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A POSTERIORI ERROR ANALYSIS IN THE MAXIMUM NORM FOR
FINITE ELEMENT APPROXIMATIONS OF A TIME-DEPENDENT
CONVECTION-DIFFUSION PROBLEM

MATS BOMAN

ABSTRACT. We analyse finite element approximations of a time dependent convection-
diffusion problem. We prove an a posteriori error estimate in the maximum norm. For
the discretisation we use the Streamline Diffusion method.

1. INTRODUCTION

We consider numerical approximations of the solution of a general linear parabolic equa-
tion. Let Q be a convex, polyhedral, bounded domain in R% d = 1,2,3. Let u be the
solution of

wtou+f-Vu—eAu=f in Qx(0,7),
(1.1) u=0 in 00 x (0,7),
u=wvy in § x {0},

where «, 3, and f are functions of x and t. The initial value vq is a function of x and € is
a positive number. We assume that o > 0, « =V - 3 > 0, and ||B||z (0,70c()) < C. In
order to discretise this equation we use a Discontinuous Galerkin method, when € is small
we combine this with a Streamline Diffusion method, see [6].

Our main goal is an a posteriori error estimate, in the maximum norm, for the parabolic
case, € &~ 1. However our technique yields a result also for small €. Let U be the discrete
solution. The main result of this paper takes the following form:

t

max [[u(tn) = U, o < CL(|

(1.2) 1<n<N €l/2 Loo(In;Loo;Q))
[Jmin (i ) 7 )

min { —, —=
61/2’63/2 Lo (In;00(S2)) ’

where L is a logarithmic factor. R!, R® are residuals arising from the time and space
discretisation, respectively.

The proof of (1.2) is based on a duality argument, see [3] and [4]. Since we consider
estimates in the maximum norm we use an L;-L, duality argument. An important feature
of our proof technique is the use of a regularised Green function G, see [11], [5] and [2].

1991 Mathematics Subject Classification. 65M60, 35K20.

Key words and phrases. parabolic, time dependent, convection-diffusion, a posteriori error estimate,
residual, maximum norm, pointwise, discontinuous Galerkin method, adaptive, finite element, duality
argument, streamline diffusion.
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2 MATS BOMAN

In order to prove the regularity estimates for G we combine the argument in [2], using
maximal regularity estimates, see [7], with an energy method as in [1].

In Section 2 we formulate the discretisation method. In Section 3 we state the main
result. In Section 4 we prove a lemma which allows the us to replace the true Green
function by an approximate one. In Section 5 we do the duality argument. In Section 6
we estimate the residual in terms of computable quantities. In Section 7 we estimate the
regularity of the approximate Green function G. In Section 8 we conclude the proof of the
main result.

We conclude this section by introducing some notation. Let €2 be a bounded domain
in R% d = 1,2,3. We use the standard Lebesgue spaces L,(w) for w C €, with the
convention that L, = L, (), and the corresponding Sobolev spaces W} (w), Wr = WE(€),

H* = W} and Hy = {u € H' : ulso = 0}. Moreover, we write (u,v), = [ uvdz,
(u,v) = (u,v)q. Let X be a Banach space with norm || - ||X and let I be an 1nterval We
define ||ulz,r;x) = (f; [|u(®)|[% dt)/? for 1 < p < oo and ||ul|prx) = esssup;||lu(t)|x

for p = oco. We introduce the notation Div(z) = \/Z|a|:j |Dev(z)|?, so that the W

seminorm may be conveniently written |[D™v||,.

2. THE DISCRETISATION METHOD

In this section we formulate a discretisation of (1.1) in space and time using the Discon-
tinuous Galerkin method with Streamline Diffusion, see [6]. For the discretisation in space
let F = {7} be a family of triangulations, where a triangulation 7 = {K} is a partition
of  into open simplices K which are face to face. Let hx = diam(K) and let px denote
the radius of the largest closed ball contained in K. We assume that F is nondegenerate,
i.e., we assume that there is a constant ¢y such that for all triangulations 7 € F we have

h
(2.1) max — < c.
KeT pk
To each triingulation T € F we associate a positive, piecewise constant function A(T),
defined on €2 by

To each triangulation 7 € F we have an associated function space S = S(7T), consisting
of all continuous functions on { which are linear in z on each K € T and vanish on 0.

We now consider the discretisation in time. Let 0 =ty < --- < ty = T be a partition
of [0,T] into subintervals I,, = (¢,_1,t,) of lengths k,, = ¢, — t,_1, and associate with each
such time interval a triangulation 7, € F with corresponding function mesh h,(7) and
function space S, (7). Let ¢ > 0 be an integer. We define the following function spaces:

(2.3) Vi =Vyn ={v:v(z,t) Ztgoj, ©w; € Sp},

(2.4) V=A{¢:¢l1, € Vo, n=1,...,N},



and the mesh functions k() and h = h(z,t) by
(2.5) kl;, = kn, hl;, = hy.

We discretise (1.1) as follows: Find U € V such that, forn=1,2,..., N,

/ {(U+aU+ - VU,w+ 6(w, + - Vw)) + e(VU, V) } dt
(2.6) + ([Uln-1,w, 1)

:/(f,w+5(wt+ﬁ-v1u))dt, Yw € Vi,

In

where U; = vy and

(2.7) [, = = ¢ns Pn =limgsorp(tn £ 5).

Further, 6 = §(z,t) is the Streamline Diffusion coefficient, which is defined by
(2.8) d = ¢y min(0, h — ¢),

where ¢; > 0. Note that ¢; = 0 means that Streamline Diffusion is not used.

3. THE DISCRETISATION ERROR
In order to state our results we need some additional notation. Let

hmin = min_inf A, (z),
(3.1) 1<n<N z€Q

Pmax = 12?5)5\7 21618 hn(x).
In order to state our estimate we introduce computable residuals. Let x : Q x [0,7] - R
be any function such that x|, (z,-) € P,(I,). Let [0,U] denote the jump across 0K in the
outward normal derivative. We define the following computable residuals R, R!, R, and

R? by
Rl|, = R}, =k [Uln—1,
R, =R.;=|aU+(-VU — f — x|,

(3.2) B, = RO | = |ehzths? / @,V dt
I

Loo(0K\0Q)

Rl = RY, = k;l/ Uy +all + B-VU — f|dt,
I,

where the indices e and ¢ refer to the edge and the interior parts of the residual, x and ¢
refer to space and time discretisation. We now state our main result.
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Theorem 3.1. Let u and U be the solutions of (1.1) and (2.6). Let o > 1 be arbitrary.
We have

max [[u(ta) — Uy ey < C1h3

min

1<n<N
ko, R!
+CCrLy 1151}1&5%\! () €127 Loy (InsLeo) ‘ €Y/2 11 Ly (In;Loo)
(3.3) +H : ( h h2)Rw
min 61/27 63/2 € Loo(In§Loo)
) h h? -
+ H i (617 ei’W>Ri Loo(In;Loo)>’
where
) ) 1 1
(3.4) C, = 1+m1n(m1n (617,—& : )(1+10gtN),vtN>,
and
tn tn 2
(3.5) Ly = (1 + log E) (log P loghmin|) :

Remark. C; depends on t and e. We have that C; < C(¢)(e 32 + ¢ *k; '/?), where C(t)
depends on the time behaviour of o, # and f, see proof of Lemma 4.2.

Remark. It is known that the solution u of (1.1) can be nonsmooth in certain regions
such as boundary and characteristic layers when € is small. In order to make a global error
estimate, such as (3.3), small we expect that we have to refine the mesh heavily both in
k and h. However, it seems possible that a localised version of (3.3) would give a small
estimate of the error in certain regions where the solution is smooth even if we do not
resolve the singular layers. In order to motivate this we argue as follows.

In the stationary case we have the following result. Let u be the solution of

u+u, —eAu=f in €,
u=0 in 0%,

and let U be the approximate solution obtained by the Streamline Diffusion method. It
was shown in [9] that for special regions )y, oriented along the streamlines and where

(3.6)

|[ullc2(00) < C, we have ||u—Ul|L, () < Chala even if the singular layers are not resolved.

This result was improved in [10] to O(h}r};{f ) and in [15] to O(h2,,) for special triangulations.

max
In [1] it was shown, essentially, that

Loo()’

, ho k2.,
(3.7 o = U)oy < C||omin (1, 575, 57 ) R

where ¢ ~ 1 in Qg and ¢ decays exponentially with s/4/¢ where s is the distance to .
This shows that the a posteriori error estimate can be localised in the same sense as in
[9]. However, to make this result useful it is important that it is possible to compute U
without resolving the layers and still have a small residual R* in {2o. The a priori estimates
indicate that this is possible.
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It seems to be possible to repeat this argument in the nonstationary case. In [14] it is
shown that in certain regions Qg C 2 x (0,7), oriented along the streamlines and where

u € C*(Qo), we have |lu — Ul|r.. (g, < Chiz?’® where d is the dimension of €.

Since the proof of (3.3) is similar to the statlonary case, we believe that it is possible to
localise (3.3) in a similar way. This conjecture is also supported by the localised a priori
analysis in [14] and [13]. We have not carried out the details.

4. A SPLIT OF THE ERROR INTO AN A PRIORI AND AN A POSTERIORI PART

The main result of this section is a lemma which will be used to split the estimate of
the error e = u(ty) — Uy into two parts, see [11] and [5]. The first part is then estimated
through an a priori estimate. The remaining part is of the form |(u(ty) — Uy, g)| where
g is an approximate delta function. We now define the function g. Let xy € 2 and let
g = gz, be such that

(4.1) / gdz=1; supp g C B(zo;p); 0<g<Cp™@
R4

Here B(xo; p) denotes the closed ball with center at xy and with small radius p to be chosen.
By direct calculation we have

(4.2) lgllz, < Co~*", ' =p/(p-1),

We now state the main result of this section.

Lemma 4.1. Let w € H}(Q) N C?(Q) for some vy € (0,1). Let W € S and let o > 1. Let
zo be such that ||w — WL (o) = |w(zo) — W(xo)| and let g = g4, be given by (4.1). There

exist constants C and hy, > 0 such that, if hyin < he and p < h 20/7 then,

min

(4.3) [ = Wllrw@ < Chinllwllor@) +2/(w = W, g)|.

Proof. Let e = w — W and recall that |e(zo)| = ||e||r. (). Let B denote the union of all
elements K € T that intersect B(zo, p). Extend e to be zero outside Q. By the mean
value theorem there is an x; € B(xg,p) N such that e(x;) = (e,9). We note that
e = w — ITw + Ile, where IT : C(Q2) — S is the Lagrange interpolation operator. Thus

le(20) — e(21)] < |w(zo) — w(@1)| + pl| D(w)|| oo ()

(4.4)
+ pllD(Me)|| 1. (5)

We have by assumption p < h2%/7 o that

min ?

(4.5) w(@o) —w(z1)| < pY||lwllev) < hwllwllone-
Since hY . < C and 20/7 — 1 > 1, we have

pl| D(Tw)|| 1.5y = pl| D(Mw — Hw(20)) || o) < Cphtal|Tw — Mw(o) |1y 5)
< ChL b2 Mwllov@y < Chnllwllor@

max’ "min
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where we also used the stability of II in the L -norm and an inverse estimate. Likewise,
pIID(Me) |18y < ChhmginllTel| o) < Crphpillel| o)
< Cihi” ™ lellzca)-

min

(4.7)

Since 20/ > 2, we have

(4.8) CLh2l ™t < -,

N| —

for hmin < h, sufficiently small so that
el < le(z1)] + le(zo) — e(z1)]
< (e, 9) + Chiallwlleve) + 5llell ),
which concludes the proof. O

(4.9)

We will apply the previous lemma with w = u(ty), where u is the solution of (1.1). We

have the following lemma which gives a rough estimate of the Holder-norm of a solution
of (1.1).

Lemma 4.2. Let Q be a convex polyhedral domain in R, d = 1,2,3. Let u be a solution
of (1.1) with o — %V 8> 0. Assume that the initial data vo € Hy. For any 0 < v < % we
have

(4.10) lu(®)]lcro) < Ct) (e + e 1t/

Proof. Multiply (1.1) by u; and integrate in space to get
4.11 2 ld 2 1 2 1 2
@.1) ol + 5 lVals,) = () < LA, + il

integration in time gives

T T
(4.12) A||ut||%2dt+€||vu(T)”%2S/(; I£11Z, dt + el Vvoll,.-

We now differentiate (1.1) with respect to ¢ and multiply with tu,, after an integration in
space we get

d
—(t||ut||%2) — ||ut||%2 + (agu, tug) + (Qug, tug) + (B; - Vu, tuy)

(4.13) dt
+ (ﬂ . VUt, tU/t) + Gt”VUt”%Q = (ft, tut)
Rearranging and using the fact that (o — %V - B,tu?) > 0 gives

T
Tllus|l2, + / {(wu, tug) + (B, - Vu, tus)} dt
(4.14) 0

T T
b [ eV, de= [ (Gt + e
0 0



Further
T T
/ |(atu,tUt)| dt S ||t1/2ut||Loo(O,T;L2)T1/2/ ||atu”L2 dt
0 0
1 , T )
< Z
(4.15) < g o Iz, + CT(/O llowulz, dt)
1
< g v @, + CTllallZ, o iy [¥llZ o oiric
1 ) ) \
< 3 Olélta;%t”ut(t)”Lz + CT el L, 0,r,000) 112 0,752
Similarly
T T
/ |(B; - Vu, tug)| dt < ||t1/2ut||Loo(0,T;L2)Tl/2/ 18; - V|1, dt
0 0
1 ) T 9
< ’S .
< 5 s @I, + o7 ( [ 16 Vul, at)
(4.16) 1 ) 2 2
< g max w7, + CTIBI Loz IVl a0z
1

< — max t||u,¢(t)||%2
+ CT||5?5||%2(0,T;L00)671(“f”%z(O,T;Lz) + ||VU0||%2)a

where we used (4.12) in the last inequality. Further

T 1 , T 9
4.1 -
(1.17) | st < § g 1P+ CT( [ flaa)
By combining (4.14), (4.15), (4.16), (4.17) and (4.12) we arrive at the estimate
t
(4.18) tllu(@)]* < Gilt) 72 + G0,

where C;(t) and Cy(t) depends on the time behaviour of o, § and f. We thus have

elauv®le, < laflellu@®lle, + 181 [[Vu@)lle, + [lu @)z,
(4.19) 12 a1/
< Ct)(e P+,
where we used (4.12) and (4.18). Further
(4.20) ID*u(t)llz, < CllAu@)llz, < CE)(e 2 + 1t ?),

where we used elliptic regularity. By Sobolev’s inequality we get (4.10) for v < 2 — d/2,
d=1,2,3. O
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5. A DUALITY ARGUMENT

The equation (2.6) defining the finite element solution U can be written in compact form
as

N
| {Ui+aU+B-VUw+6(w, + B+ Vw)) + «(VU, Vw) } dt
n=1 In,

N-1

(5.1) + ) (Ul i) + (Ug wy)

n=1

tn
:(vo,wa’)-i-/ (fyw+o0(w,+ B -Vw))dt, Ywe,
0

where U; = vy. Let

V = {w : wl;, is smooth in time, w(t) € Hy ()

9.2
(5:2) and wr € Hy () exist}.

We note that the solution u of (1.1) satisfies

N
Z {(ug + au+ B - Vu,w) + €(Vu, Vw) } dt

n=1 In

=2

(5.3) S ([ ) + (i wd)

ty
:(vg,w{f)—i-/ (f,w)dt, Yw e V.
0

S
Il

We define the residual 7(U) as a linear functional on V,

N

(5.4) (r(U),w) =Y (r(U),w)n, YweV,

where
(5.5) (r(U),wyn = [ {(Us+aU+3-VU = f,w) + €(VU, Vw)} dt
+ ([Uln-1,wy 1)

We note that by (5.1)

(5.6) (r(U), w)n +/In(Ut +aU+(3-VU — f,0(w; + - Vw)) dt

=0, Ywel,.



We define the bilinear form B(-,-) by

Z | {(&+ag+ 8- V&) +e(VE, V)t
=1 n

(5.7) -
+Z[€n’nn oﬂ?o+), VE, neV.
n=1

Let the error e be defined by e = u — U. Combining (5.3), (5.4), (5.5) and (5.7) gives
(5.8) e€V; Ble,w)=—(r(U),w), Yw €.
Let us consider the following adjoint problem: Given g, find G = G(z,t) such that
—Gi+aG -V - (BG)—eAG =0, in Q x [0,tn],
(5.9) G =0, in 0 x [0,ty],
G=yg, inQx{ty}.
We multiply (5.9) by w € V and integrate to find

o_z {(w, =Gy + aG — V - (BG) — eAG)} dt

nlI"

(5.10) _Z {(w, + ow + - Vw, Q) + (Vw, VG)} dt

n=1"1In
N

+ 3 ([l s G 1) + (wg, GF) = (wy, GR),
=1

where the second equality follows from integration by parts in space and time and the
continuity of G. We thus have, using also G}, = g,

(5.11) (wy,9) — (wy,Go) = B(w,G), Yve.
Since U;, = vg, we have e; = 0, so by choosing w = e in (5.11) we get
(5.12) (en,9) = Ble, G).

By (5.8), with w = G, we conclude

(5.13) (en,9) = —(r(U),G).

6. AN ESTIMATE OF THE RESIDUAL

In this section we state and prove an estimate of the residual (r(U),v) in terms of the
computable residuals defined in (3.2) and derivatives of v, the proof is inspired by [8].
The estimate is weighted with powers of € anticipating the e-dependence in our regularity
estimates for G.
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Lemma 6.1. Let 1 < n < N and let r(U) be defined as in (5.4) and R!, R, R®, RY be
defined as in (3.2). Let v:Q x I, = R be a smooth function such that v|sq = 0. We have

(6.1)
(r(U),v)n| < C(6_1/2||kRZ||Lm(1n;Lm(n)) + e 2 R 1y 1o ()

+c

n () )
mim\ —-, -+ ;
61/2 ’ 63/2 ! Loo(In;Loo(S2))
x /2 min (1101|110 00 108l 22 ri1a00 )
h h2>

€l/27 ¢3/2

T
€

T
(]

h hQ)

€l/27 ¢3/2

(i

+ H min (
)

Loo(In;Leo (Q Loo(In;jLoo ()

Loo(In;Loo (Q)))

tn
D2/ vdt

We recall that there is an interpolant II : H} — V},, such that for v € W, see [12] and
the discussion in [8],

o h kPN
+ H min (m, ﬁ)Re

X (61/2/ | Dv]| 1y () dt + €% sup
I,

s€ln

Ll(Q)> )

|D el < ClD o lausi, = 0,1,
(6'2) ”U - HU||L1(K) < ChZK”DZ,U”LMSK)’ 1=1,2,
ID(v — 1T0)||1,(x) < Chig |ID"lpysy),  i= 1,2,

where Sy = {K' € T : K'N K # 0}.
Let w C Q. For functions v = v(z,t), x € w, t € I,, and 1 < p < 00, we denote

p 1/p
63) ezt oy = ([ (supiote. o) "az) ™

Let J : Ly(I,,) — P,(I,,) denote the orthogonal projection. It can be shown that J has the
following properties:
tn
/ vdt

v = V[ L (tni2p(w)) < CmIN(||V]| 200 (tnszp@))s 10|24 (1052, @)))5

Ly(w)’

C
179l 22|, 0y < k, Sup

1(T0)el| oo taszpyy < 7= 0[Ol Lo (i) 1Vel| 22 s @1

kn
¢
ki

Tl et 1,y < 7= DN cttuizaon: [l acraizyen)-
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Proof. By the orthogonality property (5.6) of 7(U) it follows that

(rU), v)n = (r(U),v = Jllv),
— / (Ut YaU+B-VU — f,6((JIv), + 3 - wnu)) dt
(6.5) (U)o — o+ (U)o — JTI0),

— / (Ut YaU+B-VU - f,6((JIw), + G - VJHU)) dt.

I,

We first estimate (r(U),v — Jv),. Since Uy(z,-) € P,(I,) we have

(6.6) / (U, v — Juv)dt =0,
In
and similarly
(6.7) / (YU, V(v — Jv)) dt = 0.
In,

By Holder’s inequality we get

([Uln=1, (v = J0);_ )| < MUn=1llzoe@ |V = TVl Loo (10,21 (52))

(6.8)
= |k RL|| Loo (1 Leo(@)) |1V = V|| Log (10,L1(02)) -

Let x : © x [0,7] = R be any function such that x|, (z,-) € P,(I,). Then

/ (@U+B-VU — f,o—Jv)dt
Iy,
(6.9) <ol + 8- VU = f = xllatzwyllv = J0lln iz

= IRl 21 (tuszoct@n 1V = TVN Lo i () -
But by (6.4) we have
(6.10) 10 = J0l| oo (@) < Cmin([[0]l o (rasza(@))s Vell 2y (rasza (),
so that

[(r(U),v — Jv)a| < Cle V2RRY| 1o (tnsto@) + € V2N R Ly (1, Leo())

(6.11) _
x €2 min(|[v] po (122 (9))s Vel £ (1nsa (2)))-
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Further,
‘ /1 (U+alU + B - VU — f,8(JTv),) dt‘
< He‘mék;l/[ Ui +alU+5-VU ~ f| dtHLm(
(6.12) < €2k | 1(TT0) el et ] 1, 0

<Cc

h  h?
. o - Rw
min (61/2 ’ 63/2> ' Loo(In;Loo (Q))

x ¢'/? Min(||v]] Lo (2,21 () V8] 21 (20,2100 )

where we used that, by the definition (2.8) of §, § < ¢; min(h, e 'h?), the definition of R?,
(6.4) and (6.2).
We now estimate (r(U), Jv — JIlv),. Let w = J(I — II)v. Then

/(VUVw _eZ/ (VU, Vw) dt

In KeTr

(6.13) —GZ/{ (AU, w)k + (0,U, w)ax } dt

KeTn

= ——6 Z / [6 U BK\BQ dt,

KeTy

where [0,U] denotes the jump of the outward normal derivative and where we used that
AU|k = 0, since U is piecewise linear. Further, by Holder’s inequality in time and the
definition of R?, we get

; h n -1 -1
6‘ /In([auU]:w)aK dt‘ < ‘(mln (m, 63?) Gkn /In ‘hK [8,,U]n_1| dt,

/2 3/2

€
max( —, 5 )th ”w”LwW)aK‘
o h kN,
Smln(m,ﬁ>Re\K

el/2 ¢3/2

X max (T’ W)’mkn” ||w||Loo(1n) HLl(aK)'

(6.14)

By (6.4) we have

an”wHLOO(In)HLl(aK) = anHJ(I — Mol HLl(aK)

(I—H)/ vdt)

(6.15)
< C'sup
sEl,

L1(9K)
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By the trace inequality we have

(6.16) x|z or) < C(hi XIlLacx) + DX |zax)-

By combining (6.15), (6.16) and the approximation properties (6.2) of II,,, we get

anh||w||Loo([n)HLl(3K) S/ |hDv|| 1, (s,) dt,

(6.17)
22
ky, Hh||w||L°o (In) HL1 (0K) — < SUP ‘ h*D /Invdt Ll(SK).
Let
1/2 .3/2 1/2
_,4:{}(67;1:min(6 ,62)_6 1
(6.18) o s
| B ket mim(E €
= {K € 7T, : min( o h2)_ hg}
Hence
. h  h?
\e[n(VU,V(Jv = 1)) di| < €| min (5. 5) B: Loo(2)
z 1/2/ ”DU”Ll (Sk) dt + 263/2 Sup D2/ Udt) )
seln Ll SK)
(6.19) fed \
h h
< i 75 Tar5
< 0| min (7. )

X (61/2/ |1 Dv|| L, (o) dt + ¥/ sup
I

s€el,

tn
D? / ) .
] 2)

Further, by Holder’s inequality,

([U)—1,(J (v = Iw)) 4|

Loo(Q)
/2 3/2
(6.20) 8 Kze;rmax (T’ W)k"HHJ(U - HU)“Loo(In)HLl(K)
. h h*y\.,
- H i (m ’ E:W)Re Lo (FaEs ()

1/2
X Zmax(eh 12 )k H”JU—HU [ In)”L

KeT



14 MATS BOMAN

and similarly

‘/I (Ut—l—aU—i—ﬁ-VU—f,J(v—Hv))dt‘

< Hmin( 73 3/2 / \Uy+ U+ (3-VU — f\dtH
(6.21) x Zrmax <61: h/2 Yl Il 0 = 100 et 1,
Ke

= [ min (7 ﬁ%)Rf

N Lo (1300 ()

€3/2
X Zmax( Y )k H”J 0 — )| 1. (1) HLl(K)'

KeT
As above
S max (S0, < Y| H
mase (5, Gl 170 = T0) i |,
KeT h h
(32
-1 dt‘
03 max () s >/ i,
(6.22) Ke
<cS 2 [ b dt+C S 2 D2/ dt)
<oy [ 1Dl + > S
SC 61/2/ | Dv]| 1y () dt + €% sup D2/ )
In s€ly, s Q)
Finally,
‘/(Ut+aU+ﬂ-VU—f,5ﬁ-VJHv)dt‘
I,
gc‘ael/%nl/ |Ut+aU+ﬁ-VU—f|dtHL "
In b
(6.23) X ka1 TV o1 | 1,
h k2 e
< (TN b 1/2
—C‘mm (61/2’63/2) i) ser /
hooh? X
L (h TN, /2
<C ‘ min (61/2, 63/2>R’ Loo(In;Loo(Q))e /In | Dv||z, () dt

where we again used § < ¢; min(h, e"*h?) and the inequality ||VIIv||r,x) < C||Dv||1y(sx)
from (6.2). This concludes the proof. O
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7. REGULARITY ESTIMATE OF THE SOLUTION (G OF THE ADJOINT PROBLEM

In this section we prove regularity estimate for the solution G of (5.9) in the case when
the data g is a regularised J-function. Our estimates are based on the following lemma.
Let f € L,(0,T;L,) and let g € L,. Let v be the solution, in the L,(0,T; L,) sense, of

vy —eAv=f, in Qx[0,7],
(7.1) v=20, indQ x[0,T],
v=g, inQ x{0}.

We now state the estimate of the solution v of (7.1), the proof of this lemma can be found
in [2].

Lemma 7.1. Let 1 <p <2, letp =p/(p—1) and let v be the solution of (7.1). Then,
for0<T<T,

g T F
(72) [ i e < e (1og gl + 77 I Flasoan)
v of T "
(7.9 [ Dl de < 0 (108 Dl + T 1000,
T o) DQ/ vt <o/ (llgle, + 277 1 fllry0mi)-
se|0,7 S

We then apply these estimates to the solution G of the adjoint problem (5.9) with
f=—aG+V-(BG) and with the data ¢ chosen to be a regularised d-function. A key step
in this part is to establish an estimate of ||[(o = V - 8)G — 8- VG||1,(0,t;L,)- This is done
in the following lemma.

Lemma 7.2. Let G be the solution of (5.9) with data g as in (4.1). Assume that o > 0,
andaa—V-3>0. Let 1 <p <o andletp'zm. Then
||G||Loo(0=T§L1) <1,

(@ =V - B)Gllz,0.1:1,) < CCre™2p=47"

(7.5) )
||DG||L1(0,T;L1) < CCTE 1/2,
18- VGl|z, 0,1, < CCre /2p~47,
where
1 1
(7.6) Cr, =1+ min (min (% P )(1 + |logT)), (1 + ‘1ng|)\/f>_

Proof. 1t is convenient to use the change of variables ¢ — t5 — t. Note that this also
changes the mesh so that Iy becomes I; and ky becomes k;. In these variables the adjoint
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problem (5.9) takes the form:
Gt'f‘CEG—V(ﬂG)—EAG:O, ian[O,tN],
(7.7) G =0, in0Q x [0,tx],
G=g, in Qx{0}.

We start by estimating [|(a — V - 8)G||1,0,751,) and ||8 - VG| py(0,1;1,)- Multiply (7.7) by
G and integrate over 2. We get

. d

(7.8) L

IGII7, + (oG, G) = (V- B)G,G) = (8- VG,G) + €| VG]z, =0,

(7.9) (5-VG,6) = (V- B)G,G).

Therefore we get from (7.8) using (7.9) and integrating in time

1 T g 1
710) GG+ [ =iV 0 dt+ [ dVEIE,dt= Sl

where we used that by assumption o — iV - = 2a + 3(a — V- 3) > 0. (7.10) gives an
estimate for ||VG/||r,0,7;0,), and by using the inequality |G|z, < C||VG||L,, we also get

an estimate for ||G||p,(0,r;1,)- We thus have the following estimates

1G] saoriey < CPllglle, = Ce V2p %2,

(7.11)
IVGlliao,rsns) < € 2glln, = Ce/2p™2,

where we used (4.2). Moreover by using (7.11) we get

(e = V- B)GllL,0,r0) < CePlla—v- Bl Lee(0,75200) 191l 22
18- VG|lLy01:0:) < € 18| 2o 0.75800) |91 25

We now estimate |[(a — V - 8)G||r,0,1;1,) and |8 - VG||1,0,r;0,)- We start by estimat-

ing ||G||r.o,mz,) and [|Gl|z,0,r5z,)- We multiply (7.7) with \/giW’ ¢ > 0, which is a

(7.12)

regularisation of sign(G), and integrate in space and time.

. G . é‘
Since V\/&LG2 = Vi VG, we get

T G G EVG
/0 {(c. W) + (o0, \/ﬁ) + (86, W)

+ (eva, %) } dt = 0.

(7.13)
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Further, let £ = {x € Q : G(z) > 0},

T T 1/2
/0 (56, 7\/%3)6#‘ g/o (|5.VG|7\/6%) dt

(7.14) <NBll o 01:20) IV Gl La0,172)

1/2

Vi@

L2(0,T;L(E))
61/2

VET G

where we in the last inequality used (7.11). We conclude by dominated convergence that

<o L

Ly(0,T;L(E))’

1/2
(7.15) Hgi S 0as€— 0.
VE+ G llLa0miLam)
Hence
T d T
(7.16) / Gl e+ / oG, dt <0,
0 0

where we used that (G, sign(G)) = (4|G|,1) = %||G||1, and the assumption o > 0. We
therefore conclude

T
(7.17) 1G] + / laGlls, dt < llglle, = 1,
0

which gives the estimate for ||G|| 1 0,7;2,) and || @G|z 0,r;L,)- We also note that if we don’t
integrate by parts in the term fOT —(V - (BG), G%%) dt we get the estimate

T
(7.18) IG(T) ], + / l(@=V- Al dt <1+ 8- VG

We also need an estimate of ¢||G(T')||r.0,r;r,)- Multiply (7.7) by \/% Note that
4Gz, = L11tG(®)||L, — [|G ()], By the same argument as above we get

T

T
(7.19) TG + / taGl,, dt < / 16l
0 0

We now estimate ||3 - VG|, (0,r;0,)- By assumption oo — V - 8 > 0, therefore G > 0 in Q2
by the strong maximum principle, so that log(1 + G) is well defined in © and 0 on GQ

Multiply (7.7) by log(1 + G) and integrate in space and time. Since Vlog(l + G) = 1+G,
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we get
T T
/thog1+G dt+/ (aG,log(1 + GQ))
0
T
7.20 G 7
(7.20) A ﬂ1+G
T
—|—/ eVG— =0,
0

where, by integration by parts in ¢,

(7.21)

/0 (G4, log(1+ G))dt = (G(T),log(1 + G(T))) — (g,1og(1 + g)) /0

= (G(T),log(1+ G(T))) — (g,10g(1 + g)) /0
T G,
+/0 (Lirg)
= (G(T),log(1 + G(T))) — (g,1og(1 + g))

_ /T(1, G.) dt + /T(l,log(l +G)) dt

= (G(T),10g(1 + G(T))) — (g,10g(1 + 9)) = [IG(D)|z, + llgll,
+ [Hog(1 + G(T) Iy — [[Tog(1 + 9|1, -

Further
VG
/QGﬂ'1+de:/( VBT g®- 1+G
=/ﬂ-VGdac—/ﬂ-Vlog +G)dx
Q Q
(7.22) = Gﬂ-nds—/(V-,@)de
a0 Q

—/ log(l+G)ﬁ-nds+/(v-,6)log(1+G)dx
o9

Q

_ _/Q(V-ﬂ)Gd:v-l—/(V-ﬁ)log(l+G)d:c.

Q
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We thus have, noting that (G(T),log(1 + G(T))) > 0in Q,

(G(T),log(1 + Q) + /OT(aG,log(l +G))di + /OT H€|1V+G(|; |t
- /T((v . 8),G —log(1 + G)) dt
+0(9; log(1+9)) + IG(D)L, — llgllz,
— [[1og(1 + G(T))||z, + [[10g(1 + g)||z,
(7.23) < /OT(V - 3,G —log(1+ G)) dt + ||g|z, (1 + log(L + [|9]|..)

T

§/ (a, G —log(1 + G))dt+ C(1+ |logp|)
7

S/ (o, G)dt+ C(1+ |logp|)
0

T

- / laGlls, + C(1 + [log o) dt
0

< C(1+ |logpl),

where we used & > 0, G > log(14+ G) > 0, « > V - 3 and (7.17). We now multiply (7.7)
with tlog(1 + G). We first note that

/ Y Gy tlog(1 + @) dt = (TG(T), log(1 + G(T))) — / ' (G log(1 1 G)) dt

7.24
2 —/T (tG G )dt
0 ’]_+G 7
where
T T T
Gr \ G, _/ G,
/0 (tG,1+G>—/O (t(G+1),1+G>dt 0 (t,1+G>dt
T T
_ / (t,Gy) dt — / (£, log(1 + G),) dt
(7.25) 0 0

— (T,G(T)) - /OT(l,G) dt — (T.log(1 + @)

+ /T(l, log(1+ G)) dt.
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The other terms can be treated as above and we get
’ VG|
(TG(T),log(1+ G(T))) +/ t||aGlog(l + G)||, dt +/ t) €
0 0 1+GlL
T
=/ UV - B,G — log(1 + G)) dt
0

T T
+ [ (Golog(1+ G dt+ NGO, - [ G, d
0 0

(7.26) .
—Tw%a+amh+/‘m%a+emhﬁ
0

T T
< [ oGl dt+ [ 1G]z, d
0 0

T
s2/nwh@
0

where we used (7.19) in the last steps. We thus have the inequalities

/T ‘ €|VG|2
0 1+G L1

(7.27) " var
[

dt < C(1+ |logpl),

T
m52/|mmwt
0

€1+G Ly

We now get

[ vevels,a= [ | XL vrve

Ly
7.28 e|lVG|? 1/2
(7.28) s(A 1+; /IH+®mﬁ)

< (C(+ Ilogp|))1/2((|9\ +llgllz) 1),

where we used (7.27) and that by (7.17) we have ||G||1.07;0,) < 1. Further
T
VG
| WGl = [ | v
1

S/ €| VG?
1

Ly

1/2

11+ G|y dt
1

1+G
(7.29) r

_ / 4172

. C

1 T 61/2
< —/ <—t
-2/ C

C

€| VG|?
L 61/4151/2 I

(1+G)llL
E\VG\Q
1+G

1+ G|/ dt

el )

t61/2
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where C is a constant to be determined. We now have, by (7.26),

T Ve |te| VG Ve [t Ve [t
7.30 _H A < V€ dt
w0 [ SR, <5 i< [ VGl
and
1 1
(7.31) /¥||1+G||L1(Q)dt§2/ Lt =210gT,
1 1

where we used that by (7.17) we have ||G||ro0,r;z) < ||9lle,- We therefore have the
estimate

T T 1 C
(7.32) / IVeVG|l., dt < / Level, dt + LiogT,
1 1 2 Ve
and hence
T \/‘ C
(7.33) / eVG||p, dt < —logT.
[ IVevals, dt <

By a similar argument as above we get the estimate
T T T
[ WGl dt < [ NGlnde+ [ 41+ Gl e
1 1 1

7.34 T
(7.34) SamiHI/ laGllu, dt + Clog T(1 + [lgll..,)
1

S Gfrnini1 + ClOgT
By combining (7.28), (7.33) and, (7.34) we get

c . . 1 1
IVG stz < —zmin (min (<=, — ) (1+|10gT), (1 +log p)v/T))

(7.35) G VE Omin
< C’Cre_l/?.
Further
(7.36) 18- VGllLi0.1:21) < CllBl Loo0,75200) I VG| L1 0,15L1)

< CCe 2,

and by (7.18)

(@ =V B)Gllriorr) <1+ 18- VG070
< CChe /2,

We now interpolate between (7.36), (7.37) and (7.11) in order to get an estimate for
l(e: = V- B)Gl|1,0,7:8,) and [|8- VGL,07:L,):

(0= V- B)Gllzy0miz,) < e = V- G bl = V- BGIE s
< CCe 2 pdlr',

(7.37)

(7.38)
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Further

1-2 2
18+ VGllL,0miL, < 18- VGl o p 18- VG 10

(7.39)
< CC,e 2l

We are now able to prove the main result of this section

Lemma 7.3. Let G be the solution of (5.9), with g as in (4.1). Assume that o > 0 and
a—Vceot B> 0. There is a constant C' such that, if p is sufficiently small, then

NG| Lo 0,tnst) < 1,
NGl Lio,tn1520) < CCre 1/2(1 +logk )
N
(7.40) IDG 0.5y < CCre™72,

t t
D% 100ty < CCe? (14108 1) (Tog ),
kn knp

lo
& knp kNP

tn t 2
sup ||D? [ G@)dt| <cC.e¥?(log-2)
SGII:L s ( ) Ly ¢ ( & kNp>
where
1 1
(7.41) C, = 1+min(min (\ﬁ,ﬂ)(hL |logTI),\/T).

Proof. From Lemma 7.1 with f = —(a—p-V)G + - VG we obtain,

tn t ; o~
/k Gz, dt < Cp'(log —N||9||Lp +iy? ||f||Lp(0,tN;Lp))
(7.42) 1

< CCet? '(log A + (ig)l/p’)p_d/p'.

We conclude from (7.42) with p’ = log,zTN > 1 that

/tN G, dt < CCpe 12 I(log - n (tN)l/P')pd/p,

k1 kl
tn\-4r ¢ tn\ -d)/p ty \ /P
7.43 <O, (X log N N 2N
(7.43) = e ((kl) 8%t (kl) )p (klp)
_ tn tn
< CCe % (log—=+1)log —.
< € ( og o + ) og Fip
Similarly we obtain
v ¢ v \2
7.44 D%G||y, dt < CCre [ log =X +1) ( log -
(7.4 [ 1056, a1 < 0C,e 2 (10g i 1) (1og % )
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and

(7.45) sup
s€[0,k1]

k1
W/‘

8. CONCLUSION OF PROOF OF THEOREM 3.1

En )\ 2
< —-1/2 N )
LS CCre (log /ﬁp)

In this section we combine the result above to get a proof of Theorem 3.1.

Proof. Let n € [1, N]. We apply Lemma 4.1 with w = u(t,), W = U,, , Lemma 4.2 and
(5.13), to get

[u(tn) = Un llLeie) < Pramllu(ta)llone) + 2l(en, 9))
< )hfmn+2\< ), G)l;

4), Lemma 6.1 and Lemma 7.3, we get

(8.1)
where, by combining (5.

k R!
1/2R ||LOO(I]7L00) + || 1/2

L1(Ij;Loo)>
(||G||LOO(I]7LOO ||Gt||L1 I]yLoo))

X m

o h Ry, _h Ry,

+ (|| min (7 ) e Ll | min (5. ) 2
+

N oo (13L00)
. h RN,
Hmln (ﬁ’ﬁ)Re Loo(Ij;Loo)>
tj
x (61/2/ DG, dt+e3/28up||D2/ Gdtllm)}
(8.2) I <l ’
k R
<C () —R! ‘ ;
B 112]&;% et/27e Loo(Ij;Le0) €l/2 L1(Zj5Leo)
i [min (L5, 22 ) e o [min (e 2 e )
€127 €3/2) Nl Lo (U L00) el/2’ 3/2) Loo(Ijiloo)

% (21G a0t r520) + G|t

+ €2 DVl nyo,tas) + €21 D*Gllna0,t-15000) + €/ 5UP

tn
[

)

s€l,
k R}
< CC,L, ﬂ——t )Z
121?231 el/2 e Loo(Ij;Loo) €l/? Li(Ij;Leo)
o h Ry, o h RN,
+ H min (m’ é’W)Re L1(Ij;Loo) + H i (m’ é”W)Ri Ll(Ij;Loo)>’
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which proves Theorem 3.1. O
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11.

12.
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14.

15.
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