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Conservation Properties for the Continuous
and Discontinuous Galerkin Methods

Mats G. Larson * T and A. Jonas Niklasson ¥

January 29, 2001

Abstract

In this paper we investigate the relationship between the continuous and the
discontinuous Galerkin methods for elliptic problems. In particular, we show that
the continuous Galerkin method can be interpreted as the limit of a discontinuous
Galerkin method when a stabilization parameter tends to infinity. Based on this
observation we derive a method for computing a conservative approximation of the
flux on the the boundary of each element for the continuous Galerkin method. The
conservative flux is then obtained by actually computing the limit of the natural con-
servative flux provided by the discontinuous Galerkin method. We prove existence,
uniqueness, and optimal order error estimates. Finally, we illustrate our results by a
few numerical examples.

1 Introduction

Recently there has been a growing interest in the discontinuous Galerkin (dG) method
for elliptic problems. Ome of the motivations for this interest is the fact that the dG
method manufactures a natural flux function, defined on each edge in the triangulation of
the domain, which satisfies an elementwise conservation law, a property often desired in
applications which the continuous Galerkin (¢G) method does not posses.

In this paper we investigate the relationship between the c¢G and dG method. In
particular we show that the cG method may be viewed as the limit of a stabilized dG
method when the stabilizing parameter tends to infinity. The stabilization corresponds to
penalizing discontinuities. Using this fact a conservative flux for the cG method is naturally
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obtained by calculating the limit of the natural conservative flux in the dG method as the
stabilization parameter tends to infinity. The limit is a correction to the average of the
right and left values of the fluxes, which is found by solving a linear symmetric positive
definite system of equations. The number of unknowns, in the simplest version, is equal to
the number of elements in the triangulation.

The dG method we consider is the classical Nitsche method, see Nitsche [10], on a space
of discontinuous piecewise polynomials, which at least contains the continuous piecewise
polynomials of degree p and piecewise elementwise constant functions. In fact, the elemen-
twise conservation property emanates from the presence of piecewise constant functions
in the testspace and thus enriching the continuous test and trial spaces with piecewise
constants produces a minimal conservative dG method with optimal order.

We analyze the limit of the dG method and show existence and uniqueness. Further we
derive error estimates of optimal order, which are uniform in the stabilization parameter,
using standard techniques.

Conservative fluxes are used, for instance, in a posteriori error estimation to manufac-
ture boundary conditions for local elementwise Neumann problems, see Kelly [8], Ladeveze
[9], and Ainsworth and Oden [1], [2]. Another common application is to calculate a cer-
tain weighted integral of the flux. This is usually done using a postprocessing procedure
which, in the best case give a superconvergent approximation, see for instance [3]. Direct
computation of the weighted integrals using the flux proposed here yields exactly the same
results as the standard technique.

The conservative structure of the ¢cG method has also been discussed in Hughes et al
[6], where a certain nodal conservation property is introduced.

The paper is organized as follows. In Section 2 we present a model problem, the cG
method, discuss the local conservation property, and we also give a preliminary derivation
of the conservative flux. In Section 3 we analyze the aforementioned limit of the dG
method and derive the conservative flux from this perspective. We also show a priori error
estimates for the dG solution and the flux which are uniform in the stabilizing parameter.
The analytical results are illustrated by numerical examples.

2 The ¢cG method

2.1 Model problem
We consider the following boundary value problem: find u : 2 — R such that
—V.o(u)=f inQ, (2.1)
u=g¢gp onlp,

on(u) =gy on Iy,

where € denotes a bounded domain in R¢, d = 1,2, or 3, with boundary I' = I'p, U I'y,
and the normal flux is defined by o,,(u) = n - o(u), where n is the unit outward normal of



I' and
o(u) = AVu, (2.2)

with A a uniformly positive definite d x d matrix with bounded entries a;; € C(2). Using
the notation
ac(v, w) = (o(v), Vw), (2.3)
1e(v) = (£,) + (g, V),

for all v,w € V ={v € H' : v=gp on I'p}, we may formulate the weak version of (2.1):
find w € V such that

ae(u,v) =1l.(v) forallveV. (2.5)

Since A is uniformly positive definite and the entries are bounded there are constants c
and C such that

|V € ac(v,v) < C||Vo|* forallve V. (2.6)

As is well known (2.5) has a unique solution v € V for each f € H™!, gp € H™Y?(I'p),
and gy € H'/?(T'y), for T'p # 0, and if ['p = (), the solution exists and is unique up to a
constant, i.e., u € V/R for f € H™', g5y € H'/?(I'), and the compatibility condition

/Qf—i-/rgNzo.

is satisfied.

2.2 The mesh

To define the numerical methods we introduce a partion = {K} of  called the mesh.
For simplicity only we assume that the mesh is quasiuniform with meshsize h, see [4].

The set of edges in the mesh is denoted by £ = {E'} and we split £ into three disjoint
subsets

£=EUEpUE,

where &7 is the set of edges in the interior of €2, £p is the set of edges on the Dirichlet part
of the boundary I'p, and €y is the set of edges in the Neumann part of the boundary ['y.

To each edge we associate a fixed unit normal ng, such that on the boundary I', ng
is the outward unit normal. We also use the notation ng for the outward normal of an
element K.



2.3 The ¢G method

Let VP = V?(1)) denote the space of continuous piecewise polynomials of degree p defined
on K, which are equal to ¢y on I'p,

VP(Y) ={veC):v|r, =¢,vk € P(K),K € K}, (2.7)

where P,(K) is the space of polynomials of degree p defined on K. In this note we will be
concerned with two cases: 1 = 0 for the test space and v = gp for the trial space. We
usually write VP for brevity. The cG method reads: find U, € VP such that

ac(Ue,v) =l.(v) forallve VP (2.8)

2.4 The conservation property

Let w C €2 be a subdomain of €2, and y,, be the indicator function yx,,, defined by x, = 1 on
w and 0 on 2\ w. Multiplying (2.1) by x, and integrating by parts yields the conservation

law
/wf + /6w on(u) = 0. (2.9)

Note that o,(u) = gy on I'y. This is the fundamental conservation property which we
seek to mimic in the discrete case on an element level, i.e., we seek an approximate flux
¥, (U.) such that 3,(U.) = gy on I'y and

/K [+ /BK Yok (Ue) =0, (2.10)

for all elements K € K.

2.5 A conservative flux for the ¢cG method

Here we shall present a first derivation of the basic conservative flux. A more general
version is presented in Section 3. Let v be a piecewise constant function defined on . We
denote the jump at an interior edge E € & by [v] = vt —v~, where v*(z) = limy_,q 50 v(xF
ngt),r € E, and [v] = v™ on edges at the boundary £p U Ex. Then we can state (2.10) in
the form

Y (Enp U, [0De + Y (frv)x =0, (2.11)

Ee& KeK

for all piecewise constant functions v. On each edge F € £y, i.e., on the Neumann part of
the boundary, we should have

Z]nE([]c) =4gn,



since here the normal flux is given. Furthermore, on the remaining edges £y U Ep, 3, (U.)
should of course be an approximation of the exact flux o, (u) of optimal order. For the cG
method a natural approximation of o, (u) is the average

(on(Ue)), (2.12)

where (v) = (vt +v7)/2, which possesses optimal order of convergence but not the desired
local conservation property. We thus write

En(Ue) = (0n(Ue)) — An(Ue), (2.13)

where A, = A, (U,) is some correction making the approximate flux conservative. Inserting
this expression into (2.11) we obtain

Y. QuplDe= Y (ons(Uo), [0])s (2.14)

Ec&rUEp Ec&UEp
+ Z (9n;v)E + Z(f,U)K-
Ecén KeK

This equation suggests that a natural choice of A, is
A, = b7V, (2.15)

for some piecewise constant function V', to be determined. The scaling with A is motivated
by consistency of units. With this choice of V' we obtain the problem: find V' such that

Y. BT'VERDe= ) (0us(Uo),[v])s (2.16)

Ec&UEp Ec&EUED
+ Z (gN,U)E+ Z(f;v)Ka
Eec€én KeK

for all piecewise constant v. This is a linear symmetric system of equations with the number
of unknowns equal to the number of elements in the mesh. Note that if £p # () then (2.16) is
a positive definite system of equations, and thus there exists a unique solution. If £p =0
then there exist a solution which is unique up to a constant, and thus the jump [V] is
uniquely determined on &;. See the proof of Theorem 3.1 for details of this argument.
Further, setting v =1 on K and 0 on Q \ K, in the righthand side we obtain

Y. (ousU), 0D+ Y (gn,v)e+ Y (f,0)k

Ec&UED Ecéy KeK
= (<0nK(Uc)>: 1)3K\FN + (gNa 1)6KOFN + (fa 1)K7 (2]—7)

i.e., the residual of the average flux approximation when inserted into the element conser-
vation law. Solving (2.16) a conservative flux may be directly computed using the formula

(0,,(U.)) —h7 V] E €& uép,

2.18
gn E S EN. ( )

g (UC) = {



3 The ¢G method as a limit of the dG method

Starting from the dG method we derive a more general version of the conservative flux
approximation by observing that there is a natural conservative flux in the dG method
and that the ¢G method may be viewed as a certain limit of the dG method when a
parameter tends to infinity. The corresponding limit of the natural conservative flux in the
dG method is a conservative flux for the ¢cG method. This section is devoted to analyzing
this limit. In particular, we prove that this limit exists uniquely and we devise a method
for calculating the limit. We begin with some preliminaries.

3.1 Discontinuous spaces

Let WY be a space of discontinuous piecewise polynomials defined on K such that
VE+VIC Wy, (3.1)

where V? is the space of continuous piecewise polynomials of degree p and V] is the space of
discontinuous piecewise polynomials of degree ¢. For instance, W) = V¥ or Wi = VP 4+ V).

3.2 The dG method
The dG method for (2.1) is defined by: find Uy € WY such that
ad(Ud’g, ’l)) + ﬂbd(Ud,ﬁ, U) = ld(v) + ﬂmd(v), (32)

where (3 is a positive parameter and the bilinear forms are defined by

aq(v,w) = Z(AVU, Vw)k (3.3)

KeK

= Y (o) e + (0], oaw))i)

Eec&rUEp
ba(v,w) =Y ('], [w]), (3-4)
Eec&rUEp
and the linear functionals by
la(w) = (f,w) + (gn, w)ry, (3.5)
mq(w) = (9o, h~™'w)r,. 3.6)
We employed the notation
(vt 4+wv7)/2 Ee€é&,
= 3.7
<U> {’U+ FE e gD; ( )



and

vt —ov™ Eeér,
= 3.8
o] {w Ecé&p. (38)

Here we also used the notation introduced in Subsection 2.2. Furthermore, we assume that
gp can be represented exactly by the continuous space V7.

Remark. Recently, nonsymmetric versions of this classical method has been proposed
by Oden, Babuska, and Baumann in [11], and stabilized versions thereof in, for instance,
Hughes et al. [7]. Our analysis below extends to the stabilized version and the same
elementwise conservative approximation of the flux emanates from this method.

3.3 The local conservation property for the dG method

Introducing the discrete flux

(Ong (Uap)) — BhUap] E € ErUED,
gn FE e &y,

Ynp.8Uap) = {
we obtain the discrete elementwise conservation law

K oK
for each element K € IC. We shall now show that the limit

lim En,ﬂ(Ud,ﬁ) (311)

B—00

exists and can be used for computing a conservative flux for the ¢cG method.

3.4 The energy norm
We equip WY with the following energy norm

[[o]l1* = llv[lx + [{on@))Iz + 1A~ [v]]|Z, (3.12)
where
lwllt =) (AVw, Vw), (3.13)
KeK
lwllz = (1B wlf3- (3.14)
Eec&UED



Furthermore, the following inverse estimate will be useful
[{on (@)l < Cllvllk for all v € W, (3.15)

with a constant C' which depends on the degree of polynomials p but not on the meshsize h.
This estimate can be shown by scaling, see [12]. Finally, we need the following interpolation
error (or approximation property) estimate

[l = mull] < CRP[lullpsa, (3.16)

where mu € V? is a continuous interpolant of u, and || - ||,4+1 denotes the standard Sobolev
norm. With n = u — mu we have

[Ill[* = linll + Kon(m)lz,

since 7 is continuous and zero on I'p. Using the boundedness of A (2.6), we get ||n||x <
C||n|l1- For the second term we invoke the trace inequality

ol = Clivlli (B ol + olli) for v e H'(K), (3.17)

where C' is a constant independent of h, trianglewise to obtain

KonmlIz < C ) h||V77||K(h_1||V77||K +1Vn

KeK
o)

<C > lnllue (I
Now (3.16) follows directly from the standard interpolation error estimate

1)

Lk + h|n
Kex

7lls,c < CRPY 5 ul|ps1

with s = 1 and s = 2, see [4]. The trace inequality (3.17) follows by mapping to the unit
size reference element K, employing the trace inequality

o34 = Cllvlizllvll z  for v e H'(K), (3.18)

see [4], and finally transforming back to K.

3.5 Main results

We begin by showing an important equivalence of norms.

Lemma 3.1 There is a positive constant C, independent of h and (3, such that

2 —10,112 0Ny
l[wl[fye e < ClA™ [w]lle - for all w e Wy /VE, (3.19)
where ||| - HE/V;’/VE’ denotes the quotient norm defined by
wl[yeve = infrevelllw + vllI (3.20)



Proof. Assume that the result does not hold. Then there is a sequence {v,} such that
|||U”|H12/V5/V£’ =1 and ||~ v,]|le £ 1/n, for n = 1,2,3,... Since W/ /V? is finite dimen-
sional, {v,} resides in a compact subset and we may extract a convergent subsequence
with limit v,,. But then it follows that v, is a continuous function which is zero on 'y
and thus |||voo|||$,vg syr = 0, which gives a contradiction. Clearly C' is independent of 5 and
it follows from scaling that C' is also independent of h. 0

We begin by stating a useful coercivity result and corresponding error estimate for the
dG method.

Lemma 3.2 There is a constant By > 0 such that for all B > By the coercivity estimate
cl[|[v|l|* + (B8 = Bo)||h *]l|7 < ag(v,v) + Bba(v,v) for allve W, (3.21)

where ¢ is a positive constant independent of h and (.

Proof. We first have
aa(v,v) + Bba(v,v) = |lvllz =2 D ((oa(v)), )& + BlIL™ [v]|[3-

Ee&UED

Next we use the standard inequality 2ab < ea? + ¢ 1b?, for any positive ¢, followed by the
inverse trace inequality (3.15) to get

=2 ) ((0u(0), o) > —ell{on@)E — ¢ Ih o]l

Ee&rUEp
> —eCllv|lx — R ]Il2-

Choosing € such that 1 — eC' = ¢ and taking 3y = ¢ + € ! and, finally, using the inverse
inequality (3.15) to bound ||{(o,(n))||s, we obtain the coercivity estimate (3.21). O

Lemma 3.3 The following error estimates hold

[l = Uell| < CR?[fullp1, (3.22)
[l = Uapll] < CHP||ullp1, (3.23)

provided 3 > [y in the second case. Here C' denote positive constants independent of h and

3.

Proof. To prove the error estimate for the ¢cG method (3.22) we first use the triangle
inequality

llw = Uelll < lllw = mull| + [llmw — Ue|l]-



Next, using the inverse inequality (3.15) followed by the definition of || - ||x we get

llmu = Ul < Climu = Ue|?
= Cac(mu — Ugymu — U,)
= Cac(mu — u, 7u — U,)
< Ollfu = mull fllwu = Uell],

where we used the definition of the ¢cG method to replace U, by u. Finally, dividing by
|[[mu — U,||| and using the interpolation error estimate (3.16) yields the estimate.
For the dG method error estimate (3.23) we again use the triangle inequality

llw = Uaglll < lllw = mull| + [llmw = Uagll,

where mu € V? is a continuous interpolant of u. For the second term on the right hand
side we start from the coercivity estimate (3.21). Using the fact that § > y we obtain

cllmu — Uaplll* < aa(mu — Usp, mu — Uap)

+ Bby(mu — Uy g, mu — Uy )
aq(mu — u, mu — Uy g)

+ Bba(mu — u, mu — Uy g)
= ag(mu — u, mu — Uy p)

< [l = mulll [[lrw = Uaglll,

where we used Galerkin orthogonality (3.2) to replace Usp by u. Finally, we used that
[Tu —u] = 0 on & U Ep and thus the term fbg(mu — u,mu — Uy ) vanished. As a con-
sequence, the right hand side is independent of #. Finally, dividing by |||[7u — U, ||| and
using the interpolation error estimate (3.16) completes the proof. 0

Proposition 3.1 For all 3 > By we have

[1Ue = Ua,g

I < W \[ullp4s, (3.24)

C
B = bo
where C' s positive constants independent of h and (3.

Remark. Note that in order to prove the coercivity estimate (3.21) in Lemma 3.2 we
could in fact replace by(-, ) by the weaker term

bg(v, w) = Z (R~ P, 1 [v], Pyi[w]) &, (3.25)

Ec&U€ED

where P,_; denotes the obvious weighted L? projection onto polynomials of order p — 1
defined on an edge. For triangular meshes and piecewise constant coefficients we obtain

10



the standard nonconforming methods with functions which are continuous at the Gauss
points on each edge. For instance, for p = 1 and constant A in (2.2) we obtain the space
of piecewise linear functions which are continuous at the midpoints of the edges.

Remark. The existence of an interpolation operator with optimal order approximation
such that b(mu,v) = 0 for all v € WY is crucial for our results. If for instance, we consider
piecewise linear approximation on quadrilaterals, we obtain limg_,o, Ugg = 0. For related
results in the context of nearly incompressible materials we refer to Hansbo and Larson

[5].

Proof. We begin with an estimate of |||U. — Ugpgl||. Starting from the coercivity estimate
(3.21) and subtracting (8 — f)||h~[Ue — UagllZ = (5 — Bo)ba(U. — Uag, U — Ugg) on both
sides we get

cl[|Ue = UagllI” < aa(Ue — Uap, Uc — Ua,p)
+ Boba(Ue — Uy g, Uo — Ua )
< ag(U. — Uyp,U. — Usp + v)
+ Boba(Ue — Uy g, U — Uy g + v)
< |[|Ue = Uagll| [[IUc — U

||W5/Vf;

where we used (2.8) and (3.2) to insert an arbitrary function v in V?, which is zero on I'p.
Finally we used the Cauchy Schwarz inequality. Dividing by ||U. — Uagl||, and invoking
Lemma 3.1 we obtain

I1Ue = Uaplll < [[[Uc = Ua,plllweve
< ||h U, = Uypllle. (3.26)

Next, in order to estimate ||h~[U. — Uy s]||e, we again start from the coercivity estimate
(3.21) with v = U, — Uy 3. We neglect the positive term c|||U, — Uy 5||* on the left hand
side

(B = Bo)llh " [Ue — Uaplllz < aa(Uc — Uap, Ue — Uap)
+ pba(U, — Ugp, Uo — Uy )
=aq(U; — u, U, — Uyp)
+ Bba(Ue — u, U, — Uy )
=aq(U. —u,U. — Ugp + v)
< llw = Uel|[ 1Ue — Ua,plllwe e
< CRP||ull |h7H[Ue — Uagp]lle-

Here we used (3.2) to replace Uys by u in the first equality, then in the second equality
we observed that 3by(U. — u, U, — Ugpg) = 0 since [U, — u] =0 on & U Ep and we inserted
an arbitrary function v in V? which is zero on I'p using (2.8). Finally we used the Cauchy

11



Schwarz inequality followed by Lemma 3.1 and Lemma 3.3. From this estimate we conclude
that

1A~ [Ue = Uagllle < C(B = Bo) ™ BP|lullp1. (3.27)

Combining (3.27) with (3.26) proves the proposition. O
We summarize our main results in the following theorem.

Theorem 3.1 Let Uyp be the dG approzimation defined in (3.2). Then the following holds

lim Uy = U,, (3.28)

B—00

where U, is the cG approzimation defined in (2.8), and the limit

defines a conservative fluz for the ¢cG method. Furthermore, the limit (3.29) can be calcu-
lated as follows

lim S,5(Uag) = (ous (U) = bV, (3.30)

whith V€ WY a solution of
ba(V,v) = l4(v) — aq(Ue,v)  for all v € WJ. (3.31)

The equation (3.31) is solvable and the jump [V] is uniquely determined.

Proof. The first statement (3.28) is an immediate consequence of Proposition 3.1. Pro-
vided the limit (3.28) exists it is clear that ¥, (U.) must be an elementwise conservative
flux since X, 5(Uy 3) is elementwise conservative for all 3.

We now proceed to show that the limit is well defined. Using the definition (3.2) of the
dG method we get the equation

B(ba(Ua,p,v) — ma(v)) = la(v) — aa(Ua,p, v).

For the right hand side we get the following limit

lim (ld(v) — ad(Ud,g,v)) = 1l4(v) — aq(U,,v) for all v € WY,

B—00

using Proposition 3.1. Next, for the left hand side we have

lim 3(ba(Uap,v) = ma(v)) = lim B(ba(Uss — Ue,v)) = ba(V; ),

12



for some V' € WE. The existence of V follows from the fact that the sequence {5(Uys—U.)}
is bounded in the finite dimensional space WY, and therefore we may extract a convergent
subsequence with limit V. Clearly V' will satisfy (3.31) and from, the argument below it
follows that [V] is uniquely determined, and thus the limit exists and is well defined.

The linear system of equations (3.31) is solvable, since if by(v, w) = 0 for all v, then w
is continuous and equals zero on I'p, and then the right hand side l4(w) — aq(U,, w) = 0,
and thus a solution exists. Next, assume that V and V' are two solutions of (3.31), then
ba(V — V', w) =0, for all w € WY and thus V — V' is continuous and zero on I'p, therefore
0= [V —=V']=[V]—[V']. Hence, the jump is uniquely determined.

O
We conclude the paper with an error estimate for the conservative flux.
Theorem 3.2 For all B > [y the following error estimate holds
1En,8(Uap) = on(u)lle < CRP|[ullpss, (3.32)

where C' is a constant not dependent on B or h. In particular, the error estimate holds for
En(Ue) = limg 00 Xy 5(Ua,)-

Proof. This result follows imediately from the error estimate in Lemma 3.3. 0

Example. We illustrate our estimates on a simple model problem. Consider the Poisson
equation (2.1), with A the two by two identity matrix, on the unit square Q = [0, 1]? with
homogeneous Dirichlet conditions gp = 0 on the boundary I'p, = I' and right hand side f
such that the solution is u = sin(7xy) sin(7zs). We solve this problem on a quasiuniform
triangulation I of € using the ¢G method with polynomials of degree p = 1,2,3, and
calculate the conservative flux according to Theorem 3.1 using polynomials of degree ¢,
with0 <¢g<p-—1.

In Figure 1 we plot the error in the average flux (circle), and the conservative flux with
g = 0 (triangle), ¢ = 1 (square), and ¢ = 2 (diamond), as functions of the meshsize h. We
observe that the convergence is in agreement with the prediction of Theorem 3.2.

Next, in Figure 2 we illustrate the dependency of ||Uyg—U,||| on , given in Proposition
3.1. We plot the energynorm for p = 1 (circle), p = 2 (triangle), and p = 3 (square), and
increasing @ on a fixed grid with A =~ 0.20. Clearly, the results verify the estimate in
Proposition 3.1.

Finally, we plot the exact flux together with the averaged and conservative fluxes on the
side from (0, 0) to (1,0) on a mesh with triangles of size 0.25. The method uses quadratic
approximation, p = 2, and we consider correction of the fluxes of order ¢ = 0 and 1. We
note that the conservative flux certainly is better than the averaged.

13
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Figure 1: Error in the average (circle) and conservative flux with ¢ = 0 (triangle), ¢ = 1
(square), and ¢ = 2 (diamond), for p = 1,2, 3.
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Figure 3: The exact flux (solid), the averaged flux (solid diamond), and the conservative
flux (solid square) for quadratic approximation, p = 2, and ¢ = 0, 1, respectively, plotted
on one side of the square
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