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DISCONTINUOUS GALERKIN AND THE CROUZEIX-RAVIART
ELEMENT: APPLICATION TO ELASTICITY

PETER HANSBO AND MATS G. LARSON

ABSTRACT. In this work we propose a discontinuous Galerkin method for linear elasticity,
based on discontinuous piecewise linear approximation of the displacements. The method
is based on the classical Nitsche method with a term stabilizing (or penalizing) discon-
tinuities of a special form. We show optimal order a priori error estimates, uniform in
the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method
is closely related to the non-conforming Crouzeix-Raviart (CR) element, which in fact
is obtained when one of the stabilizing parameters tends to infinity. In the case of the
elasticity operator, for which the CR element is not stable in that it does not fulfill a dis-
crete Korn’s inequality, the discontinuous framework naturally suggests the appearance
of (weakly consistent) stabilization terms. Thus, a stabilized version of the CR element,
which does not lock, can be used for both compressible and (nearly) incompressible elas-
ticity. Numerical results supporting these assertions are included. The analysis directly
extends to higher order elements and three spatial dimensions.

1. INTRODUCTION

In a discontinuous Galerkin method the approximation space typically consists of discon-
tinuous piecewise polynomials with boundary conditions and continuity on inter-element
boundaries weakly enforced through the bilinear form. For second order problems these
methods appear to origin from the work of Nitsche [9], where a consistent method for weak
imposement of Dirichlet conditions was introduced. Later, similar techniques to enforce
continuity on inter element boundaries were introduced and analyzed, see for instance
Wheeler [13] and Arnold [1]. Recently there has been a growing interest in discontinuous
Galerkin methods for a variety of different applications, see the conference proceedings [14]
for an overview of recent work.

In this paper we propose and analyze a discontinuous Galerkin method for linear elastic-
ity, which has optimal order and does not lock in the incompressible limit. The method is
related to the earlier work of Hansbo and Larson [7], but uses a different stabilization (or
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2 PETER HANSBO AND MATS G. LARSON

penalization) of discontinuities. There is a natural connection between the discontinuous
Galerkin method proposed here and the classical nonconforming Crouzeix-Raviart (CR)
element, see [4]. The lowest order CR element is a simple nonconforming finite element
for triangular elements with nodes situated at the midpoints of the element sides, which
can be used for the Poisson problem and the Stokes or Navier-Stokes problems [4, 11].
Further, Brenner and Sung [3] used the CR element to construct a locking free method
for the pure displacement problem of almost incompressible elasticity. However, for the
traction problem in elasticity the CR element is known to be unstable, since it can not
control the rigid body rotations, cf. Hughes [8, Sec. 4.7]. In the two dimensional case,
Falk [5] obtained a stable version of the CR element by splitting the elasticity operator
and projecting one part of the operator onto a macro element. In this paper, we instead
obtain a stabilized method for the CR element, by simply using the CR element in the
discontinuous Galerkin method. In fact, the CR element approximation is obtained as
a certain stabilization parameter tends to infinity in the discontinuous Galerkin method.
Thus, error estimates for the nonconforming method based on the CR element is obtained
as a special case of the error estimates for the discontinuous Galerkin method. Although
we present the analysis of linear elements in two spatial dimensions it directly extends to
higher order elements and three spatial dimensions.

The paper is organized as follows: in Section 2 we introduce the equations of elasticity
and the discontinuous Galerkin method, and we prove a priori error estimates; in Section
3 we introduce the stabilized method for the nonconforming CR element; and in Section 4
we present numerical examples illustrating our results.

2. A DISCONTINUOUS GALERKIN METHOD FOR ELASTICITY

2.1. The equations of elasticity. We consider the equations of linear elasticity describ-
ing the deplacement of an elastic body occupying a domain €2 in two spatial dimensions:
find the displacement u = [ui]le and the symmetric stress tensor o = [aij]?jzl such that

(2.1) oc=AV- -ul+2ue(u) inQ,
(2.2) —V.o=f inQ,
(2.3) u=0 on 0Qp,
(2.4) n-oc=h on 0.

Here € (u) = [s”(u)]f ;1 is the strain tensor with components

8--(’(1,) _ 1 auz 4 8uj
" B 2 833]' 8371 ’
2
Vo = S0 00y/0w;] T =[], with 6y = 1ifi = j and 8 = 0if i # j, f
i=1 J=
and h are given loads, and n is the outward unit normal to 0€). Furthermore, A\ and u

are the Lamé constants, satisfying 0 < p; < p < ps and 0 < A < oo. In terms of the
modulus of elasticity, £, and Poisson’s ratio, v, we have, in the case of plane strain, that




DISCONTINUOUS GALERKIN AND THE CROUZEIX-RAVIART ELEMENT 3

A=Ev/(1+v)(1—-2v)) and p = E/(2(1 + v)). Incompressible behavior is obtained as
the parameter A — oo, i.e., as v — 1/2.

2.2. Formulation of the discontinuous Galerkin method. Consider a subdivision
T = {T} of Q of Q into a geometrically conforming finite element mesh. with Ay the
diameter of triangle 7" and global mesh size parameter h = maxyc7 hy. For simplicity, we
assume that U is quasiuniform. Let

DF ={v e [L*(0)]?: v|r € P(T) forall T € T},

be the space of piecewise linear discontinuous functions. The set of edges in the mesh is
denoted by £ = {E} and we split € into three disjoint subsets

£=EUEpUEn,

where &7 is the set of edges in the interior of €2, £p is the set of edges on the Dirichlet part
of the boundary 0€1p, and €y is the set of edges in the Neumann part of the boundary
0. Further, with each edge we associate a fixed unit normal n such that for edges on
the boundary n is the exterior unit normal. We denote the jump of a function v € DF
at an edge E by [v] = v — v~ for E € & and [v] = v* for E € £p, and the average
(v) = (vt +v7)/2 for E € & and (v) = v* for E € Ep, where v* = limpv(z F en)
with ¢ € E.
The discontinuous Galerkin method reads: find U € DF such that

(2.5) a(U,v) =1(v) forallve DF.
The bilinear form is defined by

(2.6) aU,v) =) (o(U),e(v))r

TeT
- Y. (n-oU),[v)e+((n-o@),[U):
+@2u+N7n Y, (W RULL[Pw])e
+2um Y (BN UT, [v])e,

and the linear functional is defined by
(2.7) () =Y (f,0)r+ Y (hv)5.
TeT Ecéy

Here (v, w)r = [, Y ij VijWij, for 2-tensors v, w; (v,w)p = [ >, vaw;, for vectors v, w;
P, is the L2-projection onto constants on each edge F, i.e.,

1
(2.8) Pyvlp = —/’U;
1Bl JE
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with |E| the length of F; h is defined by
(2.9) hlg= (T +|T7])/(2|E|) for E=0TTNOT,
with |T'| the area of T', on each edge.

Using Green’s formula, we readily establish the following proposition.

Proposition 2.1. The method (2.5) is consistent in the sense that
a(u—U,v)=0 forallve DF,
and w sufficiently reqular.

2.3. A priori error estimates. For the purpose of error analysis, we introduce the fol-
lowing mesh dependent energy norm

(2.10) oll? =Y (e@),e@)r+ Y (- '[],[@)s
TET Ec&rUED
and the edge norm
(2.11) ol =Y vl
Eec&U€ED

The mesh dependent norm ||| - ||| can be used to bound the broken H'(2) norm on DF,
which we show in the following proposition.

Proposition 2.2. There is a constant c, independent of h, p, and \ such that
(2.12) > ol < dllvll* for allv € DF.

TeT

Proof. Assume that the right-hand side of (2.12) is zero. Note that (o (v),e(v))r =
2u(e(v),e(v))r + A(V - v,V - v)p and, since 0 < py < p for some positive constant
1, ||le()|| 2y = 0, and thus v|p € RM(T), where

(213) RM(T) = {'U € PI(T) : 'v(m) =ar+ br (—il?g,.l‘l), ar € R2, br € R},

is the space of linearized rigid body motions on 7. Next, using ||[v]||z2() = 0, for all
E € &;, we conclude that there are constants a and b such that @ = ar and b = b, for
all triangles 7". Furthermore, from ||v||z2g) = 0 for E € &p, it follows that @ = 0 and
b = 0. Thus, if the right-hand side of (2.12) is zero, so is the left-hand side. Finally, finite
dimensionality, together with scaling yields the result. O

In order to show that the method (2.5) is stable, we shall show that a (-,-) is coercive
with respect to the norm ||| - |||, given that -, is sufficiently large and -, is positive and
bounded away from zero. We also give a bound on the piecewise constant part of the jumps
at each edge.

Proposition 2.3. If vy > ¢y, with ¢y sufficiently large and v, > ¢; > 0, then the following
estimates hold

(2.14) cllloll* + e 20)lIh 2 [Povlllz, e, < alv,v),
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for allv € DF. Here a(A,7) = (21 + A)(70 — co) and the constant c is independent of
h’) Yo, Y1y Ky and A.

Proof. We first note that the following inverse estimate holds
(2.15) 1h' (- o () Iz, < e llo@)
TeT

This inequality is proved by scaling and finite dimensionality. Next we note that (2u +
A7 Yo ()]|% < (o(v),e(v))r, and thus we conclude that

: 1R (n - o (0)iz,0e, < ¢ ) ((v),(v))r.

2.16
(219 2u+ A TeT

Next, using that (n - o(v)) is constant we have, for each E € £ U Ep and for 6 > 0, that
2((n-o(v),[v])p =2((n-o(v)), [Pv])s
(2.17) < 82u+N)||h? (n- o (v)) |5
+8 1 (2u+2) HIh P [RywllIE,

where we used the Cauchy-Schwarz inequality followed by the arithmetic-geometric mean
inequality. Using these estimates we obtain

a(v,v) > (1—cd) Y (o(v),e(v))r

TeT
+ (204 M) (0 — 6 I [Pov]llZ, e,
+ 2pm[|h 2 [w]12, v,
> cf[v]l? + (21 + M) (v0 = 6 DR 2 [Pov]lIF, e, -
Choosing ¢ small enough we obtain the desired estimates. O

For the proof of our a priori error estimate we introduce the interpolation operator
7 : [H*(Q)]* — DF introduced by Crouzeix and Raviart in [4], and constructed as follows.
At the midpoint &, of the edge E, let

1
wu(x,) = —/ u,

E| /e
from which it follows, by application of Gauss’ theorem, cf. [4], that

1
(2.18) V- (ru)|y = —/ V-u.

Tl Jr
For this interpolant, we have the following basic estimates.

Lemma 2.1. The following estimates hold
(2.19) |u — 7ul| 1) + hrllu — wullmer) < Chi||ulrzm,

(2.20) ||V . (u - 7T’U,)||L2(T) -+ hT“V . (U - 7T’U,)||H1(T) S ChT”V . U”HI(T).
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Proof. The proof of (2.19) can be found in [4], and (2.20) follows from the fact that V -
(mu)|r is the Lo-projection of V - u onto the space of constants on T, cf. (2.18). O

For our a priori error estimate we shall need the following lemma.

Lemma 2.2. The following estimates hold
(2.21) llw — el < Ch( (@)l + N2 - wlney),
(2.22) I(n- o(w—mu))leue, < Ch(2ullull + AV - wllm).
Proof. We first recall the trace inequality

lwliZ20r) < Cllwllezery (lwllarery + bt lwlliemy)  Yw € HY(T).

For the first inequality (2.21), the interior part is estimated directly using Lemma 2.1. For
the contribution from the edges, we have using the triangle inequality

1A~ 2w — wulllg,ue, < D IIB7(u — wu)||or.
TeT

Next using the trace inequality we get
12 (u = wu)l3r < hitllu = wullary (I = wullm @) + hetllu = wullem)

and finally invoking Lemma 2.1 we get the desired estimate. The second inequality (2.22),
follows in a similar fashion. O

We are now ready to show our main result.

Theorem 2.1. With u the solution of (2.1) and U the solution of (2.5), we have under
the assumptions of Proposition 2.3,

llw = Ul + a0 70) 152 Pl ey < ch( (20 Plulli + NIV - ull ),

where a-,-) is defined in Proposition 2.8 and c is a constant independent of h, Yo, 71, K,
and A.

Proof. By the triangle inequality, we have that
(2.23) llw = U < [IU = 7ull] + [llu — wul],
and from coercivity, Proposition 2.3, and consistency, Proposition 2.1, it follows that
(2.24) cllU — mull? + a(\0)lIh P [RUIZ e,
<a(U - 7nu,U — u) = a(u — 7u,U — 7u).
To estimate the right hand side a(u — wu,U — 7wu), we first note that
(2.25) ((n-o(U — wu)),[u —7ul)p =0,
(2.26) (h Py (U — 7u))], [Po(u — 7u)])g = 0,
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and then use the Cauchy-Schwarz inequality to get
(2.27) a(u —u, U — 7ru) < H|U—7r'u,|||(|||u—7ru|||

B2 o (= ) e, ).
Combining (2.24) and (2.27), we find that
(2.28) 1T = mulll < o(lllw = mull + 1220 - o (w - 7w)llsue, ).
and thus
a(u — wu, U — u) < C(H|u — ||| + || (n - o(u — 7TU)>||gIUgD)2.

Finally, using the interpolation estimates of Lemma 2.2, the bound follows immediately. [

Combining the error estimate in Theorem 2.1 with the elliptic regularity estimate

(2.29) leallsoy + AV -l < e(1F ]l + [rllony)).

cf. Vogelius [12], we obtain the following estimate in terms of data, which shows that the
method does not lock as A — oo.

Corollary 2.1. There is a constant c, independent of h, Yo, 71, i, and X such that

(230) T+ a0 IR R0 ecen < ch(1F 1w + 1llsny )

3. A NONCONFORMING GALERKIN METHOD BASED ON THE
CROUZEIX-RAVIART ELEMENT

Restricting the discontinuous Galerkin method to the space of Crouzeix-Raviart func-
tions

(3.1) CR={ve DF :[Pw| =0,forall E €& UEp},
we obtain the following simplified scheme. Find U € CR such that
(3.2) a(U,v) =I(v) forallve CR,
where
(3-3) aU,v) =) (o(U),e()) +2um Y (7' [U]-[v])s,
TeT Ec&rUED
and
(3.4 l(0) = (o) + Y (hv)e
TeT Ecén

Using the theory developed in the previous section to this method we obtain the following
theorem.
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Theorem 3.1. The discontinuous Galerkin method with the CR-element (3.2) is the limit
of the discontinuous Galerkin method (2.5) as v — oo. If 1 > ¢; > 0, then (3.2) has a
unique solution U and the following error estimate holds

(3.5) e = U1l < eh(l1F s + Iollsoony) )
with ¢ independent of p, A, and h.

Proof. The fact that the solution to the discontinuous Galerkin method (2.5) tends to (3.2)
and the error estimate follow from Theorem 2.1, since the constant is independent of 7,
we just let vy tend to infinity. O

Remark. Our analysis extends directly to the case of higher order polynomials. For odd
order of polynomials we get the CR-family of elements, while for even the situation is not
so simple, due to the fact that the values of a polynomial at the Gauss points on the edges
of a triangle is dependent in that case. For polynomials of order two we refer to Fortin and
Soulie [6], where it is shown that one obtains the usual continuous quadratic polynomials
together with a nonconforming bubble on each element.

Remark. On rectangular elements we instead obtain the element proposed by Rannacher
and Turek in [10].

4. EXAMPLES

4.1. Convergence in a smooth case. We consider the unit square (0,1) x (0,1) with
u = 0 on the boundary and with

F=((A+p)(1=221)(1—2m9), 2ums (1 —x9) —2(XN+2p) 21 (1 — 21))
corresponding to the exact solution
u=(0,—z122(1 —21) (1 —23)).
The material data were chosen as E' = 1000, and v = 1/10, where

A\ vE d E
T Uto-20) T 2ty

A mesh with the exact solution plotted in the nodes is given in Figure 1. In Figure 2 we
show the stability problem of the CR element corresponding to choosing v; too small, and
the stabilizing effect of the boundary jumps with an adequate choice of ;. In Figure 3 we
show the convergence of the CR method (with 7; = 0.5), and second order convergence is
attained, as expected. We also give the convergence rate of the corresponding conforming
linear finite element method. It is noticeable that the error relative to the number of
unknowns is almost identical for the nonconforming and conforming method.

4.2. Locking. On the unit square (0,1)x (0, 1), we prescribe the boundary data as follows.
At 2y = 0,27 = 1,29 = 0 we set u = 0, while at o = 1, for 0 < z; < 1,we set u = (1,0)
to obtain the closed cavity flow problem. We compare the linear conforming finite element
method with the stabilized CR approximation (y; = 0.5) for v — 1/2. The CR element
does not lock, while the conforming method, for v = 0.4999, shows clear signs of locking.
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