € R}
is the space of linearized rigid body motions on 7'. Next, using that

||[”]||L2(6T) =0,
we conclude that there are constants @ and b such that @ = ar and b = by, for all triangles
T. Furthermore, from [[v||,»5q,) = 0 it follows that @ = 0 and b = 0. Thus, if the

right-hand side of (3.7) is zero, so is the left-hand side, since 0 < u; < p for some positive
constant p;. Finally, finite dimensionality, together with scaling, yields the result. O

In order to show that the method (3.1) is stable, we shall show that ay, (-, -) is coercive with
respect to the norm ||| - |||, given that -, and ~y, are chosen large enough. In order to do so, we
need the following inverse inequalities.

Lemma 3.1. For v € Py(T) there are constants C,, and Cy, independent of the diameter
h, such that

(3.9) 112(0) - 12 op) < Culle®)2ery

(3.10) 1129 - 0[|7 2y < OA Y - 02y

where on each edge E C 0T the meshsize h is defined by h = area(T)/length(E). If, in
addition, T 1is a straight-edged triangle, C,, and Cy are also independent of the minimal
angle of the triangle T.

Proof. To prove (3.9) we note that if the right hand side is zero, we have v € RM(T),
where RM(T) is defined in (3.8) and thus the left hand side is also zero. For (3.10)
we note that since v is a polynomial, ||V - v||z2¢ry = 0 implies V - v = 0 pointwise,
and thus ||h'/?V - v||12(9r) = 0. Both estimates, (3.9) and (3.10), now follow from finite
dimensionality and scaling from a unit reference element.

Furthermore, if T' has straight edges, then 7" is the image of a reference triangle under
an affine mapping and therefore the quotient

length(E)_l/Ee(v) ‘n-e(v)n

I

(3.11) Cup = sup
vEPH(T) area(T) ! / e(v) : e(v)
T

where FE is an edge of the triangle 7", is independent of the size and shape of the triangle 7.
This is seen by mapping to the reference element and using the fact that the determinant
of the Jacobian is constant. Now simply define C, = 3C), g, since there are three edges. [
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Remark. Here we shall calculate upper bounds of the constants C,, and C'y. From the proof
of Lemma 3.1 we have C,, = 3C,, . Further C, g is the maximum eigenvalue of the eigenvalue
problem

(3.12) A = \Bb,

where  denotes the coordinates of v in a basis {¢,} for P*(T),

Aij = / n-e(p;) -n-e(p;)ds,
E
and
By = [ ele): s(e,)do

We can treat C), in a similar manner. Solving these eigenvalue problems numerically and multi-
plying the maximum eigenvalue by three, give the following values for C, and C. Note that the
constant increases with the order of the polynomials p.

| 1 p=1 [ p=2 | p=3 | p=4 |
Cu 1.6875 | 5.0625 | 10.1249 | 16.2948
C, | 1.5000 | 4.5000 | 9.0000 | 15.0000

We are now ready to show our coercivity result.

Proposition 3.3. If v, > 2m + Cy,,/4(1 — m), for 0 < m < 1, then the following
estimate holds

(3.13) m|||v]|[? < an(v,v) for allv e W,
independent of h. The constants C,, and C are defined in Lemma 3.1.

Proof. Setting U = v in the definition of the the bilinear form (3.2) we obtain
1

w(@.0) = 3 2(le)lia —5 [ (- e(w))-[o] ds

TETh
7Y, _ 2
+EM ”h Y2 [v]Hm(aT))
1
= S A vl =5 [ (V) e ds
TeTh
Y. _ 2
+E/\ Hh k& [y - U]HLZ(aT)>
(3.14) = I+11,

with the obvious notation and modification where 0T N 02 # (. To show the coercivity
we need to bound the potentially negative terms by the positive terms. We begin with an
estimate of the second term in /. Using the Cauchy-Schwarz inequality, followed by the
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inverse inequality (3.9) in Lemma 3.1, we have

> /aT (nr-(v)) - [v]ds

TeTh
S Z ”hm <”T'€("’)>HL2(3T) ”h_m[”]”m(aﬂ

TeTh

< Z ||h1/2nT ' é7("’)HL2(3T) Hh_1/2[v]HL2(8T)
TeTh

< Z Cu th/Qe(U)HLQ(T) Hh’il/Q[U]”L%aT)
TeTh

2 1 _ 2
< Xl o) ey + 1 1072 W] oy
TeTh g

where we finally used the inequality ab < a?/(2¢) + €b?/2, for a,b,e € R,e > 0. Choosing
€u = (1 =m)/C% and v, > 2m + 1/4¢, = 2m + C.. /4(1 — m) we get

I > Zzu((l—eu(fﬁ) le(@)IIz2()

7, 1 _ 2
+(7u o a) Hh 2 [v]”Lz(aT))

(3.15) > sz(HE(”)”iZ(T) + Hhil/Q["’]HiZ(aT))

Exactly the same technique may be used to prove that II, choosing €y = (1 — m)/C? and
Yu > 2m + C3/4(1 — m) we get

_ 2
(3.16) 7> m/\(||V 0| 2apy + |2 - v]HLQ(aT)).
Together (3.14), (3.15), and (3.16), yields the desired estimate. O

For the proof of our main a priori error estimate we need to introduce the interpolation operator
of Brezzi, Douglas, and Marini, see [8] and the book by Brezzi and Fortin [7]. We summarize its
properties in the following lemma.

Lemma 3.2. If the mesh consists of triangles in two dimensions or tetrahedra in three
dimensions there is an interpolation operator mwppy : H'(Q) — W with the following
properties:

1. [n . WBDMU] = 0,

2. |lu — mppmu|| gy < Chl™ |l gigry, withm =0,1,2, and m <1 <k +1,

3. IV - (w = mppa)|| gy < Chi™ ||V - Ul gy » with m = 0,1, and m <1 <k,

4. / v(V-u—V-wppyu)dr =0, for all v € PF=1(T),
T
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5. / v(n-u—mn-mwppyu)ds =0, for allv € P*(E), where E is an edge or face on 0T,
E

for all uw € HFY(T).
Proof. See Propositions I11.3.6, I11.3.7, and I11.3.8 in Brezzi and Fortin [7]. O
We are now ready to formulate our main result.

Theorem 3.1. With U the solution of (3.1) and u the solution of (2.1), we have that
T = wll < OB (@) el oy + A2 19wl
Here, C = Cy + Cy/m, where Cy and Cy are independent of h, u, and .
Proof. Using the notation v = wgpyu and n = u — wppyu, we have
(3.17) 1T = ull| < [T = ll| + [lInl]l
From coercivity, Proposition 3.3, and concistency, Proposition 3.1, it follows that
m||U —v||* < ap(U —v,U — v)
(3.18) =ap(n,U — v).
Next, using the definition (3.2) of ay(-,-) and the inverse estimates in Lemma 3.1 we get

(U —v) < O —oll(llmll + 3 )2 |h 5 e)] ugor,
TeTh

(3.19) + 3 A2 Ry nHL2<aT))-
TeTh
Combining (3.17), (3.18), and (3.19) we get the estimate

C
=Tl < (1+ =) lmll+ D2 @2 52 n - e(m)| o,

TeTh
(3.20) + Z A2 th/2V : 7’HL2(6T) :
TeTh

We now proceed with estimates of the three different terms on the right hand side of (3.20).
To deal with the boundary terms we need the following trace inequality

(3.21) lll oy < Cllwllogry (7' 10l ary + 0l ) w € H(D),

where C' is independent of the diameter of the triangle hr. This inequality is obtained by
mapping 7" onto the unit size reference element 7}, invoking the trace inequality

(322) [0l2ory < € 10l 0 lsgry w € H' (T,

see [5], and finally transforming back to 7.
We begin with an estimate of the first term on the right hand side of (3.20). Starting
from the definition of the energy norm (3.5) and using the crucial fact that [n-n] =0, cf.
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(1) in Lemma 3.2, and the triangle inequality to split the remaining jump contributions,
we obtain

1 _ 2 2
Il <37 2 (el + 5 12720050 00 ) + MY -l

TeTh
< > c2u(hz 1l oy + bz Il oy Il sy + Iy
TeTh
+A[V - 77||i2(T)
(3.23) < OB (2wl oy + A IV - ey ).

where we used the trace inequality (3.21), followed by interpolation error estimates (2) and
(3) in Lemma 3.2 to estimate the right hand side. Note that the constant C' is independent
of h, i, and .

Next we estimate the second term in (3.20). Using the trace inequality (3.21), followed
by the interpolation error estimate (2) in Lemma 3.2, we obtain

2 ~
[0 ) [eaary < Chr e lacey (ki ey + llelm s
< C ||"7||le + hr ||nll g1 ||"7||H2(T)
(T) (T)
(3.24) < Ch¥¥ ||’U/||§1k+1(T)-

Finally, in the same way as for the second term, but this time invoking (3) in Lemma 3.2,
we get, for the last term in (3.20),

9 _
”hl/Qv ) 7IHLZ(aT) < Chr||V- "7||L2(T) <hT1 IV n”LZ(T) +IV- n”HI(T))

C(IV -1l 2y + B IV ll oy 19 - 7l sy )
(3.25) < CHENY - wllfpy -

IN

Collecting (3.20) and the estimates (3.23), (3.24), and (3.25), the theorem follows. The
constant is clearly of the form in the theorem and independent of A, i, and A, since we
have made the depencies of theses parameters explicit in each step of the proof. O
Combining the error estimate in Theorem 3.1 with the elliptic regularity estimate
1
(3.26) [[well griss () + 12, IV - ull gy
< (I llme 10y + 1l w0020 + 1Bl gs-srog0y )

(valid uniformly in v, cf. Vogelius [15]) we obtain the following estimate in terms of data, which
shows that the method does not lock as A — oo.
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Corollary 3.1. There is a constant C, independent of h, u, and A such that the following
estimate holds

(327)  Mu— Ul < CF (1 s ) + 19 sorroon) + Illmcsrsgon) )

3.3. Numerical example. We consider the “driven cavity flow” problem, common in fluid
flow applications. The domain is 2 = (0, 1) x (0, 1), and the boundary conditions are given by:
Onoy ={zo=1and 0 < z; < 1} wesetu = (1,0) and on 092 \ 02, we set u = (0,0).
In Fig. 1 we show computational results using a standard conforming finite element method (left
column) and the proposed method (right column) for modulus of elasticity £ = 1 and Poisson’s
ratio

v = {0.49,0.499, 0.4999}.

The continuous, conforming, method displays visible locking problem for v > 0.49, whereas
the discontinuous method is completely robust with respect to locking. In Fig. 2 we show the
computational mesh; the displacement fields shown in Fig. 1 are obtained by evaluation in the
midpoint of each element. Finally, in Fig. 3, we show the L, (£2)—norm of the difference between
the continuous and discontinuous solutions as a function of Poisson’s ratio.

4. A MIXED DISCONTINUOUS GALERKIN METHOD

In this section, we shall formulate and analyze a mixed discontinuous Galerkin method. Such
a method is of interest in its own right for approximating mixed problems corresponding to the
case of an incompressible material or the Stokes problem modeling incompressible fluid flow.

Furthermore, from the analysis of the mixed method we obtain a new error estimate, which
complements Theorem 3.1, for the single field method. In particular, it follows that the sin-
gle field method does not lock in the incompressible limit. For an alternative discontinuous
Galerkin method for the Stokes problem, using continuous pressure and discontinuous piecewise
solenoidal velocity, see Baker, Jureidini, and Karakashian [3].

4.1. Formulation of the mixed discontinuous Galerkin method. To formulate a
mixed version of (3.1), we make the identification

Ply = (=AV-U)lr,
so that P € Q", where
(4.1) Q"={qeL*Q): q|lr € P YT)VT € T"},
and consider the mixed problem of finding (U, P) € W" x Q" such that

(4.2) CNLh(U, 'U) + bh(U, q) + bh(v, P) — Ch(P, q) = Lh('v, q)
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for all (v,q) € W" x Q", where again the forms are sums of element contributions defined by
43) an(U,v) = / pue(U) : e(v) do
T
1
- 5/3 (2pe(U) -nr) - [v] + 2ue(v) - nr) - [U]) ds
Tint
Bl e o N .
+ 2/8Tim Y [U] - [v] ds+ 2/8Tim h [U -nr| [v-nr] ds
— / CueU) -ny-v+2ue() -nr-U) ds
dTp

+u/ hU-'vals-l—)\/ ﬂU-'n,T'v-'n,Tds,
oTp Tp

h h
1
(4.4) br(v,q) = / —qV -vdr + —/ (q) [v - n7] ds,+/ qvu-nrds,
T 2 Jor, o1p
1
(4.5) cT(P,q):/—qux,
T A

and the linear functional by

(4.6) LT('u,q):/f-vda:+/ h-vds—/ 2ue(v) -nr-gds
T 0T oTp

h
Note that the incompressible limit A — oo corresponds to ¢y (-, -) = 0.

+/ an-gds+,u/ ﬁg-vds%—)\/ Bg-nTv-ans.
ITp ITp h dTp

4.2. A priori error estimates. For the analysis of the mixed method we introduce the norms

1
(4.7) [ollgn = > 2p <||e(v)||iQ(T) +5 Hh—l/z[v]HzTim + Hh‘l/Q’UHZTD> ,
TeTh
(4.8) lalloe = D Nl -
TeTh

As is well known, see Brezzi and Fortin [7], the existence of a solution to (4.2) satisfying optimal
error estimates is a direct consequence of the stability conditions in the following proposition.

Proposition 4.1. If v, > a+ C,/4(1 — «) and v\ > 0, then there exists a constant o,
with 0 < a < 1, such that

(4.9) a|[v)|3n < @n(v,v)  for allv € W
Furthermore, there is a constant 3 > 0 such that

b
(4.10) B < inf sup h(v,9)

g€Q" yewn [0y ||Q||Qh '
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Proof. The first statement (4.9) follows in the same way as in the proof of Proposition 3.3.
To prove the inf-sup condition (4.10) we first show that the inf-sup condition (4.10) holds
with W replaced by H'(£2) and then we use properties of the interpolation operator wgpum
to prove (4.10).
Let ¢ € Q" be given. Defining v, = V¢, where ¢ satisfies

—Ap=g¢q in (), n-Vo=0 on 0,

gives —V-v, =¢in Q, n-v, =0 on 02, and [nr - v, = 0 on each interior edge. Starting
from the definition (4.4) of by(-,-) and using the properties of v we obtain the identity

(4.11) b (04,9) = llall -
Furthermore, using elliptic regularity we have
(4.12) 10gll 10y < IVEllgia) < Cllallzzg) -

Combining (4.11) and (4.12) it follows that

b b
(413) Sup h('UaQ) Z h(’UQ’Q)
veH(Q) ||’U||H1(Q) ||’Uq||H1(Q)
with 3’ = 1/C > 0, independent of ¢ € Q".
We shall now replace v, with wppyv, and show that the inf-sup condition (4.10) holds.
First, we conclude that

(4.14) byn(v,q) = bp(mepMY, q) for v € HI(Q),q e Qn,

using the definition (4.4) of by(-, ), properties (4) and (5) in Lemma 3.2, and the fact that
g € Q" is a piecewise polynomial of degree k — 1. Next we note that first using the trace
inequality (3.21) to bound the contributions from the boundaries of the triangles to ||v||y»,
and then using the interpolation error estimate (2), with m =1 =1, in Lemma 3.2 we get

> " llallgn

[v = mBoM©|[wr < Cllv]lg1q) -
Using the triangle inequality we conclude that the following stability estimate holds
(4.15) Imsonetll < Clloll gy for v € H'(D),

since [[v|lyr < C'[|v]| 1), using the trace inequality (3.22) to estimate the contribution
from the Dirichlet boundary.

Using (4.14) and (4.15), and finally (4.13) we obtain
b(v,q) _ bn(mBDMY,, 4)
vewr 1Vllwr — [|mBDMY[[ypn
bh('vqa q)

B C”vQHHl(Q)

!
> lalgr
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independent of the choice of ¢ € Q", and thus the desired result follows with 8 = 3'/C >
0. O

Remark. Note that to establish the coercivity with respect to W, does not require v, > 0,
and thus we may choose v, = 0 when implementing the mixed method. In fact, this is the natural
choice. However, for equivalence with (3.1) we need to keep this term in the formulation. The
equivalence is necessary for the analysis of the mixed method to hold also for the single field
method.

We are thus ready to state a standard a priori error estimate for the mixed method. Here,
we are only interested in the limiting case of A — oo; the identification P|r = (—AV - U)|r,
together with uniqueness of the solution to the mixed problem, shows that the solution to the
mixed problem is in fact identical to that of (3.1) for A finite.

Theorem 4.1. Let U be the solution of (4.2) and u the solution of (2.1) and assume that
the assumptions in Proposition 4.1 hold. Then, in the limit A\ — oo, we have the error
estimate

10~ wlly + 1P = pllgn < C1* (I[allmesay + Pl )

Here the constant C' depends on the constants « and 3 defined in Proposition 4.1, but is
independent of h, p, and \.

Proof. This follows from the stability properties of Proposition 4.1 and the approximation
properties of the polynomial spaces used; for details, see Brezzi and Fortin [7]. O

4.3. Numerical example. We show the effect of varying the stability parameter ~,. The
domain and boundary conditions are the same as in Section 3.3.

In Fig. 4, we show the typical checkerboarding pattern in the pressure variable, resulting from
an injudicious choice of v, = 6000. Choosing -y, this large means enforcing the continuity of
the related conforming mixed method, which is not stable. In Fig. 5, we show the correspond-
ing stable solution for v, = 6. For ease of presentation, we show the L,—projection of the
discontinuous pressure onto the space of piecewise linear, continuous, functions.

5. CONCLUDING REMARKS

In this paper, we have proposed a weakly conforming, discontinuous, and piecewise polyno-
mial finite element method for incompressible and nearly incompressible elasticity. Numerical
examples support the theoretical results that

(i) the proposed method does not lock in the limit of Poisson’s ratio tending to 1/2 (i.e., the
error estimates hold uniformly in \),
(i) the corresponding mixed method is stable in the sense of BabuSka and Brezzi.
Our approach has the disadvantage of introducing many more unknowns than the corresponding

continuous finite element method of the same polynomial degree. Nevertheless, we believe that
it has some distinct advantages: it is more general than the continuous finite element method,
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which it contains as a special case, and it enables the use of different polynomial degree of
approximation on adjacent elements, as well as the use of non-matching meshes.
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Ficureg 2. Computational mesh.
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(a) Pressure (b) Velocity

FIGURE 5. Stable solution for moderate-sized +,,.
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FI1GUrRE 6. Computational mesh.
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