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GLOBAL AND LOCALISED A POSTERIORI ERROR ANALYSIS IN
THE MAXIMUM NORM FOR FINITE ELEMENT APPROXIMATIONS
OF A CONVECTION-DIFFUSION PROBLEM

MATS BOMAN

ABSTRACT. We analyse finite element approximations of a stationary convection-diffusion
problem. We prove global and localised a posteriori error estimates in the maximum norm.
For the discretisation we use the Streamline Diffusion method.

1. INTRODUCTION

In this note we study finite element solution of the problem
- au+ B-Vu—eAu=f in Q,
(1.1) u=0 in 09,
where «, 3, and f are given functions and € is a positive number. We assume that a—V -3 >
¢ > 0, where ¢~ 1, and || 3|1 (o) < C. Further, @ C R% d =1,2,3, is a bounded, convex
and polyhedral domain. We prove a posteriori error estimates in the maximum norm for
the error u — U, where U is an approximation obtained by a finite element method. When

€ ~ 1 we use a standard Galerkin method for the discretisation and our a posteriori error
estimate takes the form:

lu = Ullr., < C(1+ |10 humin|)? |21 (U) | 1.oe
where h = h(z) is the mesh function, and r(U) is a computable realisation of the residual
RU)=f—-aU—-pB-VU+eAU € H™'.
In the elliptic case, € & 1, our result is essentially included in [3], [15] and [2]. These works
also consider the non convex case.

However our analysis also gives results for small e. In this case we use a Streamline
Diffusion method, see [4], and our result is of the form:

(1’ %’%)T(U)HLW'

This result is probably not optimal in the ¢ dependence. We believe that the factor h?e=3/2
should be replaced by h%e !, which is the result that we obtain in one dimension, d = 1.
In one dimension, d = 1, we prove an estimate with this ¢ dependence.

3
2

[ = Ullze, < C(1 4+ [10g i)
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2 MATS BOMAN

It is known that if € is small, then the solution u is nonsmooth in certain regions, typically
near characteristic layers and boundary layers. When used in an adaptive algorithm, a
global error bound (as the above) would always require heavy refinement near such singular
layers, even if we are only interested in the behavior in regions where the solution is smooth.

In order to avoid this we prove, in a special case, that the above result may be localised
to special regions )y, oriented along the streamlines and avoiding singular layers.

More precisely we consider the following equation with Q C R

U+u, —eAu=f in £,

(1.2) u=0 1in ON.

Our localised result, essentially, takes the form

) h h?
lip(u = V)l < C1 + |08 huin )2 | o min (1, 75, 57 )r(@)

where the cut-off function ¢ is such that ¢ =~ 1 in €y and ¢ decays exponentially with
s/+/€ where s is the distance to €.

For this result to be useful it is important that the residual 7(U) can be made small in
Qp without resolving the the singular layers. The standard Galerkin finite element method
does not have this property.

However, a priori error analysis indicates that this is possible for the Streamline Diffusion
method. In [13] it is shown that in regions (g, of the same type as above, and where the

solution u of (1.2) is assumed to be smooth, we have ||u — Ul|. () < Chilas. This result
is improved in [14] to O(hmi). Further in [18] it is proved, again with the assumption
that u is smooth in Q, that for certain triangulations ||u — U|| 1 (0, < ChZ,,. Numerical
experiments indicate that this is valid also for more general meshes. However there are
also numerical examples, using certain meshes, in which one only gets the convergence rate
O(hf}{azx). This has been further discussed in [17]. An important feature of these works is
that they do not require that the singular layers are resolved.

In the case when e is small our work is related to [4], where an a posteriori error estimate
in the Ly-norm is proved. The localised result is inspired by [13]. We also recall that there
is a localised a priori error estimate in Lo for the Streamline Diffusion method, see [12].

As in [4], [7], our a posteriori error estimates are proved by using a duality argument
involving a continuous linear adjoint problem. The analysis relies on the regularity of the
solution G of the adjoint problem. Since we consider estimates in the maximum norm we
use an Li-L, duality argument, where G acts as a regularised Green function, a technique
introduced in [15].

This paper is organised as follows. In Section 2 we introduce the space discretisation
and formulate our finite element method. In Section 3 we state our global error estimates.
The localised result is stated and proved in Section 10. In sections 4-9 we prove the results
of Section 3.

In Section 4 we prove a lemma which splits the estimate of the error into a small a priori
part and a part which can be estimated by a posteriori quantities. This lemma makes it
possible to replace the exact Green function by a regularised Green function. In Section
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5 we introduce the adjoint problem and perform the duality argument, expressing the a
posteriori part of the error in terms of the residual R(U) and the solution G of the adjoint
problem. In Section 6 we estimate the residual in terms of computable quantities and
derivatives of G. In Section 7 we analyse the regularity of G. In Section 8 we prove a
sharper regularity estimate for G in the case d = 1. In Section 9 we conclude the proofs of
the theorems stated in Section 3.

Throughout this paper we use the standard Lebesgue spaces L,(w) for w C Q with the
convention that L, = L,(€2), and the corresponding Sobolev spaces Wr(w), WF = Wk (Q),
H* =W} and Hj = {u € H' : u|so = 0}. Moreover (u,v), = [ uvdz and (u, v) (u,v)q.
We use the notation f,, = sup,.,, f(z) and [, = infze, f(z). Further, we write D*v(z) =

\/E|a\:k |Dev(x)[?, so that the W seminorm may be conveniently written || D*v]|z,.

2. THE DISCRETISATION

In this section we formulate a discretisation of (1.1) using the Streamline Diffusion
method, see [4]. For the discretisation let 7 = {7} be a family of triangulations, where a
triangulation 7 = {K} is a partition of € into open simplices K which are face to face so
that Q = Uge7K. Let hg = diam(K) and let px denote the radius of the largest closed
ball contained in K. We assume that F is nondegenerate, i.e., we assume that there is a
constant ¢y such that for all triangulations 7 € F we have

hx
(2.1) max — < .
KeT pk
To each triangulation 7 € F we associate a positive, piecewise constant function h(zx),
defined on €2 by
h‘K = ]’LK, VK eT.

We also need a measure of the “regularity” of a triangulation. We therefore introduce the
quantity & = £(T) as follows. Let 7 € F be a triangulation and K be a simplex in 7. We
define the set

(2.2) Sk={K'eT:K'NnK # 0},
and
(2.3) ¢ = max max |1 — hier [Pk

For each triangulation 7" € F we have an associated function space V = V(T), consisting
of all continuous functions on 2 which are linear on each K € 7 and vanish on 02. We
discretise (1.1) by the Streamline Diffusion method, see [4]: Find U € V such that

(@U,x +dB8-Vx)+ (B-VU,x+38-Vx) +¢VU, V)
=(f,x+08-Vx), VxeV

The streamline diffusion coefficient 6 = §(z) is defined by

(2.5) d = ¢y max(0,h —¢),

(2.4)
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where ¢; > 0 is a constant. Note that ¢; = 0 gives the standard Galerkin method.

3. A POSTERIORI ERROR ESTIMATES

In this section we state the global a posteriori error estimates. Our error estimates take
the form of a small a priori term plus an a posteriori term. The a priori term is of the form
Ch?. ., where o > 2 can be chosen arbitrarily. However, o enters also in the factor

(3.1) L =1+ o|loghminl,

which multiplies the a posteriori term.

Let u be the solution of (1.1) and let U be the solution of (2.4) for some ¢; > 0. The term
[0,U](x) denotes the jump across K of the exterior normal derivative 0,U at x € 0K.

In the case when € ~ 1 we have the following result. Here we assume that £ is sufficiently
small, see (2.3), which is necissitated by the use of weighted estimates for the Lo-projection
in the proof of the theorem (see [1]). The use of the Lo-projection, which is possible only for
the standard Galerkin method, makes it possible to subtract an arbitrary function y € V'
in the residual. One can prove the theorem without using the Lo-projection, in which case
the condition on £ can be removed, but then it is not possible to subtract the function y
in the residual.

Theorem 3.1. Let ¢ ~ 1. Let ¢y = 0 and let 0 > 2. Assume that a(x) > 0 and
a(x) =V -p(z) > c> 0 for all x € Q, where ¢ ~ 1. There exist constants £*, h* and C
such that, if £ < & and hmin < h*, then

= Ullpoi@) < Choyy + CL¥?||R2(f — aU — B+ VU = X)||w@)
+ CL*? max h?lehic! [0, U] 1. o),

(3.2)

where x s an arbitrary function in V.
In the general case, allowing € to be small, we have the following estimate.

Theorem 3.2. Let 0 > 2. Assume that a(z) > ¢, and a(x) — V - B(z) > ¢ > 0 for all
x € ), where c = 1. Then there exist constants h* and C' such that if, hmin < h*, then

W b K
e = Ullgoy < €22 + L32[ min (1, 0, 52) (F = ol = 5 V0|

2
h h?
3/2 : -1
+cL? max <m1n (—61/2, —63/2> |leh% [&;U]HLw(aK))-

Loo(62)

(3.3)

In one dimension we are able to prove the following estimate, which is sharper with
respect to the e-dependence.

Theorem 3.3. Let d =1 and let 0 > 2. Assume that a(z) > 0, a(z) — B.(z) > ¢ > 0 and
|B(x)| > ¢ for all x € Q, where ¢ = 1, and that 8 does not change sign. Then there exist



constants h* and C' such that if, hyin < h*, then
2

h’i‘n;n + CLH min <l,h, %)U —olU—§- VU)H

-U <C
||U ||Loo(n) = Lo ()

+ CLmax (mh1@%7;ykh;y%Uuh®@KQ.

4. A SPLIT OF THE ERROR INTO AN A PRIORI AND AN A POSTERIORI PART

The main result of this section is a lemma which splits the estimate of the error e = u—U
into two parts, see [15] and [7]. The first part is then estimated through an a priori estimate.
The remaining part is of the form |(we, g)|, where g is an approximate delta function and w
is a weight-function. The presence of the weight-function w is motivated by the localisation
argument in Section 10, where we need a more general version of the lemma.

We assume that the weight-function w has the following properties:

w € WE(Q),
I<w< 01,

(4.1) |Diw| < Coe?w, ae.inQ, j<2,
sk < 0y, VK eT,
Wk
where Sk is as in (2.2) and Wg, = supg, w, wy = infx w. Note that the function w(z) =1
satisfies (4.1).
We now define the function g. Let 2y € €2 and let g = g, be such that

(4:2) / gdz=1; supp g C B(zo;p); 0<g<Cp
Rd

Here B(xy; p) denotes the closed ball with center at xy and with small radius p to be chosen.
By direct calculation we have

(4.3) lgllz, < Cop~¥', p' =p/(p—1).

We now state the main result of this section.
Lemma 4.1. Let U € V and u € H{(Q) N C?(Q) for some 0 <y < %. Lete=u—U and
let ©o be such that |we(zo)| = ||wellLy (). Let g = g, be given by (4.2) and let w satisfy
(4.1). Let o > . There ezist a constant h, > 0 such that, if hpin < hy and p < hfn/iz, then
(4.4) lw(u = U)llze (@) < Chnllullon@) + 2/(w(u = V), g)|.

Proof. Let B denote the union of all elements K € T that intersect B(x¢; p). Extend e to
be zero outside Q2. By the mean value theorem there is an z; € B(zg, p) N € such that
(we)(z1) = (we, g). We note that we = wu — wllu + wlle, where II : C(Q) — V is the
Lagrange interpolation operator. Thus

|(we) (o) — (we)(1)] < [(wu)(zo) — (wu)(z1)| + pl| D(wIu) || Lo s)

(4.5)
+ D) | o s
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We have
w(@o)u(zo) — w(z1)u(z1)] < |w(wo)u(wo) — w(1)u(wo)|
+ |w(z1)u(zo) — w(z1)u(z1)]
(4.6) < plDwl|z@llullree) + o7 Mlulleve Wl L@
< p"C1||ulloviny (Cae™/2p' 7 + 1)
< 2p7Chullcvey,

where we used (4.1) and the estimate ||u||z. () < C||ullcv(). The last inequality in (4.6)
is valid if

1/2 1/(1—y)
(47) p<(5)0
Cy
Further,
pllD(wllu)|| 2. 8) < pll(Dw)ul| L) + pllwDIlul| . 5)
< pC1Coe™ ||| 1.0 (5) + pC1 || D(Mu — Mu(z0)) || 2. (5)
< pCLCoe™?||ul| 1)
+ pCCrhg M — Mu(zo)|| Lo 8)
(4.8)

< pCC1C2e™ 2 lull ooy
+pCC[ullor o)
= 07 CCullorey (07 Coe™ + phus™")
< 2p7CC||ulleve),
where we used (4.1), the stability of II in the L, -norm and an inverse estimate. The last
inequality in (4.8) is valid if
12\ 1/(1-y)
(49) P S (6—) and P S hmin-
Cs
Likewise,
PID(WILe) |zoos) < pCae™ /7 ||wle| (i) + pllwDIlell 1. (5)
< Igggﬂk(czﬁ_l/zﬂﬂeﬂ%(m + || DIle]| o ()
< max pwg (Coe ™ [le]| () + Chigiallell 1)

(4.10)

WK -1/2 —1 )
< — | oC +Ch_:
< I}r{ugg( o (p o€ ||we||Loo(K) mln”we”Lm(K)

< pC3(Coe™/? + Chiin)llwell Lo @)

< Llwel| o ()
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where we used (4.1), the stability of IT in the L, -norm and an inverse estimate. The last
inequality in (4.10) is valid if
(4.11) p < 3€72(C5Cy) " and p < fhunin(C5C) "

Let now p < R for hmin < hi. We see that, since o/y > 1, for sufficiently small A,

min

the conditions (4.7), (4.9) and (4.11) are satisfied and we get, using (4.5), (4.6), (4.8) and
(4.10),

[wellzo(e) < [(we)(z1)| + [(we)(zo) — (we) (1))
< |(we, )| +2CCip" [ull o) + 3 llwell e (@),
which concludes the proof. O

(4.12)

We have the following lemma which gives a rough estimate of the Holder-norm of a
solution u of (1.1).

Lemma 4.2. Let Q be a convez polyhedral domain in R?, d = 1,2,3. Let u be a solution
of (1.1) with a— iV - 8> 0. For any 0 <~ < 1/2 there is a constant C' such that

(4.13) lullor < Ce?[| fll -

Proof. By a standard energy argument we get

(4.14) AUz, < Ce?||fllL,-

Further

(4.15) ID%u|, < CllAull, < Ce™?| fL,,

where we used elliptic regularity. By Sobolev’s inequality we get (4.13) for v < 2 — d/2,
d=1,2,3. 0

5. A DUALITY ARGUMENT

In this section we express the quantity (e,g) in terms of the residual R(U) and the
solution G' of an adjoint problem, using a duality argument. In order to do so we use the
following adjoint problem:

(5.1) aG -V -(G)—eAG =g in Q,
' G=0 in 0Q.

Multiplying by e = u — U gives

(e,g9) = (e,aG — V - (BG) — eAG)
=(oau+ B-Vu—eAu,G) — (U + - VU,G) — (eVU,VG)
=(f—alU—-p-VUQG)— (eVU,VGQ)
= (R(U), G),

where we used (1.1) and where the residual R(U) € H™! is defined by

(5.3) (R(U),v) = (f —aU — B-VU,v) — (VU,Vv), Vv € Hj.

(5.2)
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We thus have
(5.4) (e,9) = (R(U), G),
which we will use with g given by (4.2).

6. ESTIMATES OF THE RESIDUAL

In this section we state and prove some estimates of the residual R(U). One of the
estimates involve a weight-function w with properties as in (4.1). We note that the estimate
is valid in the unweighted case, w = 1. The weighted estimate will be used in the localisation
argument in Section 10. The estimates are also weighted with powers of ¢, anticipating the
regularity estimates of G in Section 7-8.

We recall that there is an interpolant II, see [16] and the discussion in [11], such that
for v € W2 N Hyg,

Moz, x) < Cllvllzysy), VK €T,
(6.1) lo = TIv||L, (k) < Ch}(||Dlv||L1(5K 1=1,2, VKeT,
1 D(v - HU)||L1(K) < CRMID | Lysy), =12, VK €T,
Lemma 6.1. Let U be the solution of (2.4). Let w be as in (4.1) and let v € W2 N H;.
There exist a constant C' such that

_ h h?
(B(W).w0)] < Ofwmin (1, 5. 55) (7 —ov —g-vO)|
X (Iollzage) + €21 Dvllz,o) + €2 D*]l1,0))
) h  h?
+ O fomin (75 5 ) v @],
x (2 Dvll1y0) + €2 D?0 ] .oy ) -
Proof. We first note that by expanding derivatives and using (4.1) and (6.1) we get the
following inequalities
Wi (o) |Lyx) < Cllvllzysio,
(6.3) Wi ID@v)llzycse) < O™ 0llnycsi) + 1 Dvllzacsi));
QI_(}HDQ(W’U)”Ll(SK) < C(€_1||U||L1(5K) + 6_1/2”1)“”1/1(5}{) + ||D2U||L1(SK))'
We also recall the inverse estimate
(6.4) IVXlzix) < ChiIXllzaxy, VX €V
We now have
(R(U),wv) = (f —aU — p-VU,wv) — ¢(VU, V(wv))
(6.5) =(f—aU - B-VU,wv — I(wv) — 63 - VII(wv))
—e(VU,V((wv) — (wv))) =1 — 11,



where we used (2.4). Here

) h h?
I < meln (1, BX m)(f —alU—f- VU)HLOO(Q)
(6.6) X €2 ¢3/2
X Ha} max (1, T, ?) ((U’U - H(LUU) - 5/6 . VH(WU)) Ll(Q)’
where
/2 .3/2
1 e e _ —83.
Hw max (1, T )(wv [I(wv) — 6 VH(wv))) L)

(6.7) < ~1 ﬁ ﬁ H — -0 - ‘

< KZETQK max <1, e h%{) wv — [(wv) — 64 - VII(wv) Li(K)

=]JII.

Further, since § is constant on K,

Wit lwv—T(wv) — 63 - VII(w) ||z, (k)

63) < Q}i(llwvllm(m + (@) |2y ) + SNl Bl Lo I1DTL(w) || 4 x6))
< wi' ([lwvllnyy + Cllwvlny(si) + CORE |wol| 1y ()
< Cwi lwvllLysi) < Cllvllzysy),

where we used (4.1), (6.1) and (6.4) combined with the fact that § < Ch, see (2.5). We
also have the estimate

wi lwv = T(wv) = 88 - VII(wo)||£y(x)
< wie ([lwv = (W) ||,y ) + 0118l Loo 1 D (wr = TL(wv)) || £y (1)
(6.9) + 6[ Bl oo 1 D(w0) [ 24K )
< ChKQI_(IHD(WU)”Ll(SK)
< Chic (€ Pl Lagsi) + 1Dl (),

where we used (4.1), (6.1), (6.3) combined with § < Ch. In a similar way

Q;(IHWU — (wv) =66 - VII(wv)||z,(x)
(6.10) < Cwi B (| D* (W) |z (sx0) + € 1D (@0) || La(s50)
< Ch%((G_s/Z”U“Ll(SK) + 6_1”1)““131(51() + ||D2U||L1(SK))’

where we used (4.1), (6.1), (6.3) and the inequality § < Ch; which follows from (2.5). Let

A={K eT :min(1,92,¢7) =1}, B={K € T : max(1,92,7) = <)} and let
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C={K e T:max(1,%2, <) = ©2)}. By combining (6.8), (6.9), and (6.10) we get

h2
IIT = Z wi llwv — (wv) = 68 - V(wv)||z,(x0)
KeA
72
1€y — TT(wv) — 68 -V
+KZ€BQK = llwv = (wv) =66 - V(w)lzyx)

32
+ D wid S llow — T(wv) = 56 - V(o))

KeC

<C Z ||U||L1(SK) +C Z(“U”Ll(SK) + 61/2||DU||I/1(5K))

KcA KeB
+C Y (0lla(se) + €2 1Dvl naisie) + €2 I1D%0]| 11 (5,0))
KeB

< C(|[v]lny@) + €72 DLy @) + €% D*0| 1, ())-

(6.11)

Therefore
. h h?
il < Cmem (1’ €2’ m)(f —oU-§- VU)HLOO(Q)
X ([vllzy () + €721Dvl| 1) + €2 D*0||Ly(@))-
We now estimate II. We first note that
(eVU, V(wv — TI(wv))) = > (eVU, V(wv — T(wv)))k
KeT

(6.13) = Z(ea,,U,wv — I(wv))sox

KeT

(6.12)

= _% Z(e[a,,U],wv — I(wv)) sk,

KeT
where
. h WP\,
4 (DU, w0 = T(w0))oxl < [wmin (=5, )b e[a”U]HLm(am
(6'1 ) 1 61/2 63/2
ot (5 T e =]
Further,
/2 .3/2
1 e e _
Hw maX( h R )h(“w M| yomy

(6.15) /2 3/2

_ €
< Oy max (=, S ) (v = @)y

+ hiel| Dwr = T{wo)) 1) ).
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where we used a trace inequality. We here have that
w' (lov = T wv)l|z.x) + bl D(wv — T(wv)) ||, x)
(6.16) < Chgwie | D(wv)||zisy)
< Chie (ol zugsy + [1Dolacsi )
where we used (6.1) and (6.3). But we also have the estimate
wi' (lwv = T (wv)l|1yx) + b | D(wv — T(w)) || (x)
(6.17) < Chixwi 1D (w0)| 2. (sx0)
< Chi <€_1||U||L1(SK) + €2 Dol sy + ||D20||L1(5K)),

where we again used (6.1) and (6.3). By combining (6.14), (6.16), and (6.17) we get the
following estimate

N
(690 Tl ) = pagmin (. )it
€l/2 .
30> Tg;( (v = Tl + hac | D = o)) acx)
KeB
(6.18) + Z Hllwv — T(wo) ||y x) + hi||D(wv — H(wv))”Ll(K)))
KeC

< C'max Hw min (i h—Q) h™te[0,U]

KeT €l/27 ¢3/2

Loo(0K)
% (I0ll.@) + €72IDvl Loy + €2 D?0ll1 ).
which proves the lemma. O

In the proof of Theorem 3.1, where € &~ 1, we will use the following version of Lemma 6.1.
The proof of this lemma is similar to the proof of Lemma 6.1, but uses the Lo-projection
instead of the interpolant II, which is possible since we use the standard Galerkin method
in this case. In order to use the Lo-projection one needs a regularity assumption on the
triangulation. This is expressed through the parameter £ in (2.3), see [5], [1].

Lemma 6.2. Let U be the solution of (2.4) with ¢, = 0. Let v € W2 N Hy and let the
residual R(U) be defined by (5.3). For sufficiently small & there ezist a constant C' such
that
h2

(RW), ) < (|| = al = 8- VU = x)
(6.19) € Lol

h?
+ max Az AUl or0 ) 1 D% 40

where x s an arbitrary function in V.
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The following lemma will be used in the proof of Theorem 3.3 where d = 1. The proof
of this lemma is an obvious modification of the proof of Lemma 6.1.

Lemma 6.3. Let U be the solution of (2.4). Let v € W N Hy and let the residual R(U)
be defined by (5.3). Then there exist a constant C' such that
2

(R(U),v)| < C(Hmin (l,h,h?)(f— aU—ﬂ-VU)H

Loo ()
(6.20) 2 X
. + max (mm (h, ?) 1 6[8VU]||L°°(6K)))
x (Il0lleacey + D0 sy + el D0l 1,00

7. THE REGULARITY OF THE SOLUTION (G OF THE ADJOINT PROBLEM

In this section we study the regularity of the solution G of the adjoint problem (5.1).
We have the following lemma.

Lemma 7.1. Let G be the solution of (5.1) with g given by (4.2). Assume that a(x) >
c>0and a(z) = V- B(x) > c> 0 for all z € Q, where c = 1. For any k > 0 there is a
constant C' such that, if p < €, then

Gz, <1/e
(7.1) |DG||L, < CLY?1/2,
ID%G||,, < CL¥2e3/2,
where L =1+ |logp|.

Remark. Another way to get estimates for the regularity of G is to use an interpolation
inequality. We have the following result: Let v € WY (Q) N Hj(2), 1 < p < oo. Then for
any 7 > 0, we have

(7:2) IDvll, @) < nllvllwg@) + Cn vl @),
see Theorem 7.27 in [9]. An argument based on this inequality would give the estimates
IDG||z, < CLe™,

7.3
(7.3) ||D2G||L1 < CL%2.

Proof. We first estimate ||G||,. Multiplying (5.1) by \/%, n > 0, which is a regularisa-
7

tion of sign(G), we get, after an integration by parts,

G nB- VG nVG - VG G
74 oG, ———= | + |G, /5375 +e/7daz= g, —— .
( ) ( /77+G2> ( (7)+G2)3/2> Q (77+G2)3/2 ( ,/77+G2>
We want to let n — 0T here. In order to do so we note that
np-vaGa nG
= < S S |
(7.5) lo g, < 18ealDGlus| ey,
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By a standard energy argument, using that o — —Vﬂ > 0 which follows from o > 0 and
a—V -3 >0, we obtain

(7.6) IDG|z, < Ce Higllz, < Ce tp 42 < o0,

Further
nG 2 772G2
7 [
() (T AT 2
Here (n"fg.j)s <1 and +G2)3 — 0 as 7 — 0%, so that by the dominated convergence

theorem, |, (anj)g, — 0 as n — 07. By letting n — 0% in (7.4) we conclude that

(7.8) leGll, < llgllz, <1

Since « > ¢, where ¢ & 1, this gives the estimate for ||G||L,-

We now estimate | DG||,. Since o — V - § > 0, the maximum principle gives G > 0 in
2. Therefore log(1 4+ G) > 0 is well defined in 2. We note that log(1+ G) = 0 on 9. We
also note that the maximum principle combined with the assumption o — V - 8 > ¢, where
c =~ 1, and the definition of g gives the estimate

(7.9) G|z < ¢Hlgllzo, < Cp7
We now multiply (5.1) with log(1 4+ G), integrate by parts using Vlog(l + G) = 12%, to
get
VG VG
(7.10) (aG,log(1+Q)) + (BG, 1—|-—G) + €<VG, 1—|——G> = (g,log(1 + @)),

where, by integration by parts, we have

(ﬂG 1V+GG) /Q(1+G)ﬂ- 1V+GG dm—/nﬂ-vmg(HG)dx

(7.11) :/Qﬂ-VGd:E—i-/QV-ﬁlog(l-i-G)dac

:—/Q(V-ﬂ)de—I—/Q(V-ﬂ)log(1+G)dx,

where we used that G and log(1 + G) = 0 vanish on 092. We thus have
VG|
log(1 d d
/QaG og(l+ G) x+/ﬂel+G x
(7.12) = (9,10g(1+ G)) + (V- 8,G —log(1 + G))
(9,10g(1 + G)) + (o, G)
lgllz, 1og(1 +[|Glleo) + @G|z, < CL,

where we used G > log(1l + G) > 0, the condition « — V- 5 > 0, ||g||l, = 1, (7.9), (7.8)
and where L = 1 + |logp|. By (7.1 ) combined with the fact that aGlog(l+ G) > 0 we

<
<
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get

VG2
7.13 < CL.
(7.13) /961+de—0

Further, by Cauchy’s inequality,

Veval., = [ viwe|, < (|5

< CLYV?(1+Gllwy)'? < OLY?,

1/2
1+ Gllz,)
Ly

(7.14)

where we used the estimate ||G||z, < C. Hence
(7.15) |DG||L, < CLY2e71/2,

The estimate of ||D?G||., will be obtained from an estimate of |eAG||,, for p near 1.
In order to estimate ||eAG||z,, using (5.1), we need to estimate |[(a« — V - §)G||;, and
|8 - VG||1, for 1 < p < 2. These L, estimates are obtained by interpolation between L,
and L.

We first estimate ||(a—V-5)G||L,- Asin (7.4) we multiply by a regularisation of sign(G)
and get

G G VG- VG
-V 090G, —— ) — VG, —— ——d
(716) ((a f) /n+ GZ) (ﬁ /n+ GQ) + 6/977(77_‘_ G2)3/2 L
) G
- (05 2m)
and we conclude
(7.17) (= V- 8)Gll, < llglle, + 18l IDGl L, < CLY?e7'2,

where we used (7.15). We also need an estimate for ||(a — V - 8)G||,, which we get from
(7.9) as follows:
(7.18) e = V- B)Gllz, < lla =V - Bll, [|Gllr., < Cp™™.

We now estimate |[(a — V - 3)G||., and ||5- VG|, for 1 < p < 2. By Hélders inequality,
combined with (7.17) and (7.18) we get

(7.19) (@ =V A)Gllr, < i@ =V AGIL* lila = V- AGIL < CLIZ 2y,
where p' = p/(p — 1). Further

(7.20) 18- VGlls, < 181 IDG, < 18] |DGIE* IDGIZF
' < CL1/2€*1/2€*2/p’p*d/p”
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where we used (7.6) and (7.15). By (5.1) we get
1€AG]|L, <lgllz, + (= V- B)GllL, + 18- VG,

< CL1/26_1/2€_2/p’p_2d/p’.

We now use the condition p < €, which gives
2

(7.22) 6—2/p’ < p_%p

I

and therefore
(7.23) IAG||z, < CLY2e 312 p=elv,

where ¢ = 2/k + 2d. We recall the following elliptic regularity estimate: If Q is a smooth
domain or a convex domain, then

(7.24) |D?v||, < Cp'||Avlg,, YveWINH, 1<p<2

The p-dependence in (7.24) is classical in in the case of a smooth domain. In the case of
a convex domain we argue as in [7]. Let v = T'f be the solution of the Dirichlet problem
—Av = fin Q, v =0 on 02 and let Dizj be a partial derivative of second order. It is well
known , [10], that the operator D};T is bounded on Ly, i.e, it is strong type (2,2); this is
the case p = 2 of (7.24). Moreover DZ-ZJ-T is weak type (1,1); this is an unpublished result
of Dahlberg, Verchota, and Wolff, a proof can be found in [8] and a generalisation in [6].
An application of Marcinkiewicz interpolation theorem now yields (7.24).

We now use (7.24) to get an estimate for ||[D?G||,. By Hoélder’s inequality and (7.24)
we get

(7.25) ID*G||1, < C|ID*G|lx, < CPIAG]|z, < CLY?e/2p p=eI?.

The choice p' = | log p| gives

(7.26) |D%G||L, < CLY?e 3% 1logp| < CL*?¢ 312,

which proves the lemma. 0O

We now prove a lemma similar to Lemma 7.1 with worse e-dependence, but with more
general coefficients «, . We use this lemma in the proof of Theorem 3.1, where we assume
that € =~ 1.

Lemma 7.2. Let G be the solution of (5.1) with g given by (4.2). Assume that a(z) > 0
and a(z) — V- B(x) > ¢> 0 for all x € Q, where c &~ 1. For any k > 0 there is a constant
C such that, if p < €*, then

(7.27) |D*G|z, < CL*2,

where L =1+ |log p|.
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Proof. We first note that the proof of (7.14) is only based on the condition @ > 0 and
a— -V > ¢, where ¢ & 1. We thus have

(7.28) le”2DGz, < CLY2(1+||Gl|2,)"?,

but we no longer get an estimate estimate for |G||z, by (7.8). Instead we use the inequality
G|z, < C||DG||r, in (7.28). Hence

1€2DG|,,, < CLY? + CLY?||DG||?

7.29
( ) < CL1/2 + CL671/2 + %61/2||DG||L1,

where we used the inequality ab < 1a® 4+ 3b%. We conclude that

(7.30) |DGl,, < CLe™,

and consequently, by using the inequality ||G||., < C||DG]||1, again, we get
(7.31) |G|z, < CLe™.

By the same argument as in Lemma 7.1, but using (7.31) and (7.30) instead of (7.8) and
(7.15), we now get (7.27). O

8. REGULARITY OF THE ADJOINT PROBLEM IN 1-DIMENSION

In one dimension, d = 1, our regularity estimate, for the solution G' of the adjoint
problem (5.1), is sharper with respect to the e-dependence.

Lemma 8.1. Assume that that d = 1 and a(x) > 0, a(z) — B.(z) > ¢ > 0, |B(z)] >
where ¢ = 1, for all x € , and that 8 does not change sign. Let G be the solution of (5.
Then

C}
1).
1G]z, < CL,

”wa”Ll < CLf_la

where L =1+ |log p|.

Proof. We first prove an estimate for ||(a—0;)G||r,. Note that as in (7.8) we have ||aG||;, <
1. As in the proof of Lemma 7.1 we multiply (5.1) with log(1 + G) and similarly we get
the estimate, see (7.12),

2
/QozGlog(l+G)dm—/ﬂﬁzde+/Qeli“de
= (9 — Br,log(1 + @)
< (llglle, +11Bsllz,) log(1 + |G ll..) < CL,

(8.2)
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where we used ||g||z, = 1, (7.9), and where L = 1 + |log p|. We note that by (8.2) we get

/’ Qu;mgu-+G)—¢%G)dm

log(1+G)>1

(8.3)

+/ (MN%G+®—@ﬁ%mgCL
log(1+G)<1

Since log(1 + G) < 1 implies G < 2, we conclude

log(1+G)>1

where we also used that aG'log(1 + G) > 0 in Q. Therefore

/(a—ﬂI)Gda::/ (Oz—ﬂz)GdiE-f-/ (v — By) Gdx
Q log(1+G)>1 log(1+G)<1

</ (aGlog(1 +G) ~ 5,G) dz + l|aGlls, + 1|6z,
log(14+G)>1
<cr,

(8.5)

where we used (8.3), the assumption o > 0 and the estimate ||aG||z, < 1. Since a—f, > 0
and G > 0, this proves

(8.6) I(e: = B:)Gl, < CL.
. . o Gx
We now estimate ||8G,||z,.- Multiply (5.1) by —sign(f) Tniar where 7 > 0. Recall that
. . Gl} . . . . —
sign(f3) is constant and T is a regularisation of sign(G;). Let Q = (a,b), we get, after
an integration by parts,
b Gy Gy
—sinﬁ/ a— 3.)G d:v+/ O|Gy———=dx
. Gw(b) Gw(a)
8.7 + sign(B)e| G (b — Gy(a
(8.7) ()( ()¢ﬁ____5 @ n+GA®J

: Gy
— sign( / G 77—|—G2 3/2 —(Q,Slgn(ﬁ)ﬁ)

Since G > 0 and | \/—| < 1 this implies

[ 1816t < = Gl + (G0 + G

#| [ G 2 o] + ol

(8.8)
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We now show that

(8.9) ‘/ —|—G2 v dx‘ —0 as n—0".

By Holder’s inequality we have

w0 | oy i <o

A standard energy argument gives

NGy
(n+ G232l

(8.11) |Gzl < Ce?||gllL, < o0
Further,
9 b 2,2
(8.12) H"iGw :/ BUASFE
(77 + G232, ), (n+G2)?
where @ +02)3 < 1, and +G2)3 — 0 as p — 0T, so that by the dominated convergence

theorem, we conclude that f +G2)3 — 0 asn— 0", and (8.9) follows.
In order to estimate €(|G,(b)| + |G (a)|) we argue as follows. Multiply (5.1) by 1 to get

(8.13) (@G, 1) = ((8G)z, 1) — €(Gax, 1) = (g, 1),
which, after an integration by parts, gives
(8.14) laG||L, — €Gx(b) + G, (a) = 1.

By the maximum principle we have that G > 0 in [a, b], hence G,(a) > 0 and G,(b) <0
Consequently, by (8.14), we get

(8.15) e(|Gz(0)| +|Ga(a)]) < 1.

Let now 7 — 07 in (8.8). Using (8.6) and ||g|.,(o) = 1 we obtain

(8.16) I1BG ||, < CL.

By assumption |3| > ¢, where ¢ & 1, so that

(8.17) |G|z, < CL.

The inequality ||G||z, < C||Gyl|L, gives

(8.18) |G|z, < CL.

Finally, by the equation (5.1), we get

(8.19) 1€Gusllry < [I(a = B)Gllry + [1BGallLy + 19|z, < CL,

which implies ||G ||z, < CLe™. O
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9. CONCLUSION OF PROOFS OF THEOREMS 3.1, 3.3, AND 3.2

In this section we conclude the proofs of Theorem 3.1, Theorem 3.2, and Theorem 3.3.
We recall that the parameter p is given by the definition (4.2). In order to use Lemma
4.1 we have the conditions

(9.1) p < KT

and hpyi, < h,, where h, is determined by conditions in the proof of Lemma 4.1, 7y is the

Holder exponent of the solution u of (1.1) and o > 7 can be chosen arbitrarily. Further,
in order to use Lemma 7.1 and Lemma 7.2 we have the condition

(9.2) p <€,

where x > 0 can be chosen arbitrarily. The choice of the parameters o and x ! affects the

constant C' in the theorems: the larger the values of o and k™!, the larger the value of C.

Let now h* < min(e®, h,). Assume that hy;, < 1. Since o/y > 1, we have p < hfn/lz <
hmin < h* < € and the condition (9.2) is satisfied. As a remark we note that the proof of
Lemma 4.1 indicates that x = 1/2, see (4.11), is a natural choice.

We also note that by Lemma 4.2 we have v =~ 1/2. This implies p < h2% . The choice
o > 2 is natural, since the a posteriori part is of order 2 in h.

In the proof of Theorem 3.1, Theorem 3.2 and Theorem 3.3, p enters in Lemma 7.1,
Lemma 7.2 and Lemma 8.1 through the logarithmic factor L = 1 + |log p|.

We now note that the weight function w = 1 satisfies (4.1). Therefore by Lemma 4.1,

with the above condition on p, we have

lellze < Chilluller +2[(e; 9)]

(9.3) < C% + (R(U),G)|,

where we also used Lemma 4.2 and (5.4). By combining (9.3), Lemma 6.2 and Lemma 7.2
we get Theorem 3.1. By combining (9.3), Lemma 6.1 and Lemma 7.1 we get Theorem 3.2.
By combining (9.3), Lemma 6.3 and Lemma 8.1 we get Theorem 3.3.

10. A LOCALISATION RESULT

In this section we state and prove a localised a posteriori error estimate in a special case.
The estimate is localised in the following sense. The error and the residual are multiplied
by a cut-off function ¢, where ¢ is such that ¢ ~ 1 inside {2y C €2 and decays exponentially
with the distance from €2y outside 2. The set €2y can not be chosen arbitrarily. It has to
be oriented along the streamlines with a cut-off in the downstream direction.

The point of this result is that it indicates that it is possible to cut-off certain regions
where the residual can be very large, as in a boundary layer or a characteristic layer. We
now define the problem that we will consider. Let Q C R2. Let u be the solution of

u+u, —eAu=f in £,

(10.1) u=0 in Of.
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In [13] it is proved, for the equation (10.1), that, for the Streamline-Diffusion method,
in regions €1y, of the type mentioned above, with the additional assumption that the the
solution u of (10.1) is smooth in €2 one have the a priori estimate ||e| 1 (0g) < Chilay, see
the discussion in Section 1. It is important to note that this result show that the error in
)y can be made small without resolving the singular layers.

We now define the cut-off function ¢. Let

(10.2) Y(t) = /00 e () ds,

where ((s) = s for t > 1 and ((s) = —(s — 2) for t < 1. By direct calculation we find that
1" is smooth except at t = 1, where 1" has a jump, and that

P(t) >0, Vi,
et <(t) <27, t<1,
() =€, t>1,
P'(t) <0, Vi,
(@) < v(t), Vi,
WO < ='(t), t#1L
Let Qo = {(z,y) € Q:2 < A, B; <y < By} and define the cut-off function

(10.3)

_ T A y— B By —y
(10.4) ploy) = w2
We note that ¢ € C1(2) with a jump in the second derivatives across 9y and
© 2, if Sk C Qy,
(10.5) L
Py eve, otherwise.

We note that (10.5) guarantees that, if Ch < /e in \ €, then ¢ satisfies the condition
(4.1), which makes it possible to use Lemma 4.1 and Lemma 6.1 with w = ¢.
In order to localise we use the following adjoint problem:

oG — (pQ)z — eA(pG) = pg, in
G=0, in 09,
where ¢ is given by (4.2). The duality argument reads as follows:

(10.6)

(e, 9) = (e, 09) = (e, pG) = (€, (¢G)z) = (e, €ApE)
. = (6,66) + (60, 66) + e[V, V(46)
= (f,¢G) = (U, 9G) = (U, 9G) — €(VU, V(¢G))
= (R(U), ¢G),
where now R(U) € H™'() is takes the form

(10.8) (R(U),v) = (f—U—"U,,v) — (eVU,Vv), Yve HL
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In order to put (10.6) in standard form, see (5.1), we expand the derivatives, collect terms
and then divide by ¢ to get the equation

(10.9) aG -V - (8G) — eAG = g,
where
a=a+ Vg
(10.10) “:1_%_6%_6%’
8= (—1+2eﬁ,26ﬁ).
® 4

In order to prove the localised result we need to analyse the regularity of the solution G of
(10.9). The regularity estimates we need follows from Lemma 7.1 if we can show that the
coefficients o and 3 satisfies the conditions of Lemma 7.1. We have the following result:

Lemma 10.1. Let ¢, a, and (8 be given by (10.4) and (10.10). Assume that € < 1/9.
Then

a>1/3,
(10.11) > 1/
a—-V-p>5/9.
Proof. We first estimate
(10.12) a-V-f=a=1-22_ Pz _ Puw

12 ¥ ¥
By definition and (10.3) we have that —£2 > 0 and €|222| < \/€|22| and thus
v v v

(10.13) PP go \ﬁ)‘ﬁ > 0.
12 ¥ ¥
It is convenient to use the notation p(y) = 1/)(3’?;21) and ¢(y) = 1/)(1?,)2\2’). We have
‘6@ _ (| Pwd t 2Pyly + Plyy
(10.14) ? P
< 6<|pyy| +2MM+ |ny|> <
p p g q

4
I §7
since by definition [¢,| < 522, |py| < 352, [pyy| < & and, |gyy| < &. By combining (10.12),
(10.13), and (10.14) we conclude that « — V - 5 > 5/9.

We now estimate a = &+ V- 3. After differentiation and rearrangement of terms we get

2 2
(10.15) 0=a+V-f=1-22 oy Fw_o P
2 2 2 2 ¥
where as above

2
(10.16) L R (- Vo
0 o

' ¥

>0

I
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since € < 1/9. Further,

o o P _ Pt 2P0y Py o () + 204000y + (P2y)°

ey = — 2¢

@ ©? Pq (pg)?
(10.17) — (Pl + Py % (Py9)” + (pgy)® _ 9Pyl
Pq (rq)? Pq

2P+ ) (%) + (%))
p q p q
where we used that —p,g, > 0. Now, by the same argument as in (10.14) we get
() a2+ (2))
p q p q

(10.18) < 6(“’%' + M) + 26((%)2 + (%2)

q q

< 6/9.

By combining (10.16), (10.17), and (10.18) we conclude that

2
(10.19) a> 1+e%—2e%z 1-6/9=1/3.

0

Note that the proof of Lemma 7.1 is partly based on the maximum principle. Since the
classical maximum principle requires continuous coefficients and since the coefficient « in
(10.9) has a jump discontinuity, we refer to the generalised weak maximum principle for

weak solutions, see [9] Theorem 8.1.
By Lemma 10.1 and Lemma 7.1 we get

Lemma 10.2. Let G be the solution of (10.9) with g given by (4.2). Assume ¢ < 1/9.

Then there is a constant C such that
1GllL10) < CL,
(10.20) |IDG| |1,y < CLY2e7 2,
||D2G||L1(Q) S CL3/26_3/2,
where L =1+ |logp|.

We now have the following localised a posteriori error estimate:

Theorem 10.3. Assume that he /2 < C in Q\ Qq, where C ~ 1. Let ¢ be given by
(10.4). Let 0 > 2. Let u be the solution of (10.1) and let U be the corresponding solution



23

of (2.4). There exist constants h* and C such that if huyin < h* then

(1

0.21)
hgnin 3/2 : h h2
||QD(U - U)“Loo(Q) S C €2 +CL / @ min (15 61/2’ m) (f - Uz)

‘Loo(ﬂ)

h  h?
3/2 . -1
+ 01 max (min (75, 55 ) leehi OV gon )

where

(1

0.22) L =1+ o|loghmin|-

Proof. We first note that ¢ satisfies the condition (4.1) which makes it possible to use
Lemma 4.1 and Lemma 6.1. With the same argument, concerning the conditions on p, as

in
w

Section 9 and the argument which gives (9.3) we get by combining Lemma 4.1, with
replaced by ¢, (10.7), Lemma 6.1, with w replaced by ¢, and, finally Lemma 10.2 the

proof of Theorem 10.3. O

10.
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