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A POSTERIORI ERROR ANALYSIS IN THE MAXIMUM NORM FOR
A PENALTY FINITE ELEMENT METHOD FOR THE
TIME-DEPENDENT OBSTACLE PROBLEM

MATS BOMAN

ABSTRACT. We consider finite element approximation of the parabolic obstacle problem.
The analysis is based on a penalty formulation of the problem where the penalisation
parameter is allowed to vary in space and time. We estimate the penalisation error in
terms of the penalty parameter and the data of the equation. The penalised problem is
discretised in space and time by means of a Discontinuous Galerkin method. We prove
an a posteriori error estimate in the space-time maximum norm involving a residual and
the stability property of a linearised adjoint problem.

1. INTRODUCTION

In this note we study numerical solution of the time dependent obstacle problem by
means of a finite element method. Our work is based on a penalty formulation of the
problem and concerns an a posteriori error estimate in the maximum norm. In our context
the penalty method consists of the introduction of a penalised problem, a certain nonlinear
partial differential equation involving a penalty parameter ¢, whose solution converges to
the solution of the time dependent obstacle problem as € tends to zero. The penalty
problem is approximated by means of a finite element method.

Using this approach Scholz [13], [14] proved optimal a priori error estimates in the
energy norm, for the stationary and the time dependent obstacle problems. Optimal error
estimates in the L, norm are not known.

Recently French, Larsson and Nochetto [5] proved an a posteriori error estimate in the
maximum norm for the stationary obstacle problem.

In the present work we prove an a posteriori error estimate in the maximum norm for
the time dependent obstacle problem. Our analysis allows the penalty parameter € to vary
in space and time, which might be useful in adaptive algorithms.

In our method there are two sources for the error. The first part, the penalisation error,
comes from the use of the penalty problem. This part is estimated in maximum norm, in
terms of the penalty parameter € and data, using an a priori estimate. The second part, the
discretisation error, comes from the finite element discretisation of the penalty problem.
We use a Discontinuous Galerkin method, see [2] and [3], to discretise the penalty problem
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Key words and phrases. parabolic obstacle problem, a posteriori error estimate, residual, pointwise,
maximum norm, adaptive, finite element, penalty method, duality argument, maximal regularity, discon-
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2 MATS BOMAN

in space and time. Asin [2] and [3] our a posteriori error estimate of the discretisation error
is proved by means of a duality argument, involving a continuous linear adjoint problem.
The analysis relies on the regularity of the solution G' of the adjoint problem. In our case
the regularity of G depends on the choice of L,-norm. We can only show the regularity
estimate we need in the L;-norm. Therefore we use an L; - L., duality argument with G
acting as a regularised Green function, a technique introduced in [11] and [5]. In order to
prove the regularity estimate for G in the L;-norm we use a maximal regularity estimate
for linear parabolic problems, see [10].

The outline of the paper is as follows:

In Section 2 we state the parabolic obstacle problem and the associated penalised prob-
lem.

In Section 3 we introduce time and space discretisations, and formulate the Discontinuous
Galerkin method for the penalised problem.

In Section 4 we state and prove our estimate of the penalisation error in the maximum
norm in space and time. The error is estimated in terms of the penalty parameter ¢ and
data.

In Section 5 we state our maximum norm estimate of the discretisation error. Our
estimate allows € to vary in space and time.

In Sections 6-11 we prove the estimate of the discretisation error. In Section 6 we develop
an error representation formula expressing part of the error in terms of a residual and the
solution of the linearised adjoint problem.

In Section 7 we estimate the residual in terms of computable quantities.

In Section 8 we prove a lemma concerning the regularity of the solution G of the adjoint
problem in the case when the initial data is a regularised J-function. Here G acts as an
approximate Green function.

In Section 9 we put things together and conclude the proof of the estimate of the dis-
cretisation error.

In Section 10 we prove an a priori estimate in the maximum norm of the gradient of the
solution of the penalty problem. This result is used in Section 9.

In Section 11 we extend some of the results in [3] concerning estimates of the Lo-
projection with respect to weighted L,-norms. These results are used in Section 7.

We conclude this section by introducing some notation. Let €2 be a bounded domain in
R% d =1,2,3. We use the standard Lebesgue spaces L,(w) for w C €, with the convention
that L, = L,(£2), and the corresponding Sobolev spaces Wk(w), WF =WkQ), H* = W}
and H} = {u € H' : ulso = 0}. Moreover (u,v), = [ wwdz, (u,v) = (u,v)q. Let X
be a Banach space with norm || - ||x and let T be an interval. We define ||ul|r,(r;x) =

(f; lu(@)|5 dt)/? for 1 < p < oo and |lullp.rx) = esssup,|lu(t)]|x for p = co. We

introduce the notation Div(z) = \/ZM:]. |Dey(x)[2, so that the W)™ seminorm may be

conveniently written ||D™uv||,.



2. THE TIME DEPENDENT OBSTACLE PROBLEM

We assume that €2 is a bounded, convex, polygonal domain in R¢, d = 1,2, 3. The time
dependent obstacle problem can be formulated as the following differential inclusion: Find
u = u(x,t) such that

ur—Au+w(u—1) > f, inQx|[0,T],
(2.1) u=0, in 00 x [0,T],
u =1y, in Q x {0},

where the obstacle ¥ = v¢(z,t) and f = f(z,t) and vy = vo(x) are given functions with
vo(z) > ¢(x,0) for x € Q. w is the maximal monotone graph defined by

{0}, s >0,
LL)(S) = (—OO, 0]: s = 07
0, s <0.

For sufficiently smooth data there exists a unique solution of the parabolic variational
inequality (2.1) such that

u € Ly(0,T; W2(Q)), w € Ly(0,T; Ly(2)),

for any 2 < p < oo, see Theorem 16.11.2 in [6], see also [7]. As a basis for our finite element
analysis we use the following penalty formulation of (2.1): Find u, = u.(x,t) such that

Uy — Auc + € 'Blu) = f,  in Q x [0,T],
(2.2) ue =0, in 02 x [0,T],
ue = vg, in Q x {0},
where € = ¢(z,t) is a positive function and
Bw(z,t)) = (w(z,t) — ¢(z, 1)) = min(w(z,t) — p(z,1),0).

We note that 3(vg) = 0. For sufficiently smooth data there exists a unique solution of
(2.2) such that

ue € Lp(0, T; W2(2),  uer € Ly(0,T; Ly(2)),

for any 2 < p < 0o, see the proof of Theorem 16.10.1 in [6], see also [7].

Remark. Existence, uniqueness and regularity for (2.1) and (2.2) is stated and proved
in [6] for a smooth domain and with initial value equal to zero. The proof is based on
the corresponding result, due to V. A. Solonnikov, for the linear parabolic problem. The
results in [6], for (2.1) and (2.2), can be extended to the case of a nonsmooth but convex
domain with smooth initial value, by using the same proof as in [6] but based on another
regularity result for the linear problem. Such a result can be achieved by combining two
facts: Let €2 be a nonsmooth but convex domain. Then there is a maximal regularity result
for the inhomogeneous linear parabolic problem with zero initial value, see example 3.2.B
in [10]. Further, the Laplace operator A with homogeneous Dirichlet boundary condition is
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the generator of an analytic semigroup on L,(€2) for 1 < p < co. See also Lemma 8.1 below.

3. THE DISCRETISATION METHOD

In this section we formulate a discretisation of (2.2) in space and time using the Discon-
tinuous Galerkin method, see [2] and [3]. For the discretisation in space let F = {7} be
a family of triangulations, where a triangulation 7 = {K} is a partition of  into open
simplices K which are face to face. Let hyx = diam(K) and let px denote the radius of the
largest closed ball contained in K. We assume that F is nondegenerate, i.e., we assume

that there is a constant ¢y such that for all triangulations 7 € F we have
h
(3.1) max —~ < ¢q.
KeT pk

To each triangulation 7 € F we associate a positive, piecewise constant function hA(zx),
defined on €2 by

h|K:hK, VK eT.

We also need a measure of the “regularity” of a triangulation. Therefore we introduce the
quantity § = §(7) as follows. Let 7 € F be a triangulation and K be simplex in 7. We
define the set S = {K' € T : K'N K # 0} and

_ 72 2
(3.2) 0 =max max |1 — hie/hi.

To each triangulation 7 € F we have an associated function space S = S(7), consisting
of all continuous functions on § which are polynomials of degree < 1 on each K € T and
vanish on 0f2.

We now consider the discretisation in time. Let 0 = t; < --- < ty = T be a partition
of [0, T] into subintervals I,, = (t,_1,t,) of lengths k,, = t,, — ¢, 1, and associate with each
such time interval a triangulation 7, € F with corresponding function h, = h(7,) and
function space S,, = S(7,). We define the following function spaces:

Vi ={p:Q x I, — R :v is constant in time and v(-,t) € S, },

V={¢:¢lg, €Va, n=1,..,N}.
We discretise (2.2) as follows: Find U, € V such that for n =1,2,..., N,

{(Ue,ta ’U)) + (VUea VU}) + (e_lﬂ(Ue)a U))} dt + ([U€]n—17 w:—l)
(3.3) fn
= / (f,w)dt, Yw eV,

I
where U, = vp and



4. THE PENALISATION ERROR

The following theorem estimates the penalty error v — u, in the maximum norm. Note
that € may depend on x and ¢ and that the estimate is localised to the contact set. The
proof is adapted from [5], where the stationary case is studied.

Theorem 4.1. Let u and u. be the solutions of (2.1) and (2.2), respectively. Then

(4.1) lu— ué”Loo(O,T;Loo(Q)) < [le(f + Ay — 1/Jt)sz||Loo(o,T;Loo(Q))a

where Q0 = Qt) = {z € Q : u(x,t) — P(x,t) = 0, uc(z,t) — P(z,t) < 0} is the “contact

set”, and Xqy 15 the characteristic function of Q(t).

Proof. In this proof it is convenient to use the notation f.(- — ¢) = f(-)/e. We define
Q7 (t) ={z € Q:u(z,t) —Y(z,t) =0},

(12) O (t) ={z € Q:u(z,t) —¥(x,t) > 0},
' O (t) = {z € Q: uc(z,t) — P(z,t) <0},
QFH(t) ={z € Q:uz,t) —¥(z,t) > 0},

so that Q(t) = Q™ (t) N Q7 (t). Let v = u — u,. Let Xay De the characteristic function of

~

Q(t). We will show that

(43) ol @ < (DN + M = )Xall,_ ooy ¢ € 10,7

for all even integers ¢ > 2, where 1/p+ 1/q = 1. Letting ¢ — oo we obtain (4.1).
In order to prove (4.3) we define

B(z,t) := —w(z,t) + Au(z, t) + f(z,t) € wu(z, t) — P(z,1)),
Bi(z,t) := —ucs(z,t) + Auc(x, t) + f(,t) = Beap (ue(x, t) — Y(z, 1)),
so that, for any even integer ¢ > 2,

(v, 77" + (Vo, Vi) = (B, — B,v"™"),

(4.4)

where

(V0,90571) = (= Do 290l = V)],
Hence
(4.5) Sl + S VO, = (B~ Bt

We now turn to the right hand side of (4.5). We first show that
(4.6) (B — B, qul) < (B:— B, qul)fz(t)'

This follows from (4.4) and the monotonicity of the graphs w and f(. More precisely, if
x € QF(t), then B(z,t) = 0 = Begs (u(z,t) — ¥(x,1)), so that

(Be — B)vT = —(Bc(ue — ) — Be(u — 1)) (ue — u)v?™> <0 in QF(¢).
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Here we used the monotonicity (3:(§) — Be(n))(€ —n) > 0, and the assumption that ¢ is
an even integer. Similarly, if z € QF (¢), then Bc(z,t) = 0 € {0} = w(uc(z,t) — ¥(z,1)), so
that
(B — Bv"™ € —(w(ue — ) — w(u—v¥))(u —u)p?2 C R~ in QF (2),

since (w(§) —w(n))(€—n) C R*. Therefore, (B.—B,v" g+ yuar@ < 0, and (4.6) follows.

It now remains to bound the right hand side of (4.6). In order to do so, we note that in
Q7 (t) we have u = 1, so that v = ¥ — u,, and Au = A a.e., so that B = f + Ay — iy
a.e. in Q (t). Moreover, in Q_ () we have B, = —e ' (¢ — u,) in view of (4.4). Summing
up: in Q(¢) = Q7 (¢) N Q- (¢) we have B = f + Ay — 1)y, Be = —¢ ', so that
(Be = B,v" gy = (=€ 'v = (f + A¢ —1,), 07 gy

= —||€_1/qv||qu(Q(t)) — (f + A% =, 0T ) -

Using Holder’s and Young’s inequalities

(4.7)

1 1
(£l < 1, llgllz, < gllflquq + Z—)Ilglli,,,
we get
[(f + A% = 9, 0" Dyl = [(€7(F + Ay —4y), (€ V0)7P) g
(t) (t)
1
(4.8) < 5||€1/p(f + AyY — l/ft)”qu(fz(t))

Lo - q
+(1- 5)“6 Y007 @)

Combining (4.5), (4.6), (4.7) and (4.8), and multiplying by ¢ gives
d 4 2 _ q
Zlllz, + ];||V(Uq/2)||L2 +lle Y lIz, @y < €77 (F + A = )1z,

We integrate in time and use the fact that v(0) = 0, to find
t
q
o0 < [ 16770+ A0 = 0l oy

< |TN?(f + A% — ) xally o)
which proves (4.3). =

5. THE DISCRETISATION ERROR

In the proof of our estimate of the discretisation error we use a crude a priori bound for
|Vte| (). In order to use this a priori estimate we need some additional assumptions
on the penalty parameter ¢ = €(x,t). Let

hnin = min achelffl hn(z),

hmax = max sup h,(x).
1<n<N geq



Let
Q (1) = {z € 2 u(a,0) - ¥(a,t) < 0},
and let
€min = inf inf €(z, 1),
t€[0,T] TN
€max = SUp supe(z,t),
te[0,T] zeQ2
€tmax = Sup sup |e(z,t)|.
te[0,T] T€2

Let C be a positive constant and let ( > 0. We assume that

61§,rna.x S Ca
€m —

€min 2 h2

min*

These assumptions are only used in Section 9 together with the a priori bound on ||Vu|| L ()
It is likely that assumption (5.1) may be relaxed by using a better a priori estimate of .,
e.g. ||Uc||ca((9))-

In order to state our estimate we introduce computable residuals. Let x,n: 1, xQ2 —- R
be arbitrary functions such that x is constant in time on I,, and 7(t) € V,, for t € I,,. Let
[0,U] denote the jump across 0K in the outward normal derivative and let * indicate that
a term is not present if V,, | C V,,. We define the following computable residuals:

R, = kUl n—1,
R= kit [ 1680 = £ = xl e,
Ry |k = lhg 10U o o\00), K €T,
R, = k" [ 057 U0+ B0 — =),

where index e and 7 refer to the edge part and the interior part of the residual and x and
t refers to space and time discretisation. We now state our main theorem concerning the
discretisation error. Recall that 6 and ¢ are defined by (3.2) and (5.1).

Theorem 5.1. Let u. and U, be the solutions of (2.2) and (3.3). Let & > ( be arbitrary.
If § is sufficiently small, then

max |Juc(t,) — Uf;LHLoo(Q) < Clhfn_ilg(l + | 1og Amin|)

X
1<n<N

+ CoLy max (Kl Bh llr(@) + Fall Rhill o
1<n<N

e By i) + 1 An |

LOQ(Q)> )
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where
Ly = (1 + log Z—]L) (logli—]; + ¢ loghmin\>2.

Remark 5.1.1. The term A% _¢(1 4 |10g hmin)| comes from the use of an approximate Green
function in the proof of Theorem 5.1. We note that this term can be made arbitrary small
by choosing ¢ sufficiently large.

Remark 5.1.2. In our proof of Theorem 5.1 we use estimates of the Lo-projection in a
weighted L,-norm, in which ¢ is required to be small. It is possible to use other interpolants,
for example, the Lagrange interpolant. In that case there is no condition on §, but the
residual R ; is different: the star on [U],—; and the term 7(t) have to be removed.
Remark 5.1.3. Let e, = (ue — U,) y be the error at time ¢y. The strategy of the proof of
Theorem 5.1 is to derive an estimate of the form |ley||r.. < Cp||Vue(tn)| ., + C|(exn,9),
where p can be chosen small and g is a regularised J-function. ||Vue||z,, is bounded by an
a priori estimate. The term |(ey, g)| is estimated by means of an L-L, duality argument
involving a linearised adjoint problem, combined with regularity estimates of the solution
of the adjoint problem.

6. THE DUALITY ARGUMENT

In this section we derive an error representation formula expressing the quantity (e, g)
in terms of a residual r(U,) and the solution G(z, t) of a certain adjoint problem with data

g.

In this section we use the notation S.(- — ¢) = B(-)/e. In order to find the error
representation formula we note that the equations (3.3) defining the finite element solution
U, can be written in compact form as

Z e t, W (VUea V’UJ) (ﬂe(Ue - d))’ w)} dt

(6.1) N

+3 (W, v _1)=/0N(f,w)dt, Vw eV,

n=1

where U,, = vg. Let

V = {w: w|;, is smooth in time ,w(t) € Hy(N)
and wE € Hy () exist}.

We note that the solution u, of (2.2) satisfies

(6.2)

Z | Ao w) + (Vue, Vo) + (Belue =), w) } di

(6.3) .

5 (g wi ) = / " (fow)dt, Vwe V.

n=1



We define the residual r(U,) of U, as a linear functional on V:

N

(6:4) (r(U), w) = S r(U), wh, Yw €V,

where

(6.5) /{ ety W) + (VU V) + (Be(Ue — ) — f,w)} di
[U]n 1’ 1)'

We note that by (6.1)
(6.6) (r(Uy),w) =0, YweV.

We define the bilinear form E(-,-) by

(6.7) N
+ Z([an_l,n:,l), Ve, eV,
n=1

where b = b(x,t) is defined by

We note that

(6.8) 0 <b(z,t) < @D S e

Let the error e be defined by e = u, — U.. Combining (6.3), (6.4), and (6.7) gives

(6.9) E(e,w) = —(r(Ue),w), Yw € V.
Let us now consider the following adjoint problem: Given g, find G = G(z, t) such that

-G, —AG+bG =0, inQx][0,tn],
(6.10) G =0, indQ x[0,ty],
G = g, in  x {tN}
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We multiply (6.10) by w € V and integrate to find

o_z {w —Gy— AG +bG)} dt
= Z { wy, G) + (Vw, VG) + (bw, G)} dt
+ Z([w]n—lv Gn—l) + (w()_: GO) - (w;lv GN):

where the second equality follows from a integration by parts in space and time and the
continuity of G. We thus have, using also Gy = g,

(6.11) (wy, 9) — (wy,Go) = E(w,G).
Since U_, = vo, we have e¢; = 0, so by choosing w = e in (6.11) we get
(en,9) = E(e, G).
Using also (6.9) with w = G we finally arrive at the following error representation formula
(6.12) (en,9) = —(r(Uo), G).

7. AN ESTIMATE OF THE RESIDUAL

In this section we state and prove an estimate of the residual (r(U,),v) in terms of the
computable residuals defined in (5.2) and derivatives of v. Our result is based on the use
of the approximation properties of the Lo-projection with respect to weighted L;-norms,
which we prove in Section 11. We note that it is here we need a “regularity” condition
on the triangulation, measured by the quantity ¢, defined in (3.2). The condition on ¢ is
not needed if we use another interpolant, for example, the Lagrange interpolant. However,
this would change the computable residuals as described in Remark 5.1.2.

Lemma 7.1. Let 1 < n < N and let r(U,) be defined as in (6.5) and R: ., R. ., R®

T
n,e’ “tn,gr tln.es Rn,i

be defined as in (5.2). Let v : Q x I, = R be a smooth function with v( )\39 = 0. For
sufficiently small § we have

(), 0}l < (Bl B i) + | B ll o

X min (2||v||Loo<In;L1<m), ||vt||L1<1n;L1<m>)

))HDQ/Invdt

Proof. In this proof we use the notation . = [(U.)/e. Let P, denote the orthogonal
projection of Lo(2) onto S, i.e., if ¢ € Ly(f2), then P,p € S, is defined by

(Png07 X) = ((107 X)7 VX € S’n

+ C[IA2RE Mpor + B2 R Il

n-n,e n TLZ

Li(Q)
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Let J, denote the Ly projection in time onto functions, which are constant in time on I,,.
Hence J,v = é fIn v(t) dt. By the orthogonality property (6.6) of r(U,) it follows that

(r(Ue); v)n = (r(Ue),v — JnPpv)n
= (r(Ue), v = Jn0)n + (r(Ue), Jnv — JnPav)n.

We first estimate (r(U,),v — J,v),. Since U, is constant on I, we have

/ (Uet,v — Jpv) dt = 0,
I,
and

/ (YU, V(v — Jow)) dt = <VU€, v/ (v — Jyw) dt) — 0.

In

By Holder’s inequality we get
([Uen—1, (v = Tav)i )| < NUen-tllzallva—1 = Javllzuo)-

Let x : I, x  — R be any function such that x|z, is constant in time. Then

‘ / (ﬂe - fa v = Jnv) dt| < ||ﬂ6 - f - X“Ll(fn;Loo)”U - JHU”Loo(In;Ll)‘
In

But
J’_

lva—1 = Juvllzy < v = Juvll oo (i)
< min(2||v]|po (a520) Vel 21 (1asz))
so that
[(r(Ue),v = Jnv)| < (kall Ry el + knll By ll2o)

X 1IN (2[|V || Log (£n520) > [Vell 21 (20524) ) -

In order to estimate (r(Ue), Jov — J, Ppv),, we first note that

/ (Uet, Jnv — Jp Pyv) dt = 0.

In

Let w = (I — P,) [, vdt. Then

/ (VULV (Jnv = JnPv)) = (VU, Vw) = Y (VU Vu)x

In KeT

(7.1) = Z{_(AUea w)k + (0,Ue, w)ox}
KeT
= Z(&;Ue,w)m{ = % Z([@UUe],w)aK\aﬂ,

KeT KeT
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where [0,U,| denotes the jump of the outward normal derivative and where we used that
AU,|g = 0, since U, is piecewise linear. By the trace inequality

lollzyoney < € (BN lyaey + 1D ) )
and since hy,|x = hx, we have that the right hand side of (7.1) is less than or equal to

C'max | [0,U ) wgorcron) D, (Hlllwllacao + h 1Dl

KeT
< Crpas [ il 10,V miorcrom (" laiey + I Dy ).

Finally, let n(t) € V,,. We then have by Holder’s inequality that

([Ueln=1,Jn(I — Py)v) +/ (Be = f, Jn(I — Pp)v)dt

In

= [ WG+ B f = (= P L)t

<|

w6 f- ]
I, Loo(92)

By Lemma 11.5 we have for functions ¢ € H}(Q) N WZ(2), and for sufficiently small 6,
that
1h* (I = Pa)¢llzy(@) < CllD*¢|ly o),
Ih ' DI = Po)llLye) < ClID*¢l|Ly()-

This concludes the proof. O

8. THE REGULARITY OF THE SOLUTION OF THE ADJOINT PROBLEM.

In this section we prove regularity estimates for the solution G of (6.10) in the case when
the data g is a regularised d-function.

Our strategy is as follows: We first prove estimates in Ly, for the solution u of a linear,
inhomogeneous, initial value problem using maximal regularity results from [10]. In our
application it is important to keep track of the p-dependence as p tends to 1. The problem
reads as follows: Let 1 < p < 2, let f € L,(0,7;L,) and let g € L,(2). Let u be the
solution, in the L,(0,T; L,) sense, of

ug—Au=f, in Q x [0,T],
(8.1) u=0, in 9Q x [0,T],
u=g, inQ x {0}.

We then apply these estimates to the adjoint problem (6.10) with f = —bG and with the
data g chosen to be a regularised d-function. A key step in this part is to establish the

estimate ||bG||L,(0,tx;L,) < el l9llz,, where p' =p/(p —1).

— “min

We now state the estimate of the solution u of (8.1).
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Lemma 8.1. Let 1 <p <2, letp' =p/(p— 1) and let u be the solution of (8.1). Then,
for0<T<T,

T
T ,
(8.2 [ Muleydt < € (108 lgle, + 77 1l iy )
o 2 2 T 1y
(83 [ 10"l de < € (108 gl + T o))
(8.4 |07 [ wat], <cw(lole, + 5771 Insaran).
0 1

Proof. We write u = u1 + uo, where
Uit — Au1 = 0, in Q x [O,T],
(8.5) uy =0, in 90 x [0,T],
up =g, in Q x {0},
and
Uzt — AUQ = f, in Q x [O,T],
us =0, 1in 0Q x [0,T],
Ug = 0, in € x {O}
By using Holder’s inequality we get

T T T
[ Ml dt < [ e, de <€ [ (usil, + luag

T T T
By the analyticity of the semigroup generated by —A we have, for 1 < p < 2,

(8.6) lur®)llz, < Cllgllz,,  Iure@)llz, < CP't lglz,, ¢>0,

where p' = p/(p —1). The p-dependence in (8.6) follows by keeping track of p in the proof
of Theorem 7.3.6 in [12]. We thus obtain

|1,) dt.

T T T
(87) [ il e < € [ ¢ gl dt < €' tog (1) gl

In order to estimate fTT ||ugt||z, dt we will use the following estimate, which follows from
Theorem 3.1 in [10]:
(8.8) luzllz,0m5L,) + luzgllz,oriL,) + 1AL 015L,) < CPIflLy0.1:L,)-

The p-dependence in (8.8) follows from the use of the Marcinkiewicz interpolation theorem
in its proof. We now use Holder’s inequality in time and (8.8), which give

T
/ usllz, dt < TV lusillL,005L,) < COT | FllLyo,r:L,)-
T
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Together with (8.7) this proves (8.2). We recall the following elliptic regularity estimate:
If © is a smooth domain or a convex domain, then

(8.9) | D*vl|z, < CP'||Av]|L,, YoeWZNH;, 1<p<2.

The p-dependence in (8.9) is classical in the case of a smooth domain. In the case of a
convex domain we argue as in [5]. Let v = T'f be the solution of the Dirichlet problem
—Av = fin Q, v =0 on 09, and let D;; be a partial derivative. It is well known [9] that
the operator D;;T is bounded on L,, i.e., it is strong type (2,2); this is the case p = 2
of (8.9). Moreover, D;;T is weak type (1 1); this is an unpublished result of Dahlberg,
Verchota, and Wolff a proof can be found in [8] and a generalisation in [4]. An application
of the Marcinkiewicz interpolation theorem now yields (8.9).
By Hoélder’s inequality and (8.9) it follows that

T T
/nwwhﬁsmmWW/|mw%ﬁ

T T

T
<y [ (lduls, + 8wl d
where by (8.5) and (8.7)
T T
T
[ 18aile, de = [ sl de < O o () ol
and by (8.8)

T
/ ||AU2||Lp dt < CTl/p’“AU?“Lp(O,T;Lp) < Cp’Tl/p’”f”Lp(O,T;Lp)'

This proves (8.3). Finally, by (8.9), (8.5), (8.6) and (8.8),

HDZ/ u dt /udt
0 0

L1 Lp
( /uldt +HA/ Us )
<cp( + [ 1awly, @)
SPQMMMmm+HMMWMWMﬂ
< Cp' 2llgll, + 27N fllp013));

which proves (8.4). O

We now return to the adjoint problem (6.10) and we have to be more precise concerning
the data g. Let zy € € be given and let g be such that

(8.10) / g(z)dz =1; supp g C B(zp;p); 0<g(z) < Cp?
Rd

Here B(xy; p) denotes the closed ball with center at xy and with small radius p to be chosen.
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We are now able to state and prove the main result of this section.

Lemma 8.2. Let G be the solution of (6.10) with g as in (8.10). For any o > 0 there is
a constant C such that if p < €3;,, then

|Gl oo 0,tn;z0) < 1,

1Gill 1 0tn—1521) < 0(1 + log . )

In
log — Fnp’

tn \2
||D2G||L1(OatN71;L1) < 0(1 + log H> (log mp) ,

HD2 /:1 G(r)di| < C(log ]:TNP)Q.

Proof. Tt is convenient to use the change of variable ¢ — ¢y —¢. Note that this also reverses
the mesh so that Iy becomes I; and kx becomes k;. In this variable the adjoint problem
(6.10) takes the form:

Gy — AG+bG =0, inQ x[0,ty],
(8.11) G =0, in9Q x [0,ty],
G =g, inQx{0}.
Let first g be arbitrary. We will prove that
G| zeeo,tnszy) < Ml9llzy s
G2y 021 < €ania” gl 1<p <2,

where p' = p/(p — 1). From Lemma 8.1 with f = —bG we then obtain,

tN
[ NG a < o (108 2 + 6 6l ol
(8.13) '

(8.12)

tn\1/PN\ _
<Cp'(log () e lells, 1<p<2,

since kmax < C and €pax < C.
With ¢ as in (8.10) we have from a direct calculation

lgllz, < Cp=7,

and since p < €;, we conclude from (8.13) with p’ = log; tN > 2, (note that p' > 2 if

p < e”?), that
tn 1/p’ ,
< = —c/p
/kl Gz, dt < Cp' (1og ot (k1) )p

() et () E)”

C(logk— + 1) log /:m

n

IN
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where ¢ = 1/a+ d. Similarly we obtain

/tN |D?*G|, dt < C(logt—N + 1) (log %)2,

s ks
k
1 t 2
HD2/ G dt go(log—N) ,
0 1 k1,0
and the lemma follows by returning to the original time variable.
We now prove (8.12). Multiply (8.11) by \/%ﬂt, where £ > 0. Integrate over €, and

and

L

then integrate by parts. We find, by letting £ — 0,

(G, sign(G)) + [[bG |z, = —[|Gllz, + G|z, < 0.

iy
dt
After an integration in time we thus obtain, for 0 <t < ty,

t
(8.14) GOz, +/ 16G |z, dt < [|GO)]l, = [lgllz.-
0

This proves the first inequality in (8.12). By a standard energy argument we get, for
0<t<tn,

t
1
IG@)IIL, +/0 12 GI[Z, dt < [IG(0)I[Z, = llgllZ,
and we conclude by (6.8) that,

(8.15) G | La(ostniza) < €min l19]la-

The Riesz-Thorin theorem applied to the linear operator g» bG gives in view of (8.14)
and (8.15)

16G ||, 0,x;1.) < (Sup IIbGIILl(o,tN;Ll))l—Q/p'(Sup ||bG||L2(0,tN;L2))2/”'

sup
g lgllz, g lgllz, g lgllz,
i
This proves the second inequality in (8.12). O

9. PROOF OF THEOREM 5.1.
In this section we conclude the proof of Theorem 5.1.

Proof. Let g be as in (8.10) and let 7 : C(Q) — Sy be the Langrange interpolation
operator. We extend u. and U, to be equal to zero outside of Q. Let ey = u(tn) — U
and let zo € Q be such that |ey(zo)| = |lex ||, Let B = B(xo; p) be the closed ball with
center at zo and radius p. By the mean value theorem and the continuity of ey there is an
x1 € QN B such that (ey,g) = ey(z1). By the triangle inequality we have

(9.1) lenllie = len(zo)| < len (@) — e (1)] + ley (21)]-
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If z, € BN is such that |Vrey(x2)| = ||Vrey||Lo(Bna), then there is a triangle K € T
such that z5 € K. Therefore

len(@o) — ex(z1)| < pl|Veyllrwsno)
< pllViey — mey)lzasne) + pllVreylr. @)
< plIVue(tn)lpw@) + ol VTuetn) | o) + ol Vreyll L, &)
< CpllVue(tn)l o) + Crhminlle]l o)

where we used the stability of 7 in Ly, and W, and an inverse estimate. For sufficiently
small p, more precisely p < hmin/(2C), we may “subtract Cphillen|l (o) from both sides
of (9.1). Hence

(9-2) lenllze < CpllVue(ty)llr. + Cllen, 9)!.
By Lemma 10.1

6m X
IVue(tn)| e < C1—=(€rmax + 1) + C2 + C3]10g €minl,

€min

where (1, Cy, (5 depend on data. Let us now chose p to be p = hfmn for some £ > (. By
condition (5.1) we thus have

p”VUﬁ (tN) ||Loo(Q) < Clhfnnf + h’fmnC’2 + 03 m1n| lOg hmm‘
< Chis (1 + | 108 hnin)-

We conclude by (9.2) and (9.3) that

lexllzn < Chiga (L + [ 1og huwinl) + (e, 9) -

Let G be the solution of (6.10) with ¢ as in (8.10). By our choice of p and condition
(5.1) we have that p < €2, for some o > 0 so that Lemma 8.2 applies. By combining
(6.12), Lemma 7.1 and Lemma 8.2 we find

(ex, )l S [r(U), G < D [(r(Ue), Gl

1<n<N

< C max (kn||R el Lo + Knl| R il 2o

—  1<n<N

(9.3)

+ P2 RE Mo, + IH2RE .. )
x 0 (1Gllzautr s 1Gellzao 1120
17 [ Gatle,, 1D°Clluyors )
In

< OLy max (anIRZ,eIILw + kall R ill 1.

+ B2RS e + 2R 2. ),
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where

Ly = (1 + log Z—]]Vv) (log]i—]zvv + ¢ loghmin\)z.

10. A POINTWISE A PRIORI ESTIMATE OF Vu,..

Let u. be the solution of (2.2). In the proof of Theorem 5.1 we need an estimate of
|Vte|| oo (0,7:02)- The proof is an adaptation of the proof of Theorem 16.11.1 in [6]. Recall
the definition of Q] in (4.2).

Lemma 10.1. Let u, be the solution of (2.2). There is a constant C such that t € [0,T]:

6I'IlaX
1908 i) < (22 epmae + DS = 0+ A0l o000

min

(10.1) + 19l 2o om0 @) + 1 20150
+ | 10g €min| || fl| Lo (0,m50) + || £(0) + Avo||Loo(0,T;n))-

Remark 10.1.1 The constant C' in Lemma 10.1 depends on 2, and the constant in the
elliptic regularity estimate (8.9).

Proof. We write 3 = [(u.). By combining Sobolev’s inequality, elliptic regularity (8.9),
Hoélder’s inequality, and (2.2) we find

(102) IVl < CollAuc®)lz, < Cop(llucdlz, + 171z, + €75, ).

where p > ¢ > 3. We will use this inequality with ¢ fixed close to 3 and p close to
2|10g €min|- By using ¢ and p we avoid a p dependence in the first inequality. Moreover,
Cpq = C,|Q4 /7 which is bounded independently of p.

We first estimate || '3||;,. We add —1); + At to both sides of (2.2) and multiply by
B%*-1 where k is a positive integer. We also integrate in space followed by an integration
by parts using the fact that § = u, — 1/1 € H} inside Q_, and 8 = 0 outside 2_. We get

2k -~
ol + IS, + e 8, = (7 6% ),

where f = f — 4, + Av. Using Hélder’s inequality and the inequality |ab| < %|a|” + $|b|‘1
for 1/p+1/g =1 we find

(f, Y| = |( (h=1)/2K f ~(2k=1)/2% g2k-1y)

(2k—1)/2k
e L.

(10.4) + 2k ” —(2k— 1/2195% 1)||2k/(2k—1)
2% Lok (2k-1)

1 -
— 2k“ e2k— 1f2k||L1 ar )+ (1— —)”6 lﬁQkH L.

(10.3)
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We subtract the last term from both sides of (10.3) and multiply by 2k which gives

d 212k —1 _
D161, + 22 =Dy, + e s,

< ||€2k_1f2k||L1(Q;)-

We note that e, ||3%]|z, < |le18%]|z,- Thus it follows from the differential inequality
(10.5) that

(10.5)

T
||52k||L°°(o,T;L1) S/ e—(T—t)/Smax||€(2k—1)f2k||L1(Q;)dt
0

2k
< CemallFIIEE 0 10

where we also used 3(uc(0)) = 0. We thus have, recalling the definition of f,

(10.6) €7 Bll 1o < Cemax/€min) lf — vt + APl o.mi00)-

Now we turn to the estimate of ||ucy||z,,- The argument is formal, since it uses the
assumption uey € Lo. However, the argument can be justified by using difference quotients
in time instead of time derivatives, see proof of Theorem 16.11.1 in [6]. We differentiate
(2.2) with respect to time, which gives

—€ 1
(10.7) Ut — AUy + G—Qtﬂ + Zﬂt = .
Multiply (10.7) by u% ! and integrate in space. Integration by parts combined with the

fact uey|on = 0 gives

ld” ‘| +2k—1
2% dt L

(L))

||Vuk

2o + e ul nyor)
(10.8)

As in (10.4) we have
(= (To ) i),

- (%ﬁ + 1/%) "

+ (1 21k)”61 o

L1 (Q;)

(10.9)

Q)"
By the same argument we also have

)\1 2k

(10.10) (o< ()" e, +
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By combining (10.8), (10.9), (10.10) and the inequality ||[Vuf,||7, > Ai||uf, |7, we find,
after a multiplication by 2k,
2% 2k — 1, o

il +/\1T|u”

<[l (Goeu)l,
Hence, with ¢ = A\ (2k — 1) /k,

T
oDl < [ e om0

k \ 2k—
Lok (Q7) + </\_1) ||ft||L2k

2k K\ 2k—
P (A—l) ||ft||L%)
+ (a2t (0)]|

1 €
<o(—(| + 12 o ram)

2k
—p
k 2k—
+(5) WA oy ) + 17(0) + A2,

€ llLe(o,r00)
In order to keep track of the k-dependence in the constant C' in (10.11) we note that
C <k|Q/(M(2k — 1)) <|Q|/A1. Using (10.6) we get

—1/2k ( €Emax€t,m
ety < C (emid™ (L) £ — gy + Al o i)

10.12 k  (2k=1)/2k
(10.12) + 10l sorary) + (5) 1fillzmorson)

At
+[17(0)

Let k£ be the smallest integer greater than |log(emin)| and let p = 2k in (10.12). For this
particular choice of p we get

€m Xet,m X
lea(Dllz, < € (TS — g+ Al oiriar ) + 1l o

e 1/ (%5 + wt)

(10.11)

(10.13) min
+ [1og(€min) | || fill Loo(0.130) + £ (0) + AUollLoo(o,T;m)-
By combining (10.2), (10.6), (10.13), and Hélder’s inequality the lemma follows. O

11. ESTIMATES FOR THE Ly-PROJECTION IN A WEIGHTED L,-NORM.

In this section we prove the approximation result Lemma 11.5 , for the Ls-projection,
which we use in the proof of Lemma 7.1. Our analysis is an extension of the corresponding
result in Section 7 of [3], and the main ideas are the same. For a different approach see [1].

The proof of Lemma 11.5 and the corresponding result in [3] are based on stability
estimates for the Ly-projection with respect to a weighted L,-norm, which we now describe
in more detail.

Let Q be a polygonal domain, not necessarily convex, in R, d = 1,2,3,.... We use
the same notation and assumptions on the family of triangulations F as in Section 3. In
particular, cq is as defined in (3.1). Let a triangulation 7 € F be given, let 6 = §(7) be
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as in (3.2) and let S = S(7) be the function space defined in Section 3. Further, h(x) is
defined by h|g = hg for all K € T. We recall that the Lo-projection P : Ly(2) — S is
defined by

(11.1) (Pf.x)=(f,x), Yx€S, VfeLy(Q).
In [3] it is proved that
lePullL, < Clleullz,,

under a certain assumption on the weight ¢ € C'(Q). This inequality is then applied with
= i~f2, where h € C'(Q) is comparable with h. In order to satisfy the assumption about
@ it is required that Vh is sufficiently small. We extend this in two ways. First of all we
replace the Lo-norm by the Ly-norm and prove

lePullr, < Cllpullr,, 1<p< oo

This result is proved in [3] for the case ¢ = 1. Secondly, it turns out that it is sufficient to
assume that ¢ is only piecewise C!, i.e., ¢ € W, where

W={peWL(QnNC@Q): ¢|xeC(K), VKeT}

This makes it possible to replace the function h by the piecewise linear function A, defined
below, which allows us to express the condition on the triangulation as the requirement
that the computable quantity J is sufficiently small.

Given a positive number v and a triangulation 7, we define a set Fy of weight functions
associated with 7. A function ¢ : Q — R belongs to F¥, if ¢ € W, ¢ > 0 on , and

(11.2) \Vo(z)| < vhtp(z), Vxe K, VKeT.

We now construct the function hs for a given triangulation 7 € F. Let n; be a node
in the triangulation 7, define the set M(n;) = {K € T : n; € K} and let M(n;) be the
number of simplices in M(n;). We define the function hy € C(Q) by: hr|k is linear for
all K € T and

(11.3) hr(ni) = —— Y hi, ni
K’EMn,

By definition h7 € W. In the following lemma we state some properties of h.

Lemma 11.1. Assume that T € F with 6 = §(T) < 1. Then the function hy defined by
(11.3) has the following properties:

hgkvV1l—90 < hr(z) <hgV1i+d, VzeK, VKeT,
\Vhr(z)| <2¢06, Vxe K, VKE€eT.

Proof. Let K € T. It follows from |1 — h%,/h%| < 6, see (3.2), and § < 1 that
haV1 —06 < ho< hiV1+06, VK' € Sk.
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Since h7 is linear on K its maxima and minima of are attained at the nodes of K and
hence by (11.3)

1
hy|k(z) < max hig < hgvV1+96,
K n;€0K M(TLZ) K’Ez:./\/l(n)
(11.4) ) :
h7‘|K($) Z min Z h,KI 2 h,K\/ 1-4.

ni€oK M(nz) K'e M(n;)

Since hr|k is linear we also have, by (3.1) and (11.4),

— inf 2
Vhr|k(z)] < TPeeK hy — infyer hr < hac 2 < 2¢00.
PK P V1+6+/1=196

O

We next note that Lemma 7.1 in [3], originally stated for weight functions ¢ € C'(Q), is
also valid for weight functions in WW. The proof holds without change, but for completeness
we include it here. We recall that under assumption (3.1) there are two constants C; and
Cinv,1 such that, if 1); denotes the piecewise linear Lagrange node interpolant of 1, then

foral KeT and all T € F
(11.5) % — Wil k) < Cihi || D*YL, k), V¢ € HX(K), 1<p< oo,
IVXlz,) < Cimvihit XNy, VX ES, 1<p<oo.

In the following proofs we use the notation f = sup,.x f (), [ = infoex f(2).

Lemma 11.2. Assume that the family F satisfies (3.1) for some constant cy. Then there
exist positive constants vy and C such that for any triangulation T € F and any ¢ € F7F
we have

lePullzy0) < Clloullr@), Yu € Lo ().
Proof. First we recall that
(11.6) ”w - wi”Loo(K) < hK||V1/}||Loo(K)’ Vw € W’ VK eT.

Since ¢ is continuous, we may define the interpolant (¢*Pu); and therefore, by (11.1), we
get

loPull], ) = (Pu, ¢’ Pu) = (Pu, o*Pu — (¢*Pu);) + (u, (¢*Pu);)
(11.7) < [lpPull Lyl ™ (¢* Pu = (¢* Pu)i)l 1o0)
+ llpull o @lle™ (9 Puill (@)
Since (¢*Pu); = ((¢*); Pu);, we have here
o™ (9 Pu — (9 Pu)i)||o(x) < Nl (9% = (0%)i) Pull L)
+ o7 (9*)iPu— ((")iPw)illl o) = Ixc + i



In order to estimate Ix and IIx we note that
Pr < @p + hel Vol x)
where, by assumption (11.2),

(11.8) IVl o(x) < vhi™ P,
so that
(11.9) P < (1=v)""p,,

if v < 1. Further by (11.6), (11.8), and (11.9) we get

- 4
I < @ bl VP | o () 1Pl i) < 2thp—K||V90||Lm(

(11.10) —K
< 20( %Y JloPull sy < 2001 = 1) ll0Pul g

K

and by (11.5)
g < ¢ Cihk| | D*((9*)i Pu) || Lyx)
But (?); and Pu are linear on K, so that
ID*((9*)iPu) o) < 201V (97)ill Looi0) IV Psll o)

)| Pull Lok

< 2Cin0,1hi IV 0| o 0 1P| o)
where we used that ||Vi||rox) < ||V¥||zo(k) for all p € W and the inverse estimate

(11.5) in the last step. By the same argument as in (11.10), we get
I < ACiCinuv(1 — v) 2@ Pul|Ly(x).-

Hence we conclude that

(11.11)
< Ov|lpPul| L,

By (11.11) it also follows that

(11.12)
< (1+Cv)llpPull Ly

By combining (11.7), (11.11), and (11.12) we get
lePullLy) < CllpullL,@

for sufficiently small v.

e~ (@ Pu — (©*Pu)i)|| o) < (1 + 2C;Cinu,1)2v(1 — v) 7?|| @ Pul| 0

o™ (@*Pu)illo) < loPullLy@) + o~ (¢ Pu — (9> Pu)i) || o)

23
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The next lemma is an extension of Corollary 7.4 in [3], where it is proved that || Pu||1,q) <
Cllullz, for sufficiently small ||VA||;..(a), and the proof is similar. We recall that, under

assumption (3.1), there is a constant Cj,, o such that

(11.13) X[ 2et) < Cimnphi Xl o) Y € S.
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Lemma 11.3. Assume that the family F satisfies (3.1) for some constant cy. Then there
exist a constant C such that for any triangulation T € F with sufficiently small 6 and for

any ¢ € F;f/?’, where vz is the constant in Lemma 11.2, we have
lePullr,@ < Clloullr@), Yu€Ly(Q), 1<p<oo
Proof. Let u = v#/6 and let ¢; = /1 — 0 be the constant in Lemma 11.1. We begin by

proving the case p = co. Let zy € 2 and let Ky € T be a simplex such that zy € K. Let
o(x) be defined by

(11.14) o(z) =+/|r —zo|2+ 0%, 6= hy(zo)/p-
Then, by (11.13),
o (o) Pu(zo)| < @(0)[| Ptl| Lo (x0)

—d/2__
(11.15) < Cinvahity Prcol| Pl i

_2 —
C Ok, PK,
nv,2 /2
Ko =Ko

le0 ™ Pul| o(xo) -

We will now check that the weight function ¢o 2 satisfies the assumptions of Lemma 11.2.
Let K € T. We note that for 6 < vx/(12¢y) we have 2¢yd < v#/6 = u so that, by Lemma
11.1 and (11.14),

AEhy < hr(z)? < 2(|z — 20[*(2600) + hr(20)?) < 2p°0*(z), Vo € K, VK €T.

Further, by direct calculation,
Vo?| < 2/o],
and therefore
IVo(z)%| = |07'Vo?| < 207° < 2V2uc 'hilo(x)™%, Vo e K, VK eT.

Using also 11.2 we get
%Th
< (v/3+2V2e p)hit o™
<vrhit(po ) (z), Ve e K, VKeT,

V(po™?)(2)| < |07Vl +[pVo?| < —hil oo™ + 2v2¢ b o~

where we in the last inequality assumed that 6 < 1/2 so that ¢; > 1/ V2. Hence, for
sufficiently small § we have that po=2 € F7 and we may use Lemma 11.2 with ¢ replaced
by ¢o~? to get

(11.16) lpo2 Pull ) < Cllvo*ul|ny) < Cllpullzamllo |-
Now by direct calculation

(11.17) lo™ 2| o) < Ch(wo)/ ) 972,
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Further

(11.18) Ty < Wiy + 17 2hy(w0)?,

and as in the proof of Lemma 11.2, see (11.9),

(11.19) Prol Py, < (L=2)7H

Since z, is arbitrary we get by combining (11.15), (11.16), (11.17), (11.18), and (11.19)

(4—d)/2 hi, + (1) 2hr(20)?
hL2 he () 4=)/2

[oPul| L) < CCinoapt (1 =) Hlpull o)
< Cllou| Lo (o)
This is the case p = 0o. By Lemma 11.2 we also have

(11.20) loPul|Ly0) < CllpullL,(e)-

By application of the Riesz-Thorin interpolation theorem to the linear operator T'f =
©P(p7' f) we conclude

||<PPU||L,,(Q) < C||90U||L,,(n), 2<p< .

For 1 < p < 2 the estimate follows by a duality argument. Let ¢ be such that 1/p+1/¢g =1,
1 < p < 2. We then have

lePullL,@ = sup (ePu,v) < |loullL,@ sup [l Plov)|lL,@-

llollzy =1 llollzy =1

But

Vo™ (z)| = |72 V| < 90‘2% = %fh}lso‘l(m), Vie K, VKeT,

so that ¢~! € F;f/?’. Since ¢ > 2 we may use (11), with ¢ replaced by ¢!, to get
le™ P(0)|y0) < Clle™ ¢vllLy@) = CllvllL,9),
which completes the proof. O
We also have a result for the derivative.

Lemma 11.4. Assume that the family F satisfies (3.1) for some constant cy. Then there
exist a constant C' such that for any triangulation T € F with sufficiently small § and any
@€ Ff,'if/G we have

-1
D — » P = —
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Proof. By (11.5), Lemma 11.1, and (11.9) we get

eV Pully, ) = D leVPulll, ) < D Chrua@he/ el Pullf 1
KeT KeT

o b, -
Z mvlj hpK“h’Tl(pPuH}I)/p(K)
KeT K

< Cllhz'oPulll, g < Clihy oullf o)

where we used Lemma 11.3, with ¢ replaced by h}lgo, in the last equality. This is possible
for § < min(1/2,vx/(12v/2¢)), since by direct calculation

IV (h )|k | < (vr/6 + 2c00/ VI = 0)hi (hte) < V?fhl}lh}lgo, VK €T,

so that h'p € F7”f/3. Finally by Lemma 11.1, we have
187 pullr,0) < ClIR pullr, o)
U

We now state the main result of this section, a lemma concerning the approximation
property of the Lo-projection in a weighted L,-norm, 1 < p < oco. We use this lemma
in the proof of Lemma 7.1. We note that the result depends on two conditions on the
triangulation through the parameters ¢y, see (3.1), and ¢, see (3.2). Recall that h(z) = hg
forz e K.

Lemma 11.5. Assume that the family F satisfies the condition (3.1) for some constant
co. Then there exist a constant C such that for any triangulation T € F with sufficiently
small § we have

Ih2(I = Plullz,(@) < CllD?ullL,@, Yu€HyNW,, 1<p<oo,
||h_1V(I — P)u“Lp(Q) S C||D2u||Lp(Q)a Yu € H& N WpQ, 1 S p S Q.

Proof. Let mu = u; € S denote the Lagrange interpolant of the function u. We first note
that

1R = P)ull,) < [|P7(I = m)ullL,@) + |h72P (7 = Dul|L, @)
where, by (11.5),
|h~2(I — m)ullL,@ < ClID%ul|L,@
Further, by Lemma 11.1,
1h72P(x — Dy < ClIETP(r — Dallzy(oy < ClAT (7 — Doy
< Clh~? (7 = Dullz,@) < ClID?ullL,9),

where we used Lemma 11.3, with ¢ replaced by hfr , in the second step. This is possible for
6 < min(1/2,vx/(6v2¢c)), since for such 6 we have [Vh7?|g| < 2code; " hig 7 < “Ehihy”
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for all K € T, so that h}Q € F7 /3. This proves the first statement of the lemma. Similarly,
1K=V (I = Plullz,) < [Ih7'V (I = m)ull,@ + IRV P(m = Dul|z,@),
where
IRV (I = )ullz,@) < CllD*ull1,0),
and
A"V P(r — IullL,) < Cllh7'VP(r — D)L, < CIh~ hi (7 — D)l
< CIP2 (1 = Dlz,0) < ClID*ullL,@)-

In the second step we used Lemma 11.4, with ¢ replaced by h}l, which is allowed for
§ < min(1/2, vx/(12v/2¢y)), since, for such 8, |[Vhr' x| < 2codc; 'hi'hy' < “Eh ' for
all K € T, so that hy' € F7/°. 0
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