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A DISCONTINUOUS GALERKIN METHOD FOR THE PLATE
EQUATION

PETER HANSBO AND MATS G. LARSON

ABSTRACT. We present a discontinuous Galerkin method for the plate problem. The
method employs a discontinuous approximation space allowing, non matching grids and
different types of approximation spaces. Continuity is enforced weakly through the vari-
ational form. Discrete approximations of the normal and twisting moments and the
transversal force, which satisfy the equilibrium condition on an element level, occur nat-
urally in the method. We show optimal a priori error estimates in various norms and
investigate locking phenomena when certain stabilization parameters tend to infinity. Fi-
nally, we relate the method to two classical elements; the nonconforming Morley element
and the C! Argyris element.

1. INTRODUCTION

In this paper we propose and analyze a discontinuous Galerkin (dG) method for the plate
equation describing the transversal deflection of a thin plate under a transversal load. The
method is based on the classical method first proposed by Nitsche in the context of weak
enforcement of boundary conditions [14] and later extended to a discontinuous method
with weak enforcement of the continuity of the solution at interior edges by Douglas and
Dupont [8], Baker [3], Wheeler [15], and Arnold [2]. In the last few years there has been a
renewed interest in these methods, see for instance the proceedings [7] for a comprehensive
overview of recent work.

The use of discontinuous approximation spaces lead to several advantages, for instance,
one can use different types of approximation spaces on different elements without enforc-
ing continuity; non matching grids, see Becker and Hansbo [4], can also be used. Using
the added richness of the spaces one can also construct locking free schemes for nearly
incompressible linear elastic materials, see Hansbo and Larson, [9]. Further, discontinuous
methods enjoy a local elementwise conservation property, a property often desired in ap-
plications. The obvious disadvantage of the dG method is the increased number of degrees
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2 PETER HANSBO AND MATS G. LARSON

of freedom for the same order of approximation, see [10], for a comparison of the number
of degrees of freedom in the continuos and discontinuous Galerkin methods.

It is well known that so called twisting moments occur at corners on the boundary in the
plate equation. When formulating a discontinuous Galerkin method for the plate equation
these twisting moments occur at each node in the triangulation, and one has to discretize
them in a proper way. Our work extends the earlier work of Baker [3], where a method,
similar to ours, for the biharmonic equation is presented. In this case the twisting moments
do not occur.

Discrete approximations of the bending and twisting moments, and the transversal force,
of optimal order and such that elementwise equilibrium is satisfied, arise in a natural way
in the method.

As is well known in the symmetric dG method one needs to include terms (which vanish
for the exact solution) that stabilize (or penalize) discontinuities and choose corresponding
parameters sufficiently large in order to obtain a coercive bilinear form. It is easy to see
that it is enough to stabilize only certain projections of the discontinuities. This observa-
tion allows us to relate our method to the classical nonconforming element of Morley. Here
second degree, polynomials are used, and the nodal values and the normal derivatives at
the midpoint of each edge are chosen as degrees of freedom. These methods are obtained
by choosing minimal stabilization of discontinuities and letting the stabilization param-
eters tend to infinity. Further, in a similar fashion, we obtain the Argyris C' element
for fifth order polynomials on triangles. See, also Larson and Niklasson [11] for related
investigations in the case of the Poisson equation.

We believe the dG method is particularly suitable for two dimensional formulation in
structural mechanics, such as plates and shells, where typically complicated elements are
used.

The remainder of the paper is organized as follows: in Section 2 we introduce the plate
equation and the dG method; in Section 3 we prove error estimates; and in Section 4 we
present a numerical example.

2. THE DG METHOD

Consider a thin elastic plate with center surface represented by a domain Q C R? with
boundary 0f)2. We seek the transversal deflection v when a transversal load f acts on the
plate, and various physical boundary conditions are used at the boundary. Assuming small
deflections and a linearly elastic material the constitutive equation reads

(2.1) oij = AAud;; + ;mij(u), 1,7 =1,2,
where o0;; are the moments, ¢;; = 1if i = j and 6;; = 0 if ¢ # j A is the Laplacian, and
(22) Kij (u) = U 45,

defines the curvature tensor. Furthermore, with ¢ the thickness of the plate, £ Young’s
modulus, v Poisson’s ratio, and
Et3

D=——" _
12(1 — 1?)
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the flexural rigidity of the plate, we have that A = Dv and y = D(1 —v). Here, and below,
we adopt the simplified notation wu; for the partial derivative u/0z;. Further, with f a
distributed normal load, we have the equilibrium equation

(2.3) Tijij = [
where we used the summation convention.

To define the boundary conditions we introduce some notation. Let n = (nj,ny) be the
outward unit normal, and ¢t = (ng, —n;) the associated tangent, of 9Q2. We will need the
following quantities

(2.4) Up = U,;Nj,

(2.5) Uy = Ut

(2.6) My, = oinin;,

(2.7) My = oijnit;,

(2.8) T = 0ijni + My

where u , and u; are the normal and tangential derivatives, M,, and M, are the normal
and twisting moments, and 7' is the transversal force, at the boundary. We may clearly
consider M,,, M,;, and T, as functions of o or of u, since o is a function of u.

We consider three types of boundary conditions modeling a clamped, simply supported,
and free boundary. Splitting the boundary into three corresponding disjoint parts 02 =
00c U0Ns U ONr the three boundary conditions read

(2.9) u=1uy=0 on 0,
(2.10) u=M,, =0 on 0¥g,
(2.11) My, =T =0 on dp.

2.1. The mesh and discontinuous spaces. Let K = { K} be a partition of 2 into shape
regular elements, called the mesh. For simplicity, we assume in our a priori error analysis
that the mesh is quasi uniform with meshsize h, see [6].

The set of edges in the mesh is denoted by £ = {E} and we split £ into four disjoint
subsets

(2.12) £=EUEUESUER,

where &7 is the set of edges in the interior of 2, and &¢, &5, EF, are the sets of edges on
the clamped, simply supported, and free parts of the boundary, respectively.
To each edge we associate a fixed unit normal vector

nNg = (nE,la nE,Q)u

such that on the boundary 02, ng is the exterior unit normal, and a fixed tangent vector
tg = (ng2, —ng,1). Further to each node in OF we associate a normal ngg = 1 if tg is
directed out of E and ngg = —1 if tg is directed into E. We also use the notation ngx for
the exterior normal of an element K. For simplicity, we usually use the notation n = ng
and t = tg in an integral over the edge E, and similarly for integrals over 0K and OF.
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Let W be the space of discontinuous piecewise polynomials of degree p defined on K,
ie.,

(2.13) W = P Py(K),

KeK

where P,(K) denote the space of polynomials of degree p. In general, the degree of poly-
nomials may change from element to element or other spaces, such as spectral elements,
may be used on some elements. For simplicity we confine our attention to polynomials of
fixed degree.

For convenience we also define the space

(2.14) V=W+ H'Q).

Here and below H*(w) denotes the standard Sobolev space of order s on the set w C €,
with norm || - || .-

2.2. Variational formulation on an element. To motivate the definition of the dG
method we begin with deriving a Green’s formula on an element K € K. Starting from the
equilibrium equation (2.3), multiplying with a test function v, and using repeated partial
integration give

(03,5, V)& = — (044> V,5) K + (Tiji, V1) ok
= (0ij, v,i5) k. — (0ijni, v 5)ar + (T340, V05 oxc
(2.15) = (035, v,i5) k — (Mpn, V)

— (Myus,v0) ok + (04,4, v75) ok,
where in the last equality we used the identity
(216) Vj = Unhj + U,ttj-

To continue we note that the boundary 0K of an element K consists of a number of smooth
edges F C 0K, connected at the nodes. On each edge we have using partial integration

(2-17) (Mnta U,t)E = _(Mnt,ta U)E + (Mnt; UnaE)aE-

Combining (2.15) and (2.17) with the constitutive equation (2.1) and the equilibrium equa-
tion (2.3) we get the following variational statement on each element

(2.18)  A(Au, Av) g + pu(ki(u), £i(v)) k
= Z ((Mnn, vn)E — (T,0)g + (Ma, UnaE)aE) + (f,v) kK,

for all v € H*(K). Note, in particular, the presence of the pointwise twisting moments
arising at the corners. These contributions are an effect of the presence of the curvature
tensor in the constitutive equation (2.1) and does not occur for the biharmonic equation.
Note also that the twisting moments vanish if the boundary is smooth.
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2.3. Discrete moments and transversal force. We now wish to extend our elementwise
variational statement (2.18) to a variational statement on V. We then need to define the
moments and transversal force, M, (v), My (v) and T'(v), on each edge E € & for functions
v € W, which are discontinuous at edges. Motivated by the stability analysis presented
below we introduce the following definitions

(2-19) Mnn(v) = <Mnn(v)> - ﬂlh_lpll[v,n]a
(2.20) T(v) = (T (v)) + Boh™* Py [v],
(2.21) My (v) = (M (v)) — Bsh™*nagev],

on each edge E € £. Here (31, 52, and 3 are positive parameters and P, denotes the L?
projection onto polynomials P, (E) of degree [; defined on the edge E, with p—2 <1, <p
and p — 3 <y < p. Further we employed the following notation for the average

(wt+v7)/2 E €&,
2.22 =
(2.22) (0 { peete,
and jump
vt —vT E €&,
2.23 =
( ) [U] {'U+ E E 5 \5_[,

of a function v € W at an edge, where v®(z) = lim,_,o+ v(z F sng). Inserting these defi-
nitions of the moments and transversal force on the edges into (2.18) gives an elementwise
variational statement in W. This equation is however nonsymmetric, but we can easily
symmetrize it without affecting consistency, since [u] = 0 for E € £;UECUEs, and [u,] =0
for £ € & U & for the exact solution. In the next section we give the global statement of
the resulting method.

2.4. The dG method. The dG method for the plate equation is defined by: find U € W
such that

(2.24) a(U,v) =1(v) forallveW,
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where the bilinear form is defined by

(2.25) a(v,w) = Z AMAv, Aw) g + p(kij(v), Kij(w))k

= Y (M) )+ ([va], (Man(w)))6)
EcE\(EsUER)
+ ﬂl (h_lpll [U,n]a Ph [w,n])E
+ 2 (€T, e + (@), (7))
EcE\Ep
+ ﬁQ(h_3Pl2 [U]v Plz [w])E
N Z((<Mnt(v)>’ nopw))or + (nop(v], <Mnt(w)>)6E>

+ B3(h*[v], [w])om,

with positive real parameters 3;, ¢ = 1,2, 3, and the linear functional by
(2.26) l(w) = (f,w).

2.5. Elementwise equilibrium. We note that taking v|x € P;(K) and v|o\x = 0 in
(2.24) we obtain the following elementwise equilibrium condition for the discrete moment
and transversal force

(2:27) > ((Mun, 0005 = (T,0)1 + (Mas, vma)a ) + (£, 0)xc = 0,
ECoK

for all v € P;(K). This means that with the discrete moments and transversal force each
element is in equilibrium.
3. ERROR ESTIMATES
3.1. The energy norm. We equip W with the following energy norm
(3-1) 1l = 1ol + IKMan()) I\ Esuer)
T ()2, + (M (0) [
+ 1B Py onlll2yesuer + 1B 2 Pulv]llze, + 172 [0]ll5e-

Here and below we employed the following notations

(3.2) llwllf = MAw, Aw) i + p(kiy(w), ki (w)) i,
KeK
(3-3) lwllF = In 0],
EecF

(3.4) lwllpr= ) > Ww@)?,

EcF redE
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for any subset F C £ of edges. Note, that ||| - |||? is a norm on V since if |||v]||x = 0, then
v must be a discontinuous piecewise linear function, and if also ||h~2[v]||3, = 0 then v is
also continuous and zero on 9. Finally, if ||h~' P, [v,]]|2, = 0 then v = 0, since [v,,] is a
constant function on each edge, so that P, [v,] = [v,].

Furthermore, we shall need the following inverse estimates.

Lemma 3.1. With the above definitions of the norms we have

(3-5) (M (W) 2\ (e50e0) < Crlllvlllk,
(3.6) IR () [z\e, < Colllvlllk,
(3.7) (M ()13 < Cslllvlllk,

for allv € W. Here C; denote constants independent of the meshsize h and the parameters

Bi-

Proof. We show these estimates on each element and obtain the global estimates by sum-
ming over the elements. First we map the element to a unit size reference element and
conclude that the corresponding estimate holds by using finite dimensionality together with
the observation that if the right hand side is zero v must linear function on the element
and thus the left hand side is zero in all three cases. Finally, mapping back to the original
element yields the desired estimates. O

Lemma 3.2. We have the following two trace inequalities

(3.8) loll < 37 (ol + A2l )
KekK
(3.9) lollZe < € 7 (ol + B2 oli2 + b vl k).
KeK
forallv e V.

Proof. We first recall that on each edge E or element K, we have the well known trace
inequality

ts)

1,5 )»

with S = F or S = K. We prove (3.10) by mapping to a unit size reference edge, or
reference element, S, invoking the trace inequality ||U||<295mf < Cllls,e vl > see [6],

and, finally, mapping back to S. Now to prove (3.8) we start from the definition of || - ||¢
and use (3.10) elementwise to get

t)

1K )

(3.11) lollz = 3" hlloll3 < € S (1ol + B211o]

Ee& KeK

(3.10) loll3s < C (B ollf + hllv
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Next for the second statement (3.9) employing (3.10) twice, first edgewise and then ele-
mentwise give

lollze = > h*lvli3e

Feé
<O (hlwl + Kl £)
Eeé
(3.12) <C 37 (Il + B0l s + B0l ).
Kek
and thus the proof is complete. O
Lemma 3.3. There is an interpolation operator m:V — W such that
h h? =2
(3.13) flu - mul < ¢ 4 Ml el P =2
W= [ulp41 p=3,

for all sufficiently smooth u € V.

Proof. We may define the interpolant 7 to be the usual nodal Lagrange interpolant since
all v € V are in fact continuous. We prove the error estimate by estimating the energy
norm |||v]|| as follows

3
(3.14) IlI2 < ¢ 32 ST A2 (ull2 e+ B202 1),

KeK j=0
and then setting v = v — mu and employing the standard interpolation error estimate
(3.15) lu = mulls,x < CRH = |lullpi
with s = 0,1,2,3. To prove (3.14) we first note that
(316) iz <03 ol

Kek

for each K € K. Next to estimate the contributions from the edges we invoke (3.8), and
the pointwise contributions are zero, due to the choice of interpolant. O

3.2. Main results.

Lemma 3.4. Here we collect three basic results on consistency, continuity, and coercivity:
1. With u the exact solution of the plate equation and U the approrimate dG solution
defined by (2.24) we have

(3.17) alu—U,v)=0 forallveW.
2. There is a constant C, which is independent of h but in general depends on [3, such that
(3.18) a(u — wu,v) < Cl||lu — wull| [||v]]| © € V,veV.
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3. For (8 sufficiently large the coercivity estimate
(3.19) c[v]|* < a(v,v) veW,
holds, with a positive constant ¢ independent of h and (3.

Remark 3.1. If there is an interpolation operator m : V — W, satisfying (3.13), such that

(3.20) 1P [ nlle = 0,
(3.21) [P, [mullle = 0,
(3.22) lru]lloe = 0,

then the constant C in (8.18) is also independent of B. In fact, in the limit § — oo the
continuity requirements (3.20-3.22) are enforced strongly. Typically, enforcing (3.20-3.22)
restricts the choice of interpolant, which may lead to a loss of accuracy.

Proof. 1. This fact is a direct consequence of the fact that the exact solution u satisfies the
variational statement (2.24).

2. This estimate follows immediately using the Cauchy Schwarz inequality, from the defi-
nitions of the bilinear form (2.25) and the energy norm (3.1).

3. We have
a(v,v) = [||v]|[%

— ) 2((Mun(0)), 00 + Billh Py [o.n]l2esuer)
EcE\(EsUER)

= Y 2(T©), D)e + Ballh *Pulvlllze,
Ec&\Er

— Z 2((Mni(v)), nog[v])or + Bsllh " [v]||3-
Ee€

Recalling the definition of the L? projections P, i = 1,2, see Section 2.3, we note that

((Mnn (0)); [Va])E = (Man(v)), Py [v.0]) 2,
(T (@)); [v])e = (T (v)), P[v]) &,

since (M,,(v)) and (T'(v)) are polynomials of degree p — 2 and p — 3 on E, respectively.
Using this observation, the Cauchy Schwarz inequality followed by the standard inequality
2ab < ea? + e 1b?, for any positive €, and finally the inverse inequalities (3.5), (3.6), and
(3.7), we obtain

- ZEEE\(EsLJEF) 2((Mun(0)), [vn))e > —aChillvll%

—61_1 AP, [v,n] ||%\(55U5F)’

— Y 2({T), W)e 2 —eCllvlk — & 1k Py ]l
Ec&\Er



10 PETER HANSBO AND MATS G. LARSON

= 2((Mu(v)), nogv))or > —6Cslllvlllx — e 17 o] 13-

Ec&

Given ¢, with 0 < ¢ < 1, we choose €C; = (1 —c¢)/3 and take 3; > c+¢ ', i = 1,2,3,
and finally invoking the inverse estimates in Lemma 3.1 to bound ||<Mnn(v))||§\(£sugF) +

IR{T (W) e, + [[{Mui(v)) 3¢, we obtain the coercivity estimate (3.19). O

Theorem 3.1. The dG approzimation U, defined by (2.24), satisfies the following error
estimate

[ulls + Allulls p=2,

(3.23) lu=UJl| < CRP™
[[llp+2 p=3,

for sufficiently reqular exact solution u of the plate equation. Furthermore, each element
is in equilibrium, i.e., (2.27) holds, with the the discrete moments and transversal forces,
defined in (2.19)-(2.21), and the following error estimates hold

(3.24) [ M (4) = Mun(U)le < CRPHlulpas,
(3.25) IT(w) = T(U)lle < CHP?||ullp+1,
(3.26) 1M () = Mt (U)llag < OB ullpsa,

where for p = 2 we replace ||ul|s by ||u||3 + h||u|ls. The constant C is independent of h but
may n general depend on (3.

Proof. To prove the energy norm error estimate (3.29) we first use the triangle inequality
[l = Ul < [l = wull| + [[|ru = U],

where mu € W is an interpolant of u. Here the first term can be estimated immediately
using the interpolation error estimate (3.13). Next, using coercivity, consistency, and finally
the continuity (see Lemma 3.4) of the bilinear form we get
cl[|mu — Ul||* < a(ru — U, mu — U)

= a(mu — u,7u — U)

< Clllmu = ull| [[}rw = U]
Dividing by |||7u— U||| and again employing the interpolation error estimate completes the
proof.

The estimates of the normal moment, the discrete transversal force, and the twisting
moment, follows from the energy norm error estimate. For instance,

[Mon (1) = Mun(U)le < | Man(u) = (Mun(U))le + |h7* Py [Ullle
< 2[[lu = U],

and similarly for the transversal force and twisting moment. O
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We now turn to an estimate of the L? norm of the error. We assume that there is ¢ € H*
such that

(3.27) a(v,¢) = (v,9),
for all v, € V, and that the stability estimate
(3.28) 18]la < Cll]l,

holds, see Blum and Rannacher [5].

Theorem 3.2. If the stability estimate (3.28) holds, then U satisfies

(3.29) lu—U| <C
R[] p41 p>3,

for sufficiently regular w. The constant C' is independent of h but may in general depend

on .

Proof. Setting v = 1) = u—"U, in the dual problem (3.27) and using Galerkin orthogonality
(2.24) to subtract an interpolant 7¢ of ¢ we obtain

= UJ1? = a(u - U, 9)
=alu—U,¢— 7o)
<Cllu="Ulllll¢ — o,

where we used the (3.18) in the last step. Next using the energy norm error estimate (3.29)
in Theorem 3.1 and the interpolation error estimate (3.13) we have

h2< h ) ( h ) =92
IW—UWSC{ lull+ tlule) (Nl + lolk) »

WP [l |6l p>3,
which together with the stability estimate (3.28) concludes the proof. O

3.3. Relation to classical methods.

3.3.1. The nonconforming Morley element. For a quadratic approximation, p = 2, we have
that M, (U) is a constant and 7T'(U) is zero on each edge, so we may choose P, = P, the
projection on constants, and P, = P_4, i.e., P}, is the zero projection. For large values of
the parameters 3; we thus enforce the following continuity condition on each edge

(3.30) ([un],v)E =0 forall v € Py(E),

and for large values of 3 nodal continuity is enforced. See, Larson and Niklasson [11], for
an analysis of the behavior of the dG method as the parameter 3 — oo, in the case of the
Poisson equation.

These continuity requirements define the classical nonconforming quadratic Morley ele-
ment [12, 13].

Note that with these choices of P, and P, we get a bound in Theorem 3.1 which is
independent of 3;, and thus locking does not occur when ; tends to infinity. However, for
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a quadratic approximation, p = 2, and all other choices of /; and Iy the method will lock
for large 3.

3.3.2. The C* Argyris element. The fifth order Argyris triangle is a classical C' element,
see [1]. Using this element together with P, = P,, = I, the identity projection, yields error
estimates which are not dependent on 3. Letting 8; — oo we obtain the C'! method based
on the Argyris element.

4. NUMERICAL EXAMPLES

4.1. Convergence. We consider a square plate with side length L = 1, thickness t = 1/10,
Poisson’s ration ¥ = 1/2 and Young’s modulus E = 1. The plate is loaded with a linearly
varying surface load f = z;, and the boundary conditions are u = u, = 0 on z; = 0 and
r1 =1,and M,, =T = 0 at xo = 0 and x5 = 1. The solution to this problem can be
found by direct integration:

71 3 3

W T2) = 5 s~ 3 b T 120D

To show the convergence pattern, we have tested using second degree polynomial and
third degree polynomial approximations. The choice of stabilization parameters was 3; = 5.
Since the solution is smooth we expect optimal convergence rates. This was also found, as
can be seen in Figure 1, indicating second order convergence in Ly (€2)—norm for the second
degree polynomials and fourth order for the third degree polynomials.

4.2. Locking. To show that locking can occur if the stabilization parameters are chosen
too large, we consider the same problem as in Section 4.1, with different boundary condi-
tions, © = u, = 0 on 02. The solution was computed on a fixed grid, shown in Figure
2.

We make a comparison with the Morley approximation as follows. We choose £ = 0
and study the behavior of the solution for increasing 3; = 33 =: . We compare one point
Gaussian integration with two point Gaussian integration. One point integration directly
corresponds to the Morley element as § — oo, since this will enforce normal derivative
continuity at the midpoints of the edges plus nodal continuity. Thus the one point rule
will not lock. The two point integration scheme, however, may tend to overconstrain the
problem. This is clearly seen in Figure 3, where locking is obtained in that the level of
the solution decreases with increasing § for the two point rule (dashed line), whereas no
locking occurs for the one point rule (solid line).
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FIGURE 2. Mesh used to illustrate locking.
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